|   | 
Details
   web
Records
Author Lin, A.; Biscop, E.; Gorbanev, Y.; Smits, E.; Bogaerts, A.
Title Toward defining plasma treatment dose : the role of plasma treatment energy of pulsed‐dielectric barrier discharge in dictating in vitro biological responses Type A1 Journal article
Year 2022 Publication Plasma Processes And Polymers Abbreviated Journal Plasma Process Polym
Volume 19 Issue 3 Pages e2100151
Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The energy dependence of a pulsed-dielectric barrier discharge (DBD) plasma treatment on chemical species production and biological responses was investigated. We hypothesized that the total plasma energy delivered during treatment encompasses the influence of major application parameters. A microsecond-pulsed DBD system was used to treat three different cancer cell lines and cell viability was analyzed. The energy per pulse was measured and the total plasma treatment energy was controlled by adjusting the pulse frequency, treatment time, and application distance. Our data suggest that the delivered plasma energy plays a predominant role in stimulating a biological response in vitro. This study aids in developing steps toward defining a plasma treatment unit and treatment dose for biomedical and clinical research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000711907800001 Publication Date 2021-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.5
Call Number UA @ admin @ c:irua:182916 Serial 7219
Permanent link to this record
 

 
Author Sevik, C.; Bekaert, J.; Petrov, M.; Milošević, M.V.
Title High-temperature multigap superconductivity in two-dimensional metal borides Type A1 Journal article
Year 2022 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials
Volume 6 Issue 2 Pages 024803
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000766666300003 Publication Date 2022-02-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.4 Times cited 4 Open Access Not_Open_Access
Notes Universiteit Antwerpen; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, COST-118F187 ; Air Force Office of Scientific Research, FA9550-19-1-7048 ; Fonds Wetenschappelijk Onderzoek; Approved Most recent IF: 3.4
Call Number CMT @ cmt @c:irua:187126 Serial 7047
Permanent link to this record
 

 
Author Monico, L.; Rosi, F.; Vivani, R.; Cartechini, L.; Janssens, K.; Gauquelin, N.; Chezganov, D.; Verbeeck, J.; Cotte, M.; D'Acapito, F.; Barni, L.; Grazia, C.; Buemi, L.P.; Andral, J.-L.; Miliani, C.; Romani, A.
Title Deeper insights into the photoluminescence properties and (photo)chemical reactivity of cadmium red (CdS1-xSex) paints in renowned twentieth century paintings by state-of-the-art investigations at multiple length scales Type A1 Journal article
Year 2022 Publication The European Physical Journal Plus Abbreviated Journal Eur Phys J Plus
Volume 137 Issue 3 Pages 311
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Cadmium red is the name used for denoting a class of twentieth century artists' pigments described by the general formula CdS1-xSex. For their vibrant hues and excellent covering power, a number of renowned modern and contemporary painters, including Jackson Pollock, often used cadmium reds. As direct band gap semiconductors, CdS1-xSex compounds undergo direct radiative recombination (with emissions from the green to orange region) and radiative deactivation from intragap trapping states due to crystal defects, which give rise to two peculiar red-NIR emissions, known as deep level emissions (DLEs). The positions of the DLEs mainly depend on the Se content of CdS1-xSex; thus, photoluminescence and diffuse reflectance vis-NIR spectroscopy have been profitably used for the non-invasive identification of different cadmium red varieties in artworks over the last decade. Systematic knowledge is however currently lacking on what are the parameters related to intrinsic crystal defects of CdS1-xSex and environmental factors influencing the spectral properties of DLEs as well as on the overall (photo)chemical reactivity of cadmium reds in paint matrixes. Here, we present the application of a novel multi-length scale and multi-method approach to deepen insights into the photoluminescence properties and (photo)chemical reactivity of cadmium reds in oil paintings by combining both well established and new non-invasive/non-destructive analytical techniques, including macro-scale vis-NIR and vibrational spectroscopies and micro-/nano-scale advanced electron microscopy mapping and X-ray methods employing synchrotron radiation and conventional sources. Macro-scale vis-NIR spectroscopy data obtained from the in situ non-invasive analysis of nine masterpieces by Gerardo Dottori, Jackson Pollock and Nicolas de Stael allowed classifying the CdS1-xSex-paints in three groups, according to the relative intensity of the two DLE bands. These outcomes, combined with results from micro-/nano-scale electron microscopy mapping and X-ray analysis of a set of CdS1-xSex powders and artificially aged paint mock-ups, indicated that the relative intensity of DLEs is not affected by the morphology, microstructure and local atomic environment of the pigment particles but it is influenced by the presence of moisture. Furthermore, the extensive study of artificially aged oil paint mock-ups permitted us to provide first evidence of the tendency of cadmium reds toward photo-degradation and to establish that the conversion of CdS1-xSex to CdSO4 and/or oxalates is triggered by the oil binding medium and moisture level and depends on the Se content. Based on these findings, we could interpret the localized presence of CdSO4 and cadmium oxalate as alteration products of the original cadmium red paints in two paintings by Pollock.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000765807600002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.4 Times cited 3 Open Access OpenAccess
Notes g The research was financially supported by the EU FP7 and Horizon 2020 Projects CHARISMA (FP7-INFRASTRUCTURES, GA No. 228330), IPERION-CH (H2020-INFRAIA-2014-2015, GA No. 654028), IPERION-HS (H2020-INFRAIA-2019-1, GA No. 871034) and ESTEEM3 (Research and innovation programme, GA No. 823717) and the Italian project AMIS (Dipartimenti di Eccellenza 2018–2022, funded by MIUR and Perugia University). For the beamtime grants received, we thank ESRF-ID21 (Experiment No. HG156 and in-house beamtimes) and the CERIC-ERIC Research Infrastructure for the investigations at ESRF-BM08 (LISA) beamline (Proposal Id: 20207042). D.C. acknowledges TOP/BOF funding of the University of Antwerp.; esteem3reported; esteem3TA Approved Most recent IF: 3.4
Call Number UA @ admin @ c:irua:187375 Serial 7060
Permanent link to this record
 

 
Author Adamovich, I.; Agarwal, S.; Ahedo, E.; Alves, L.L.; Baalrud, S.; Babaeva, N.; Bogaerts, A.; Bourdon, A.; Bruggeman, P.J.; Canal, C.; Choi, E.H.; Coulombe, S.; Donkó, Z.; Graves, D.B.; Hamaguchi, S.; Hegemann, D.; Hori, M.; Kim, H.-h; Kroesen, G.M.W.; Kushner, M.J.; Laricchiuta, A.; Li, X.; Magin, T.E.; Mededovic Thagard, S.; Miller, V.; Murphy, A.B.; Oehrlein, G.S.; Puac, N.; Sankaran, R.M.; Samukawa, S.; Shiratani, M.; Šimek, M.; Tarasenko, N.; Terashima, K.; Thomas Jr, E.; Trieschmann, J.; Tsikata, S.; Turner, M.M.; van der Walt, I.J.; van de Sanden, M.C.M.; von Woedtke, T.
Title The 2022 Plasma Roadmap: low temperature plasma science and technology Type A1 Journal article
Year 2022 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 55 Issue 37 Pages 373001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The 2022 Roadmap is the next update in the series of Plasma Roadmaps published by<italic>Journal of Physics</italic>D with the intent to identify important outstanding challenges in the field of low-temperature plasma (LTP) physics and technology. The format of the Roadmap is the same as the previous Roadmaps representing the visions of 41 leading experts representing 21 countries and five continents in the various sub-fields of LTP science and technology. In recognition of the evolution in the field, several new topics have been introduced or given more prominence. These new topics and emphasis highlight increased interests in plasma-enabled additive manufacturing, soft materials, electrification of chemical conversions, plasma propulsion, extreme plasma regimes, plasmas in hypersonics, data-driven plasma science and technology and the contribution of LTP to combat COVID-19. In the last few decades, LTP science and technology has made a tremendously positive impact on our society. It is our hope that this roadmap will help continue this excellent track record over the next 5–10 years.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000821410400001 Publication Date 2022-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.4 Times cited Open Access OpenAccess
Notes Grants-in-Aid for Scientific Research, 15H05736 ; FCT-Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 ; Russian Foundation for Basic Research, 20-02-00320 ; Lam Research Corporation; National Office for Research, Development, and Innovation of Hungary, K-134462 ; Czech Science Foundation, GA 18-04676S ; Japan Society for the Promotion of Science, 20H00142 ; MESTD of Republic of Serbia, 451-03-68/2021-14/200024 ; NASA; Dutch Foundation for Scientific Research; U.S. National Science Foundation, CBET 1703439 ; U.S. Department of Energy, DE-SC-0001234 ; Grantová Agentura České Republiky, GA 18-04676S ; Army Research Office, W911NF-20-1-0105 ; National Natural Science Foundation of China, 51825702 ; European Research Council, Starting Grant #259354 ; European Space Agency, GSTP ; U.S. Air Force Office of Scientific Research, FA9550-17-1-0370 ; Safran Aircraft Engines, POSEIDON ; Agence Nationale de la Recherche, ANR-16-CHIN-003–01 ; H2020 European Research Council, ERC Synergy Grant 810182 SCOPE ; JST CREST, JPMJCR19R3 ; Federal German Ministry of Education and Research, 03Z22DN11 ; National Research Foundation of Korea, 2016K1A4A3914113 ; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 200021_169180 ; Departament d’Innovació, Universitats i Empresa, Generalitat de Catalunya, SGR2017-1165 ; Ministerio de Economía, Industria y Competitividad, Gobierno de España, PID2019-103892RB-I00/AEI/10.13039/501100011033 ; Deutsche Forschungsgemeinschaft, 138690629 – TRR 87 ; Grant-in-Aid for Exploratory Research, 18K18753 ; Approved Most recent IF: 3.4
Call Number PLASMANT @ plasmant @c:irua:189203 Serial 7075
Permanent link to this record
 

 
Author Lebedev, N.; Huang, Y.; Rana, A.; Jannis, D.; Gauquelin, N.; Verbeeck, J.; Aarts, J.
Title Resistance minimum in LaAlO3/Eu1-xLaxTiO3/SrTiO3 heterostructures Type A1 Journal article
Year 2022 Publication Physical review materials Abbreviated Journal
Volume 6 Issue 7 Pages 075003-75010
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper we study LaAlO3/Eu1-xLaxTiO3/SrTiO3 structures with nominally x = 0, 0.1 and different thicknesses of the Eu1-xLaxTiO3 layer. We observe that both systems have many properties similar to previously studied LaAlO3/EuTiO3/SrTiO3 and other oxide interfaces, such as the formation of a two-dimensional electron liquid for two unit cells of Eu1-xLaxTiO3; a metal-insulator transition driven by the increase in thickness of the Eu1-xLaxTiO3 layer; the presence of an anomalous Hall effect when driving the systems above the Lifshitz point with a back-gate voltage; and a minimum in the temperature dependence of the sheet resistance below the Lifshitz point in the one-band regime, which becomes more pronounced with increasing negative gate voltage. However, and notwithstanding the likely presence of magnetism in the system, we do not attribute that minimum to the Kondo effect, but rather to the properties of the SrTiO3 crystal and the inevitable effects of charge trapping when using back gates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000834035300001 Publication Date 2022-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor (down) 3.4 Times cited Open Access OpenAccess
Notes N.L. and J.A. gratefully acknowledge the financial support of the research program DESCO, which is financed by the Netherlands Organisation for Scientific Research (NWO). J.V. and N.G. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the European Union’s horizon 2020 research and innovation programme under grant agreement №823717 – ESTEEM3. The QuAnt-EM microscope used in this study was partly funded by the Hercules fund from the Flemish Government. The authors want to thank M. Stehno, G. Koster, and F.J.G. Roesthuis for useful discussions.; esteem3reported; esteem3TA Approved Most recent IF: 3.4
Call Number UA @ admin @ c:irua:189674 Serial 7094
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V.
Title Axion insulator states in a topological insulator proximitized to magnetic insulators : a tight-binding characterization Type A1 Journal article
Year 2022 Publication Physical review materials Abbreviated Journal
Volume 6 Issue 7 Pages 074205-74208
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The recent discovery of axion states in materials such as antiferromagnetic topological insulators has boosted investigations of the magnetoelectric response in topological insulators and their promise towards realizing dissipationless topological electronics. In this paper, we develop a tight-binding methodology to explore the emergence of axion states in Bi2Se3 in proximity to magnetic insulators on the top and bottom surfaces. The topological protection of the surface states is lifted by a time-reversal-breaking perturbation due to the proximity of a magnetic insulator, and a gap is opened on the surfaces, giving rise to half-quantized Hall conductance and a zero Hall plateau-evidencing an axion insulator state. We developed a real-space tight-binding Hamiltonian for Bi2Se3 using first-principles data. Transport properties of the system were obtained within the Landauer-Buttiker formalism, and we discuss the creation of axion states through Hall conductance and a zero Hall plateau at the surfaces, as a function of proximitized magnetization and corresponding potentials at the surfaces, as well as the thickness of the topological insulator.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000832387000006 Publication Date 2022-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.4 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 3.4
Call Number UA @ admin @ c:irua:189498 Serial 7130
Permanent link to this record
 

 
Author Monico, L.; Prati, S.; Sciutto, G.; Catelli, E.; Romani, A.; Balbas, D.Q.; Li, Z.; De Meyer, S.; Nuyts, G.; Janssens, K.; Cotte, M.; Garrevoet, J.; Falkenberg, G.; Tardillo Suarez, V.I.; Tucoulou, R.; Mazzeo, R.
Title Development of a multi-method analytical approach based on the combination of synchrotron radiation X-ray micro-analytical techniques and vibrational micro-spectroscopy methods to unveil the causes and mechanism of darkening of “fake-gilded” decorations in a Cimabue painting Type A1 Journal article
Year 2022 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 37 Issue 1 Pages 114-129
Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Redox processes activated by environmental factors have been identified as the main cause of the chromatic alterations of a number of artists' pigments, including the yellow pigment orpiment (As2S3). Although a general comprehension of the mechanisms has been provided through characterization of degradation compounds of As2S3, experimental evidences to prove how other paint components and how different environmental agents influence the formation pathways of specific secondary compounds are still lacking. Thus, it becomes fundamental to develop a methodological strategy which enable achieving a discrimination among the causes affecting the chemical stability of more heterogenous As2S3-based paints and defining the mechanism through which the alteration establishes and evolves, with the ultimate goal of optimizing the preventive conservation measures of unique masterpieces. In this paper, we propose a comprehensive multi-material and multi-method approach based on the combination of synchrotron radiation X-ray micro-analytical techniques (i.e., X-ray diffraction, X-ray fluorescence and X-ray absorption near edge structure spectroscopy at S K-/Ag L-3-/As K-edges) and vibrational micro-spectroscopy methods to unveil the causes and mechanism of darkening of “fake-gilded” decorations in tempera paintings, originally consisting of an unusual mixture of As2S3 and metallic silver (Ag-0). Such degradation process is a not yet understood phenomenon threatening a series of Old Master paintings, including those by the Italian painters Cimabue and Pietro Lorenzetti. The high specificity, sensitivity and lateral resolution of the employed analytical methods allowed providing first-time evidence for the presence of black acanthite (alpha-Ag2S), mimetite [Pb-5(AsO4)(3)Cl] and syngenite [K2Ca(SO4)(2)center dot H2O] as degradation products of the “fake-gilded” decorations in the Maesta by Cimabue (Church of Santa Maria dei Servi, Bologna, Italy). Furthermore, the study of the painting combined with that of tempera paint mock-ups permitted to explore and define the environmental agents and internal factors causing the darkening, by proving that: (i) Ag-0 and moisture are key-factors for triggering the transformation of As2S3 to alpha-Ag2S and As-oxides; (ii) S2--ions arising from the degradation of As2S3 are the main responsible for the formation of alpha-Ag2S; (iii) light exposure strengthens the tendency of the paint components towards alteration. Based on our findings, we finally propose a degradation mechanism of As2S3/Ag-0-based tempera paints.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000722353400001 Publication Date 2021-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.4
Call Number UA @ admin @ c:irua:184871 Serial 7142
Permanent link to this record
 

 
Author Seyedmohammadzadeh, M.; Sevik, C.; Guelseren, O.
Title Two-dimensional heterostructures formed by graphenelike ZnO and MgO monolayers for optoelectronic applications Type A1 Journal article
Year 2022 Publication Physical review materials Abbreviated Journal
Volume 6 Issue 10 Pages 104004-104013
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional heterostructures are an emerging class of materials for novel applications because of extensive engineering potential by tailoring intriguing properties of different layers as well as the ones arising from their interface. A systematic investigation of mechanical, electronic, and optical properties of possible heterostructures formed by bilayer structures graphenelike ZnO and MgO monolayers is presented. Different functionality of each layer makes these heterostructures very appealing for device applications. ZnO layer is convenient for electron transport in these structures, while MgO layer improves electron collection. At the outset, all of the four possible stacking configurations across the heterostructure are mechanically stable. In addition, stability analysis using phonon dispersion reveals that the AB stacking formed by placing the Mg atom on top of the O atom of the ZnO layer is also dynamically stable at zero temperature. Henceforth, we have investigated the optical properties of these stable heterostructures by applying many-body perturbation theory within the framework of GW approximation and solving the Bethe-Salpeter equation. It is demonstrated that strong excitonic effects reduce the optical band gap to the visible light spectrum range. These results show that this new two-dimensional form of ZnO/MgO heterostructures open an avenue for novel optoelectronic device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000877514900005 Publication Date 2022-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.4
Call Number UA @ admin @ c:irua:192167 Serial 7346
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Peeters, F.M.; Hamoudi, H.
Title Effect of edge groups on the electronic transport properties of tetrapodal diazatriptycene molecule Type A1 Journal article
Year 2022 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 141 Issue Pages 115212-115216
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We conduct ballistic transport calculations to study the electronic transport properties of diazatriptycene molecule which can be self-assembled on metallic surfaces with uniform coverage and upright orientation of the functional head group. Due to its structural asymmetry, the molecule shows a clear current rectification, where the level of the rectification depends on the nature of the head group. For example, current rectification can be increased by more than a factor of 2 by anchoring the molecules to the electrode by CN functional group or introducing insulating CH2 group between the thiol end group and the adjacent phenyl ring. Our findings show the possibility of creating self-assembled monolayer of DAT molecules with controlled electronic transport properties through functionalization of the head group.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000806548600006 Publication Date 2022-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.3 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:189041 Serial 7147
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Peeters, F.M.; Hamoudi, H.
Title Effect of halogenation on the electronic transport properties of aromatic and alkanethiolate molecules Type A1 Journal article
Year 2022 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 144 Issue Pages 115428-6
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Quantum transport calculations are conducted using nonequilibrium Green's functional formalism to study the effect of halogenation on the electronic transport properties of aromatic S-(C6H5)(2)X and alkanethiolate S-(CH2)(11)X molecules (with X = H, F, Cl, Br, or I) sandwiched between gold electrodes. In terms of conductance, both molecules show the same dependence on the halogen terminal groups despite their different electronic nature. For example, fluorination results in a reduction of the current by almost an order of magnitude, whereas iodine substitution leads to larger current as compared to the reference system (i.e. hydrogen termination). Regarding the asymmetry in the current-voltage characteristics, halogenation reduces the rectification level for the aromatic molecule with the smallest asymmetry for iodine termination. However, in the case of alkanethiolate molecule, halogen substitution increases the current rectification except for fluorination. A physical explanation of these results is obtained from the analysis of the behavior of the density of states, transmission spectra and transmission eigenstates. These findings are of practical importance in exploring the potential of halogenation for creating functional molecular self-assemblies on metallic substrates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000857051700007 Publication Date 2022-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.3 Times cited 1 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:191500 Serial 7148
Permanent link to this record
 

 
Author Demirkol, Ö.; Sevik, C.; Demiroğlu, I.
Title First principles assessment of the phase stability and transition mechanisms of designated crystal structures of pristine and Janus transition metal dichalcogenides Type A1 Journal article
Year 2022 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 24 Issue 12 Pages 7430-7441
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional Transition Metal Dichalcogenides (TMDs) possessing extraordinary physical properties at reduced dimensionality have attracted interest due to their promise in electronic and optical device applications. However, TMD monolayers can show a broad range of different properties depending on their crystal phase; for example, H phases are usually semiconductors, while the T phases are metallic. Thus, controlling phase transitions has become critical for device applications. In this study, the energetically low-lying crystal structures of pristine and Janus TMDs are investigated by using ab initio Nudged Elastic Band and molecular dynamics simulations to provide a general explanation for their phase stability and transition properties. Across all materials investigated, the T phase is found to be the least stable and the H phase is the most stable except for WTe2, while the T' and T '' phases change places according to the TMD material. The transition energy barriers are found to be large enough to hint that even the higher energy phases are unlikely to undergo a phase transition to a more stable phase if they can be achieved except for the least stable T phase, which has zero barrier towards the T ' phase. Indeed, in molecular dynamics simulations the thermodynamically least stable T phase transformed into the T ' phase spontaneously while in general no other phase transition was observed up to 2100 K for the other three phases. Thus, the examined T ', T '' and H phases were shown to be mostly stable and do not readily transform into another phase. Furthermore, so-called mixed phase calculations considered in our study explain the experimentally observed lateral hybrid structures and point out that the coexistence of different phases is strongly stable against phase transitions. Indeed, stable complex structures such as metal-semiconductor-metal architectures, which have immense potential to be used in future device applications, are also possible based on our investigation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000766791000001 Publication Date 2022-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:187184 Serial 7164
Permanent link to this record
 

 
Author Bellizotti Souza, J.C.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A.
Title Clogging, diode and collective effects of skyrmions in funnel geometries Type A1 Journal article
Year 2022 Publication New journal of physics Abbreviated Journal New J Phys
Volume 24 Issue 10 Pages 103030-14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a particle-based model, we examine the collective dynamics of skyrmions interacting with a funnel potential under dc driving as the skyrmion density and relative strength of the Magnus and damping terms are varied. For driving in the easy direction, we find that increasing the skyrmion density reduces the average skyrmion velocity due to jamming of skyrmions near the funnel opening, while the Magnus force causes skyrmions to accumulate on one side of the funnel array. For driving in the hard direction, there is a critical skyrmion density below which the skyrmions become trapped. Above this critical value, a clogging effect appears with multiple depinning and repinning states where the skyrmions can rearrange into different clogged configurations, while at higher drives, the velocity-force curves become continuous. When skyrmions pile up near the funnel opening, the effective size of the opening is reduced and the passage of other skyrmions is blocked by the repulsive skyrmion-skyrmion interactions. We observe a strong diode effect in which the critical depinning force is higher and the velocity response is smaller for hard direction driving. As the ratio of Magnus force to dissipative term is varied, the skyrmion velocity varies in a non-linear and non-monotonic way due to the pile up of skyrmions on one side of the funnels. At high Magnus forces, the clogging effect for hard direction driving is diminished.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000873333400001 Publication Date 2022-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:192178 Serial 7287
Permanent link to this record
 

 
Author Yorulmaz, U.; Šabani, D.; Yagmurcukardes, M.; Sevik, C.; Milošević, M.V.
Title High-throughput analysis of tetragonal transition metal Xenes Type A1 Journal article
Year 2022 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 24 Issue 48 Pages 29406-29412
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report a high-throughput first-principles characterization of the structural, mechanical, electronic, and vibrational properties of tetragonal single-layer transition metal Xenes (t-TMXs). Our calculations revealed 22 dynamically, mechanically and chemically stable structures among the 96 possible free-standing layers present in the t-TMX family. As a fingerprint for their structural identification, we identified four characteristic Raman active phonon modes, namely three in-plane and one out-of-plane optical branches, with various intensities and frequencies depending on the material in question. Spin-polarized electronic calculations demonstrated that anti-ferromagnetic (AFM) metals, ferromagnetic (FM) metals, AFM semiconductors, and non-magnetic semiconductor materials exist within this family, evidencing the potential of t-TMXs for further use in multifunctional heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000892446100001 Publication Date 2022-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.3 Times cited 1 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:192762 Serial 7310
Permanent link to this record
 

 
Author Penders, A.G.; Konstantinovic, M.J.; Yang, T.; Bosch, R.-w.; Schryvers, D.; Somville, F.
Title Microstructural investigation of IASCC crack tips extracted from thimble tube O-ring specimens Type A1 Journal article
Year 2022 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater
Volume 565 Issue Pages 153727-16
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The microstructural features of intergranular irradiation-assisted stress corrosion crack tips from a redeemed neutron-irradiated flux thimble tube (60 dpa) have been investigated using focused-ion beam analysis and (scanning) transmission electron microscopy. The current work presents a close examination of the deformation field and oxide assembly associated with intergranular cracking, in addition to the analysis of radiation-induced segregation at leading grain boundaries. Evidence of stress induced martensitic transformation extending from the crack tips is presented. Intergranular crack arrest is demonstrated on the account of the external tensile stress orientation, and as a consequence of MnS inclusion particles segregating close to the fractured grain boundary. Exclusive observations of grain boundary oxidation prior to the cracking are presented, which is in full-agreement with the internal oxidation model.(c) 2022 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000799256300004 Publication Date 2022-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.1
Call Number UA @ admin @ c:irua:188609 Serial 7086
Permanent link to this record
 

 
Author Penders, A.G.; Konstantinović, M.J.; Van Renterghem, W.; Bosch, R.-W.; Schryvers, D.; Somville, F.
Title Characterization of IASCC crack tips extracted from neutron-irradiated flux thimble tube specimens in view of a probabilistic fracture model Type A1 Journal article
Year 2022 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater
Volume 571 Issue Pages 154015-154016
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This study reports the properties of irradiation assisted stress corrosion crack tips extracted by means of focused-ion beam from 60 to 80 dpa neutron-irradiated O-ring specimens tested under straining conditions under a pressurized-water reactor environment. Various crack tip morphologies and surrounding deformation features were analyzed as a function of applied stress, surface oxidation state and loading form – constant versus cyclic. All investigated cracks exhibit grain boundary oxidation in front of the crack tip, with the extent of oxidation being proportional to applied stress. These findings clearly demonstrate that, under the subcritical crack propagation regime, the grain boundary oxide grows faster than the crack. On the other hand, crack tips appertaining to specimens with removed oxide layer at the outer surface show comparatively less oxidation at the crack tip, which could indicate towards crack initiation from regions that exemplify lower stress, such as the O-ring inner surface. Cyclic loading is found to have a more pronounced effect on the crack tip microstructure, demonstrating increased deformation twinning and -martensitic transformation, which signifies towards an increased susceptibility to intergranular failure. Still, the extent of crack tip grain boundary oxidation in this case agrees well with expected values for maximum stress applied during cyclic loading. All results are interpreted based on the probabilistic subcritical crack propagation mechanism and provide strong support to a stress-driven internal oxidation model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000872389200009 Publication Date 2022-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.1
Call Number UA @ admin @ c:irua:190375 Serial 7135
Permanent link to this record
 

 
Author Ngo, K.N.; Tampon, P.; Van Winckel, T.; Massoudieh, A.; Sturm, B.; Bott, C.; Wett, B.; Murthy, S.; Vlaeminck, S.E.; DeBarbadillo, C.; De Clippeleir, H.
Title Introducing bioflocculation boundaries in process control to enhance effluent quality of high‐rate contact‐stabilization systems Type A1 Journal article
Year 2022 Publication Water environment research Abbreviated Journal Water Environ Res
Volume 94 Issue 8 Pages e10772-17
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract High-rate activated sludge (HRAS) systems suffer from high variability of effluent quality, clarifier performance, and carbon capture. This study proposed a novel control approach using bioflocculation boundaries for wasting control strategy to enhance effluent quality and stability while still meeting carbon capture goals. The bioflocculation boundaries were developed based on the oxygen uptake rate (OUR) ratio between contactor and stabilizer (feast/famine) in a high-rate contact stabilization (CS) system and this OUR ratio was used to manipulate the wasting setpoint. Increased oxidation of carbon or decreased wasting was applied when OUR ratio was <0.52 or >0.95 to overcome bioflocculation limitation and maintain effluent quality. When no bioflocculation limitations (OUR ratio within 0.52–0.95) were detected, carbon capture was maximized. The proposed control concept was shown for a fully automated OUR-based control system as well as for a simplified version based on direct waste flow control. For both cases, significant improvements in effluent suspended solids level and stability (<50-mg TSS/L), solids capture over the clarifier (>90%), and COD capture (median of 32%) were achieved. This study shows how one can overcome the process instability of current HRAS systems and provide a path to achieve more reliable outcomes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000840360100001 Publication Date 2022-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1061-4303; 1554-7531 ISBN Additional Links UA library record; WoS full record
Impact Factor (down) 3.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.1
Call Number UA @ admin @ c:irua:189409 Serial 7174
Permanent link to this record
 

 
Author Lu, X.P.; Bruggeman, P.J.; Reuter, S.; Naidis, G.; Bogaerts, A.; Laroussi, M.; Keidar, M.; Robert, E.; Pouvesle, J.-M.; Liu, D.W.; Ostrikov, K.(K.)
Title Grand challenges in low temperature plasmas Type A1 Journal article
Year 2022 Publication Frontiers in physics Abbreviated Journal
Volume 10 Issue Pages 1040658-12
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Low temperature plasmas (LTPs) enable to create a highly reactive environment at near ambient temperatures due to the energetic electrons with typical kinetic energies in the range of 1 to 10 eV (1 eV = 11600K), which are being used in applications ranging from plasma etching of electronic chips and additive manufacturing to plasma-assisted combustion. LTPs are at the core of many advanced technologies. Without LTPs, many of the conveniences of modern society would simply not exist. New applications of LTPs are continuously being proposed. Researchers are facing many grand challenges before these new applications can be translated to practice. In this paper, we will discuss the challenges being faced in the field of LTPs, in particular for atmospheric pressure plasmas, with a focus on health, energy and sustainability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000878212000001 Publication Date 2022-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Additional Links UA library record; WoS full record
Impact Factor (down) 3.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.1
Call Number UA @ admin @ c:irua:192173 Serial 7267
Permanent link to this record
 

 
Author Li, Y.; Niklas, K.J.; Gielis, J.; Niinemets, Ü.; Schrader, J.; Wang, R.; Shi, P.
Title An elliptical blade is not a true ellipse, but a superellipse : evidence from two Michelia species Type A1 Journal article
Year 2022 Publication Journal of forestry research Abbreviated Journal J Forestry Res
Volume 33 Issue 4 Pages 1341-1348
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The shape of leaf laminae exhibits considerable diversity and complexity that reflects adaptations to environmental factors such as ambient light and precipitation as well as phyletic legacy. Many leaves appear to be elliptical which may represent a ‘default’ developmental condition. However, whether their geometry truly conforms to the ellipse equation (EE), i.e., (x/a)2 + (y/b)2 = 1, remains conjectural. One alternative is described by the superellipse equation (SE), a generalized version of EE, i.e., |x/a|n +|y/b|n = 1. To test the efficacy of EE versus SE to describe leaf geometry, the leaf shapes of two Michelia species (i.e., M. cavaleriei var. platypetala, and M. maudiae), were investigated using 60 leaves from each species. Analysis shows that the majority of leaves (118 out of 120) had adjusted root-mean-square errors of < 0.05 for the nonlinear fitting of SE to leaf geometry, i.e., the mean absolute deviation from the polar point to leaf marginal points was smaller than 5% of the radius of a hypothesized circle with its area equaling leaf area. The estimates of n for the two species were ˂ 2, indicating that all sampled leaves conformed to SE and not to EE. This study confirms the existence of SE in leaves, linking this to its potential functional advantages, particularly the possible influence of leaf shape on hydraulic conductance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000695118600001 Publication Date 2021-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1007-662x; 1993-0607 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3
Call Number UA @ admin @ c:irua:180967 Serial 7152
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Distribution pattern of metal atoms in bimetal-doped pyridinic-N₄ pores determines their potential for electrocatalytic N₂ reduction Type A1 Journal article
Year 2022 Publication Journal Of Physical Chemistry A Abbreviated Journal J Phys Chem A
Volume 126 Issue 20 Pages 3080-3089
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Doping two single transition-metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. However, what if the substrate contains more than one vacancy site? Then, the combination of two TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bimetal composition. In this study, we investigate ammonia synthesis under mild electrocatalytic conditions on a transition-metal-doped porous C24N24 catalyst using density functional theory (DFT). The TMs studied include Ti, Mn, and Cu in a 2:4 dopant ratio (Ti2Mn4@C24N24 and Ti2Cu4@N-24(24)). Our computations show that a single Ti atom in both catalysts exhibits the highest selectivity for N-2 fixation at ambient conditions. This work is a good theoretical model to establish the structure-activity relationship, and the knowledge earned from the metal-N-4 moieties may help studies of related nanomaterials, especially those with curved structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000804119800003 Publication Date 2022-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1089-5639; 1520-5215 ISBN Additional Links UA library record; WoS full record
Impact Factor (down) 2.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.9
Call Number UA @ admin @ c:irua:189023 Serial 7146
Permanent link to this record
 

 
Author Ning, S.; Xu, W.; Ma, Y.; Loh, L.; Pennycook, T.J.; Zhou, W.; Zhang, F.; Bosman, M.; Pennycook, S.J.; He, Q.; Loh, N.D.
Title Accurate and Robust Calibration of the Uniform Affine Transformation Between Scan-Camera Coordinates for Atom-Resolved In-Focus 4D-STEM Datasets Type A1 Journal article
Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages 1-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Accurate geometrical calibration between the scan coordinates and the camera coordinates is critical in four-dimensional scanning transmission electron microscopy (4D-STEM) for both quantitative imaging and ptychographic reconstructions. For atomic-resolved, in-focus 4D-STEM datasets, we propose a hybrid method incorporating two sub-routines, namely a J-matrix method and a Fourier method, which can calibrate the uniform affine transformation between the scan-camera coordinates using raw data, without a priori knowledge about the crystal structure of the specimen. The hybrid method is found robust against scan distortions and residual probe aberrations. It is also effective even when defects are present in the specimen, or the specimen becomes relatively thick. We will demonstrate that a successful geometrical calibration with the hybrid method will lead to a more reliable recovery of both the specimen and the electron probe in a ptychographic reconstruction. We will also show that, although the elimination of local scan position errors still requires an iterative approach, the rate of convergence can be improved, and the residual errors can be further reduced if the hybrid method can be firstly applied for initial calibration. The code is made available as a simple-to-use tool to correct affine transformations of the scan-camera coordinates in 4D-STEM experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000767045700001 Publication Date 2022-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.8 Times cited Open Access OpenAccess
Notes N. D. Loh kindly acknowledges support from NUS Early Career Research Award (R-154-000-B35-133), MOE’s AcRF Tier 1 grant nr. R-284-000-172-114 and NRF CRP grant number NRF-CRP16-2015-05. Q. He would also like to acknowledge the support of the National Research Foundation (NRF) Singapore, under its NRF Fellowship (NRF-NRFF11-2019-0002). W. Zhou acknowledges the support from Beijing Outstanding Young Scientist Program (BJJWZYJH01201914430039). F. Zhang acknowledges the support of the National Natural Science Foundation of China (11775105, 12074167). T. J. Pennycook acknowledges funding under the European Union’s Horizon 2020 research and innovation programme from the European Research Council (ERC) Grant agreement No. 802123-HDEM. Approved Most recent IF: 2.8
Call Number EMAT @ emat @c:irua:186958 Serial 6957
Permanent link to this record
 

 
Author Yu, C.-P.; Friedrich, T.; Jannis, D.; Van Aert, S.; Verbeeck, J.
Title Real-Time Integration Center of Mass (riCOM) Reconstruction for 4D STEM Type A1 Journal article
Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages 1-12
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A real-time image reconstruction method for scanning transmission electron microscopy (STEM) is proposed. With an algorithm requiring only the center of mass of the diffraction pattern at one probe position at a time, it is able to update the resulting image each time a new probe position is visited without storing any intermediate diffraction patterns. The results show clear features at high spatial frequency, such as atomic column positions. It is also demonstrated that some common post-processing methods, such as band-pass filtering, can be directly integrated in the real-time processing flow. Compared with other reconstruction methods, the proposed method produces high-quality reconstructions with good noise robustness at extremely low memory and computational requirements. An efficient, interactive open source implementation of the concept is further presented, which is compatible with frame-based, as well as event-based camera/file types. This method provides the attractive feature of immediate feedback that microscope operators have become used to, for example, conventional high-angle annular dark field STEM imaging, allowing for rapid decision-making and fine-tuning to obtain the best possible images for beam-sensitive samples at the lowest possible dose.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000792176100001 Publication Date 2022-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.8 Times cited 7 Open Access OpenAccess
Notes Bijzonder Onderzoeksfonds UGent; H2020 European Research Council, 770887 ; H2020 European Research Council, 823717 ; H2020 European Research Council, ESTEEM3 / 823717 ; H2020 European Research Council, PICOMETRICS / 770887 ; Fonds Wetenschappelijk Onderzoek, 30489208 ; Herculesstichting; esteem3reported; esteem3jra Approved Most recent IF: 2.8
Call Number EMAT @ emat @c:irua:188538 Serial 7068
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Yu, C.-P.; Sentürk, D.G.; Lobato, I.; Faes, C.; Van Aert, S.
Title Three Approaches for Representing the Statistical Uncertainty on Atom-Counting Results in Quantitative ADF STEM Type A1 Journal article
Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages 1-9
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A decade ago, a statistics-based method was introduced to count the number of atoms from annular dark-field scanning transmission electron microscopy (ADF STEM) images. In the past years, this method was successfully applied to nanocrystals of arbitrary shape, size, and composition (and its high accuracy and precision has been demonstrated). However, the counting results obtained from this statistical framework are so far presented without a visualization of the actual uncertainty about this estimate. In this paper, we present three approaches that can be used to represent counting results together with their statistical error, and discuss which approach is most suited for further use based on simulations and an experimental ADF STEM image.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000854930500001 Publication Date 2022-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record
Impact Factor (down) 2.8 Times cited Open Access OpenAccess
Notes This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N, G.0267.18N, and EOS 30489208. S.V.A. acknowledges TOP BOF funding from the University of Antwerp. The authors are grateful to L.M. Liz-Marzán (CIC biomaGUNE and Ikerbasque) for providing the samples. esteem3reported; esteem3jra Approved Most recent IF: 2.8
Call Number EMAT @ emat @c:irua:190585 Serial 7119
Permanent link to this record
 

 
Author Vega Ibañez, F.; Béché, A.; Verbeeck, J.
Title Can a programmable phase plate serve as an aberration corrector in the transmission electron microscope (TEM)? Type A1 Journal article
Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages Pii S1431927622012260-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Current progress in programmable electrostatic phase plates raises questions about their usefulness for specific applications. Here, we explore different designs for such phase plates with the specific goal of correcting spherical aberration in the transmission electron microscope (TEM). We numerically investigate whether a phase plate could provide down to 1 angstrom ngstrom spatial resolution on a conventional uncorrected TEM. Different design aspects (fill factor, pixel pattern, symmetry) were evaluated to understand their effect on the electron probe size and current density. Some proposed designs show a probe size () down to 0.66 angstrom, proving that it should be possible to correct spherical aberration well past the 1 angstrom limit using a programmable phase plate consisting of an array of electrostatic phase-shifting elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000849975400001 Publication Date 2022-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.8 Times cited 3 Open Access OpenAccess
Notes All authors acknowledge funding from the Flemish Research Fund under contract G042820N “Exploring adaptive optics in transmission electron microscopy”. J.V. acknowledges funding from the European Union’s Horizon 2020 Research Infrastructure – Integrating Activities for Advanced Communities under grant agreement No 823717 – ESTEEM3 and from the University of Antwerp through a TOP BOF project.; esteem3reported; esteem3jra Approved Most recent IF: 2.8
Call Number UA @ admin @ c:irua:190627 Serial 7134
Permanent link to this record
 

 
Author Van Echelpoel, R.; Kranenburg, R.; van Asten, A.; De Wael, K.
Title Electrochemical detection of MDMA and 2C-B in ecstasy tablets using a selectivity enhancement strategy by in-situ derivatization Type A1 Journal article
Year 2022 Publication Forensic chemistry Abbreviated Journal
Volume 27 Issue Pages 100383
Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Forensic drug laboratories are confronted with increasing amounts of drugs and a demand for faster results that are directly available on-site. In addition, the drug market is getting more complex with hundreds of new psychoactive substances (NPS) entering the market in recent years. Rapid and on-scene presumptive drug testing therefore faces a shift from manual colorimetric tests towards approaches that can detect a wider range of components and process results automatically. Electrochemical detection offers these desired characteristics, making it a suitable candidate for on-site drug detection. In this study, a two-step electrochemical sensor is introduced for the detection of MDMA and 2C-B. Firstly, a direct electrochemical analysis was performed to detect MDMA. Validation experiments on over 70 substances revealed that 2C-B was the only frequently encountered drug that gave a false positive result for MDMA in this first analysis. A second step using in-situ derivatization was subsequently introduced. To this end, formaldehyde was used for N-methylation of 2C-B thereby enhancing its electrochemical profile. The enriched electrochemical fingerprint in the second step allowed for clear differentiation between MDMA and 2C-B. The applicability of this approach was demonstrated with 71 ecstasy tablets seized by the Amsterdam Police. The MDMA/2C-B sensor correctly identified all 39 MDMA-containing tablets and 10 out of 11 tablets containing 2C-B. Most notably, correct results were also obtained for dark colored tablets in which both spectroscopic analysis and colorimetric tests failed due to obscured signals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000725708200002 Publication Date 2021-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-1709 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7
Call Number UA @ admin @ c:irua:183340 Serial 7149
Permanent link to this record
 

 
Author Li, Y.; Quinn, B.K.; Gielis, J.; Li, Y.; Shi, P.
Title Evidence that supertriangles exist in nature from the vertical projections of Koelreuteria paniculata fruit Type A1 Journal article
Year 2022 Publication Symmetry Abbreviated Journal Symmetry-Basel
Volume 14 Issue 1 Pages 23
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Many natural radial symmetrical shapes (e.g., sea stars) follow the Gielis equation (GE) or its twin equation (TGE). A supertriangle (three triangles arranged around a central polygon) represents such a shape, but no study has tested whether natural shapes can be represented as/are supertriangles or whether the GE or TGE can describe their shape. We collected 100 pieces of Koelreuteria paniculata fruit, which have a supertriangular shape, extracted the boundary coordinates for their vertical projections, and then fitted them with the GE and TGE. The adjusted root mean square errors (RMSEadj) of the two equations were always less than 0.08, and >70% were less than 0.05. For 57/100 fruit projections, the GE had a lower RMSEadj than the TGE, although overall differences in the goodness of fit were non-significant. However, the TGE produces more symmetrical shapes than the GE as the two parameters controlling the extent of symmetry in it are approximately equal. This work demonstrates that natural supertriangles exist, validates the use of the GE and TGE to model their shapes, and suggests that different complex radially symmetrical shapes can be generated by the same equation, implying that different types of biological symmetry may result from the same biophysical mechanisms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000746030100001 Publication Date 2021-12-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7
Call Number UA @ admin @ c:irua:186453 Serial 7158
Permanent link to this record
 

 
Author Wang, L.; Ratkowsky, D.A.; Gielis, J.; Ricci, P.E.; Shi, P.
Title Effects of the numerical values of the parameters in the Gielis equation on its geometries Type A1 Journal article
Year 2022 Publication Symmetry Abbreviated Journal Symmetry-Basel
Volume 14 Issue 12 Pages 2475-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The Lamé curve is an extension of an ellipse, the latter being a special case. Dr. Johan Gielis further extended the Lamé curve in the polar coordinate system by introducing additional parameters (n1, n2, n3; m): rφ=1Acosm4φn2+1Bsinm4φn3−1/n1, which can be applied to model natural geometries. Here, r is the polar radius corresponding to the polar angle φ; A, B, n1, n2 and n3 are parameters to be estimated; m is the positive real number that determines the number of angles of the Gielis curve. Most prior studies on the Gielis equation focused mainly on its applications. However, the Gielis equation can also generate a large number of shapes that are rotationally symmetric and axisymmetric when A = B and n2 = n3, interrelated with the parameter m, with the parameters n1 and n2 determining the shapes of the curves. In this paper, we prove the relationship between m and the rotational symmetry and axial symmetry of the Gielis curve from a theoretical point of view with the condition A = B, n2 = n3. We also set n1 and n2 to take negative real numbers rather than only taking positive real numbers, then classify the curves based on extremal properties of r(φ) at φ = 0, π/m when n1 and n2 are in different intervals, and analyze how n1, n2 precisely affect the shapes of Gielis curves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000904525700001 Publication Date 2022-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record
Impact Factor (down) 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7
Call Number UA @ admin @ c:irua:191860 Serial 7301
Permanent link to this record
 

 
Author Derks, K.; van der Snickt, G.; Legrand, S.; van der Stighelen, K.; Janssens, K.
Title The dark halo technique in the oeuvre of Michael Sweerts and other Flemish and Dutch baroque painters. A 17th c. empirical solution to mitigate the optical 'simultaneous contrast' effect? Type A1 Journal article
Year 2022 Publication Heritage science Abbreviated Journal
Volume 10 Issue 1 Pages 5
Keywords A1 Journal article; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Although the topic is rarely addressed in literature, a significant number of baroque paintings exhibit dark, halo-like shapes around the contours of the dramatis personae. Close examination of both finished and unfinished works suggests that this intriguing feature was a practical tool that helped the artist in the early painting stages. When applying the final brushwork, the halo lost its function, with some artists undertaking efforts to hide it. Although their visibility might not have been intended by the artists, today this dark paint beneath the surface is partially visible through the upper paint layers. Moreover, the disclosure of many halos using infrared photography (IRP), infrared reflectography (IRR) and macro X-ray fluorescence imaging (MA-XRF), additional to those that can be observed visually, suggests that this was a common and established element of 17th-century painting practice in Western Europe. Building on an existing hypothesis, we argue that halos can be considered as a solution to an optical problem that arose when baroque painters reversed the traditional, 15th- and 16th-century painting sequence of working from background to foreground. Instead, they started with the dominant parts of a composition, such as the face of a sitter. In that case, a temporary halo can provide the essential tonal reference to anticipate the chromatic impact of the final dark colored background on the adjacent delicate carnations. In particular, we attempt to clarify the prevalence of dark halos as a response to optical effects such as 'simultaneous contrast' and 'the crispening effect', described in literature only centuries later. As such, the recently termed 'ring condition' can be seen as the present-day equivalent of the 'halo solution' that was seemingly empirically or intuitively developed by 17th-century artists. Modern studies in visual perception proves that by laying a black ring around a target color, the optical impact of a surrounding color can be efficiently neutralized. Finally, by delving into works by Michael Sweerts, it becomes clear that resourceful artists might have adapted the halo technique and the underlying principles to their individual challenges, such as dealing with differently colored grounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000739965700001 Publication Date 2022-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.5
Call Number UA @ admin @ c:irua:185458 Serial 7217
Permanent link to this record
 

 
Author Alloul, A.; Van Kampen, W.; Cerruti, M.; Wittouck, S.; Pabst, M.; Weissbrodt, D.G.
Title Exploring the role of antimicrobials in the selective growth of purple phototrophic bacteria through genome mining and agar spot assays Type A1 Journal article
Year 2022 Publication Letters in applied microbiology Abbreviated Journal Lett Appl Microbiol
Volume 75 Issue 5 Pages 1275-1285
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Purple non-sulphur bacteria (PNSB) are an emerging group of microbes attractive for applied microbiology applications such as wastewater treatment, plant biostimulants, microbial protein, polyhydroxyalkanoates and H-2 production. These photoorganoheterotrophic microbes have the unique ability to grow selectively on organic carbon in anaerobic photobioreactors. This so-called selectivity implies that the microbial community will have a low diversity and a high abundance of a particular PNSB species. Recently, it has been shown that certain PNSB strains can produce antimicrobials, yet it remains unclear whether these contribute to competitive inhibition. This research aimed to understand which type of antimicrobial PNSB produce and identify whether these compounds contribute to their selective growth. Mining 166 publicly-available PNSB genomes using the computational tool BAGEL showed that 59% contained antimicrobial encoding regions, more specifically biosynthetic clusters of bacteriocins and non-ribosomal peptide synthetases. Inter- and intra-species inhibition was observed in agar spot assays for Rhodobacter blasticus EBR2 and Rhodopseudomonas palustris EBE1 with inhibition zones of, respectively, 5.1 and 1.5-5.7 mm. Peptidomic analysis detected a peptide fragment in the supernatant (SVLQLLR) that had a 100% percentage identity match with a known non-ribosomal peptide synthetase with antimicrobial activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000837055500001 Publication Date 2022-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0266-8254 ISBN Additional Links UA library record; WoS full record
Impact Factor (down) 2.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.4
Call Number UA @ admin @ c:irua:189519 Serial 7162
Permanent link to this record
 

 
Author Fitawok, M.B.; Derudder, B.; Minale, A.S.; Van Passel, S.; Adgo, E.; Nyssen, J.
Title Analyzing the impact of land expropriation program on farmers' livelihood in urban fringes of Bahir Dar, Ethiopia Type A1 Journal article
Year 2022 Publication Habitat International Abbreviated Journal Habitat Int
Volume 129 Issue Pages 102674-102679
Keywords A1 Journal article; Sociology; Law; Art; Engineering Management (ENM)
Abstract This paper analyzes the impact of urban land-use changes on farmers' livelihood around the city of Bahir Dar (Ethiopia). Rapid urban expansion in and around the city has resulted in massive land-use changes in its urban fringes, with land expropriation programs affecting communities' livelihood and the environment. A survey was conducted in three urbanizing villages near Bahir Dar, focusing on 150 farmers who were land-expropriated and 180 farmers who were non-land-expropriated. Regression models and propensity matching scoring are applied to examine the livelihood differences of farmers in terms of farm income, off-farm income, primary expenditure type, and perception of urban expansion benefits to farmers. The results reveal that land expropriation in the area has led to (a) a shift to off-farm income for land expropriated farmers; (b) an increase in their household expenditure on staple foods compared to other expenditure types, including farm inputs; and (c) diverging perceptions on whether and how city expansion benefits farmers in the neighboring villages. Our findings provide insight into the need for tighter and impactful policy actions to ensure the sustainability of urbanization through accommodating expropriated farmers' livelihood changes and protecting natural resources in the area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000866411200001 Publication Date 2022-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0197-3975; 0361-3690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.285 Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:191385 Serial 7352
Permanent link to this record
 

 
Author Velazco, A.; Béché, A.; Jannis, D.; Verbeeck, J.
Title Reducing electron beam damage through alternative STEM scanning strategies, Part I: Experimental findings Type A1 Journal article
Year 2022 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 232 Issue Pages 113398
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The highly energetic electrons in a transmission electron microscope (TEM) can alter or even completely destroy the structure of samples before sufficient information can be obtained. This is especially problematic in the case of zeolites, organic and biological materials. As this effect depends on both the electron beam and the sample and can involve multiple damage pathways, its study remained difficult and is plagued with irreproducibility issues, circumstantial evidence, rumors, and a general lack of solid data. Here we take on the experimental challenge to investigate the role of the STEM scan pattern on the damage behavior of a commercially available zeolite sample with the clear aim to make our observations as reproducible as possible. We make use of a freely programmable scan engine that gives full control over the tempospatial distribution of the electron probe on the sample and we use its flexibility to obtain multiple repeated experiments under identical conditions comparing the difference in beam damage between a conventional raster scan pattern and a newly proposed interleaved scan pattern that provides exactly the same dose and dose rate and visits exactly the same scan points. We observe a significant difference in beam damage for both patterns with up to 11 % reduction in damage (measured from mass loss). These observations demonstrate without doubt that electron dose, dose rate and acceleration voltage are not the only parameters affecting beam damage in (S)TEM experiments and invite the community to rethink beam damage as an unavoidable consequence of applied electron dose.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000714819200002 Publication Date 2021-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.2 Times cited 18 Open Access OpenAccess
Notes A.V., D.J., A.B. and J.V. acknowledge funding from FWO project G093417N (’Compressed sensing enabling low dose imaging in transmission electron microscopy’) and G042920N (’Coincident event detection for advanced spectroscopy in transmission electron microscopy’). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 ESTEEM3. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from GOA project “Solarpaint” of the University of Antwerp.; JRA; reported Approved Most recent IF: 2.2
Call Number EMAT @ emat @c:irua:183282 Serial 6818
Permanent link to this record