|   | 
Details
   web
Records
Author Li, L.L.; Moldovan, D.; Xu, W.; Peeters, F.M.
Title Electronic properties of bilayer phosphorene quantum dots in the presence of perpendicular electric and magnetic fields Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 15 Pages 155425
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding approach, we investigate the electronic properties of bilayer phosphorene (BLP) quantum dots (QDs) in the presence of perpendicular electric and magnetic fields. Since BLP consists of two coupled phosphorene layers, it is of interest to examine the layer-dependent electronic properties of BLP QDs, such as the electronic distributions over the two layers and the so-produced layer-polarization features, and to see how these properties are affected by the magnetic field and the bias potential. We find that in the absence of a bias potential only edge states are layer polarized while the bulk states are not, and the layer-polarization degree (LPD) of the unbiased edge states increases with increasing magnetic field. However, in the presence of a bias potential both the edge and bulk states are layer polarized, and the LPD of the bulk (edge) states depends strongly (weakly) on the interplay of the bias potential and the interlayer coupling. At high magnetic fields, applying a bias potential renders the bulk electrons in a BLP QD to be mainly distributed over the top or bottom layer, resulting in layer-polarized bulk Landau levels (LLs). In the presence of a large bias potential that can drive a semiconductor-to-semimetal transition in BLP, these bulk LLs exhibit different magnetic-field dependences, i.e., the zeroth LLs exhibit a linearlike dependence on the magnetic field while the other LLs exhibit a square-root-like dependence.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000412699800005 Publication Date 2017-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.836 Times cited 28 Open Access
Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grant No. 11574319), and the Chinese Academy of Sciences. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:146686 Serial 4782
Permanent link to this record
 

 
Author Mirzakhani, M.; Zarenia, M.; Vasilopoulos, P.; Ketabi, S.A.; Peeters, F.M.
Title Landau levels in biased graphene structures with monolayer-bilayer interfaces Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 12 Pages 125430
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electron energy spectrum in monolayer-bilayer-monolayer and in bilayer-monolayer-bilayer graphene structures is investigated and the effects of a perpendicular magnetic field and electric bias are studied. Different types of monolayer-bilayer interfaces are considered as zigzag (ZZ) or armchair (AC) junctions which modify considerably the bulk Landau levels (LLs) when the spectra are plotted as a function of the center coordinate of the cyclotron orbit. Far away from the two interfaces, one obtains the well-known LLs for extended monolayer or bilayer graphene. The LL structure changes significantly at the two interfaces or junctions where the valley degeneracy is lifted for both types of junctions, especially when the distance between them is approximately equal to the magnetic length. Varying the nonuniform bias and the width of this junction-to-junction region in either structure strongly influence the resulting spectra. Significant differences exist between ZZ and AC junctions in both structures. The densities of states (DOSs) for unbiased structures are symmetric in energy whereas those for biased structures are asymmetric. An external bias creates interface LLs in the gaps between the LLs of the unbiased system in which the DOS can be quite small. Such a pattern of LLs can be probed by scanning tunneling microscopy.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000411321800003 Publication Date 2017-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.836 Times cited 6 Open Access
Notes ; This work was supported by the BOF-UA (Bijzonder Onderzoeks Fonds), the Canadian NSERC through Grant No. OGP0121756 (P.V.), and the Methusalem Program of the Flemish Government. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:146746 Serial 4787
Permanent link to this record
 

 
Author Nascimento, J.S.; da Costa, D.R.; Zarenia, M.; Chaves, A.; Pereira, J.M., Jr.
Title Magnetic properties of bilayer graphene quantum dots in the presence of uniaxial strain Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 11 Pages 115428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding approach coupled with mean-field Hubbard model, we theoretically study the effect of mechanical deformations on the magnetic properties of bilayer graphene (BLG) quantum dots (QDs). Results are obtained for AA-and AB(Bernal)-stacked BLG QDs, considering different geometries (hexagonal, triangular and square shapes) and edge types (armchair and zigzag edges). In the absence of strain, our results show that (i) the magnetization is affected by taking different dot sizes only for hexagonal BLG QDs with zigzag edges, exhibiting different critical Hubbard interactions, and (ii) the magnetization does not depend on the interlayer hopping energies, except for the geometries with zigzag edges and AA stacking. In the presence of in-plane and uniaxial strain, for all geometries we obtain two different magnetization regimes depending on the applied strain amplitude. The appearance of such different regimes is due to the breaking of layer and sublattice symmetries in BLG QDs.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000411077400008 Publication Date 2017-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.836 Times cited 4 Open Access
Notes ; This work was financially supported by CNPq, FUNCAP, CAPES Foundation, the Flemish Science Foundation (FWO-Vl), and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:146751 Serial 4788
Permanent link to this record
 

 
Author Zhang, L.-F.; Flammia, L.; Covaci, L.; Perali, A.; Milošević, M.V.
Title Multifaceted impact of a surface step on superconductivity in atomically thin films Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 10 Pages 104509
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent experiments show that an atomic step on the surface of atomically thin metallic films can strongly affect electronic transport. Here we reveal multiple and versatile effects that such a surface step can have on superconductivity in ultrathin films. By solving the Bogoliubov-de Gennes equations self-consistently in this regime, where quantum confinement dominates the emergent physics, we show that the electronic structure is profoundly modified on the two sides of the step, as is the spatial distribution of the superconducting order parameter and its dependence on temperature and electronic gating. Furthermore, the surface step changes nontrivially the transport properties both in the proximity-induced superconducting pair correlations and the Josephson effect, depending on the step height. These results offer a new route to tailor superconducting circuits and design atomically thin heterojunctions made of one same material.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000411076000012 Publication Date 2017-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.836 Times cited 7 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen), the Special Research Funds of the University of Antwerp (TOPBOF project) and the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:146750 Serial 4790
Permanent link to this record
 

 
Author Arsoski, V.V.; Grujić, M.M.; Čukarić, N.A.; Tadic, M.Z.; Peeters, F.M.
Title Normal and skewed phosphorene nanoribbons in combined magnetic and electric fields Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 12 Pages 125434
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The energy spectrum and eigenstates of single-layer black phosphorus nanoribbons in the presence of a perpendicular magnetic field and an in-plane transverse electric field are investigated by means of a tight-binding method, and the effect of different types of edges is examined analytically. A description based on a continuum model is proposed using an expansion of the tight-binding model in the long-wavelength limit. Thewave functions corresponding to the flatband part of the spectrum are obtained analytically and are shown to agree well with the numerical results from the tight-binding method for both narrow (10 nm) and wide (100 nm) nanoribbons. Analytical expressions for the critical magnetic field at which Landau levels are formed and the ranges of wave numbers in the dispersionless flatband segments in the energy spectra are derived. We examine the evolution of the Landau levels when an in-plane lateral electric field is applied, and we determine analytically how the edge states shift withmagnetic field. For wider nanoribbons, the conductance is shown to have a characteristic staircase shape in combined magnetic and electric fields. Some of the stairs in zigzag and skewed armchair nanoribbons originate from edge states that are found in the band gap.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000411572400008 Publication Date 2017-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.836 Times cited 8 Open Access
Notes ; This work was supported by Erasmus+, the Serbian Ministry of Education, Science and Technological Development, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:146738 Serial 4791
Permanent link to this record
 

 
Author Augustyns, V.; van Stiphout, K.; Joly, V.; Lima, T.A.L.; Lippertz, G.; Trekels, M.; Menendez, E.; Kremer, F.; Wahl, U.; Costa, A.R.G.; Correia, J.G.; Banerjee, D.; Gunnlaugsson, H.P.; von Bardeleben, J.; Vickridge, I.; Van Bael, M.J.; Hadermann, J.; Araujo, J.P.; Temst, K.; Vantomme, A.; Pereira, L.M.C.
Title Evidence of tetragonal distortion as the origin of the ferromagnetic ground state in gamma-Fe nanoparticles Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 17 Pages 174410
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('gamma-Fe and related alloys are model systems of the coupling between structure and magnetism in solids. Since different electronic states (with different volumes and magnetic ordering states) are closely spaced in energy, small perturbations can alter which one is the actual ground state. Here, we demonstrate that the ferromagnetic state of gamma-Fe nanoparticles is associated with a tetragonal distortion of the fcc structure. Combining a wide range of complementary experimental techniques, including low-temperature Mossbauer spectroscopy, advanced transmission electron microscopy, and synchrotron radiation techniques, we unambiguously identify the tetragonally distorted ferromagnetic ground state, with lattice parameters a = 3.76(2) angstrom and c = 3.50(2) angstrom, and a magnetic moment of 2.45(5) mu(B) per Fe atom. Our findings indicate that the ferromagnetic order in nanostructured gamma-Fe is generally associated with a tetragonal distortion. This observation motivates a theoretical reassessment of the electronic structure of gamma-Fe taking tetragonal distortion into account.'));
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000414525200005 Publication Date 2017-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.836 Times cited 1 Open Access OpenAccess
Notes ; The authors thank the Fund for Scientific Research-Flanders, the Concerted Research Action of the KU Leuven (GOA/14/007), the KU Leuven BOF (STRT/14/002), the Hercules Foundation, the Portuguese Foundation for Science and Technology (CERN/FIS-NUC/0004/2015), and the European Union Seventh Framework through ENSAR2 (European Nuclear Science and Applications Research, Project No. 654002), and SPIRIT (Support of Public and Industrial Research Using Ion Beam Technology, Contract No. 227012). We acknowledge the European Synchrotron Radiation Facility (ESRF) for providing beam time (experiments 26-01-1018, 26-01-1057, 20-02-728, HC-1850, HC-2208), as well as C. Baehtz, N. Boudet, and N. Blancand for support during the experiments. We acknowledge the ISOLDE-CERN facility for providing beam time (experiment IS580) and technical assistance. The authors (L.M.C.P., F.K.) acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Advanced Microscopy, Australian National University. We also acknowledge the contribution of Prof. Mark Ridgway (Australian National University), who passed away before the work was completed. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:147387 Serial 4873
Permanent link to this record
 

 
Author Carmesin, C.; Schowalter, M.; Lorke, M.; Mourad, D.; Grieb, T.; Müller-Caspary, K.; Yacob, M.; Reithmaier, J.P.; Benyoucef, M.; Rosenauer, A.; Jahnke, F.
Title Interplay of morphology, composition, and optical properties of InP-based quantum dots emitting at the 1.55 \mum telecom wavelength Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 23 Pages 235309
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Results for the development and detailed analysis of self-organized InAs/InAlGaAs/InP quantum dots suitable for single-photon emission at the 1.55 mu m telecom wavelength are reported. The structural and compositional properties of the system are obtained from high-resolution scanning transmission electron microscopy of individual quantum dots. The system is composed of almost pure InAs quantum dots embedded in quaternary InAlGaAs barrier material, which is lattice matched to the InP substrate. When using the measured results for a representative quantum-dot geometry as well as experimentally reconstructed alloy concentrations, a combination of strain-field and electronic-state calculations is able to reproduce the quantum-dot emission wavelength in agreement with the experimentally determined photoluminescence spectrum. The inhomogeneous broadening of the latter can be related to calculated variations of the emission wavelength for the experimentally deduced In-concentration fluctuations and size variations.'));
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000418654200009 Publication Date 2017-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.836 Times cited 3 Open Access OpenAccess
Notes ; The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft Project No. JA 14-1, the BMBF Projects Q.com-H No. 16KIS0111 and No. 16KIS0112, as well as computational resources from HLRN (Hannover, Berlin). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:148505 Serial 4882
Permanent link to this record
 

 
Author Stosic, D.; Ludermir, T.B.; Milošević, M.V.
Title Pinning of magnetic skyrmions in a monolayer Co film on Pt(111) : Theoretical characterization and exemplified utilization Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 21 Pages 214403
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Magnetic skyrmions are nanoscale windings of the spin structure that can be observed in chiral magnets and hold promise for potential applications in storing or processing information. Pinning due to ever-present material imperfections crucially affects the mobility of skyrmions. Therefore, a proper understanding of how magnetic skyrmions pin to defects is necessary for the development and performance of spintronic devices. Here we present a fundamental analysis on the interactions of single skyrmions with atomic defects of distinctly different origins, in a Co monolayer on Pt, based on minimum-energy paths considerations and atomic-spin simulations. We first report the preferred pinning loci of the skyrmion as a function of its nominal size and the type of defect being considered, to further reveal the manipulation and \u0022breathing\u0022 of skyrmion core in the vicinity of a defect. We also show the behavior of skyrmions in the presence of an extended defect of particular geometry, that can lead to ratcheted skyrmion motion or a facilitated guidance on a defect \u0022trail.\u0022 We close the study with reflections on the expected thermal stability of the skyrmion against collapse on itself for a given nature of the defect, and discuss the applications where control of skyrmions by defects is of particular interest.'));
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000416846900002 Publication Date 2017-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.836 Times cited 52 Open Access
Notes ; This work was supported by the Research Foundation, Flanders (FWO-Vlaanderen) and Brazilian agency CNPq (Grants No. 442668/2014-7 and No. 140840/2016-8). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:147684 Serial 4890
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.
Title Topological phase transitions in small mesoscopic chiral p-wave superconductors Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 22 Pages 224512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Spin-triplet chiral p-wave superconductivity is typically described by a two-component order parameter, and as such is prone to unique emergent effects when compared to the standard single-component superconductors. Here we present the equilibrium phase diagram for small mesoscopic chiral p-wave superconducting disks in the presence of magnetic field, obtained by solving the microscopic Bogoliubov-de Gennes equations self-consistently. In the ultrasmall limit, the cylindrically symmetric giant-vortex states form the ground state of the system. However, with increasing sample size, the cylindrical symmetry is broken as the two components of the order parameter segregate into domains, and the number of fragmented domain walls between them characterizes the resulting states. Such domain walls are topological defects unique for the p-wave order, and constitute a dominant phase in the mesoscopic regime. Moreover, we find two possible types of domain walls, identified by their chirality-dependent interaction with the edge states.'));
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000418653500012 Publication Date 2017-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.836 Times cited 18 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen) and the Special Research Funds of the University of Antwerp. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:148504 Serial 4901
Permanent link to this record
 

 
Author Ranjbar, S.; Hadipour, A.; Vermang, B.; Batuk, M.; Hadermann, J.; Garud, S.; Sahayaraj, S.; Meuris, M.; Brammertz, G.; da Cunha, A.F.; Poortmans, J.
Title P-N Junction Passivation in Kesterite Solar Cells by Use of Solution-Processed TiO2 Layer Type A1 Journal article
Year 2017 Publication IEEE journal of photovoltaics Abbreviated Journal Ieee J Photovolt
Volume 7 Issue 7 Pages 1130-1135
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In this work, we used a solution-processed TiO2 layer between Cu2ZnSnSe4 and CdS buffer layer to reduce the recombination at the p–n junction. Introducing the TiO2 layer showed a positive impact on VOC but fill factor and efficiency decreased. Using a KCN treatment, we could create openings in the TiO2 layer, as confirmed by transmission electron microscopy measurements. Formation of these openings in the TiO2 layer led to the improvement of the short-circuit current, fill factor, and the efficiency of the modified solar cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404258900026 Publication Date 2017-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-3381 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.712 Times cited 2 Open Access OpenAccess
Notes This work was supported in part by the European Union’s Horizon 2020 research and innovation program under Grant 640868, in part by the Flemish government, Department Economy, Science and Innovation, in part by the FEDER funds through the COMPETE 2020 Programme, and in part by the National Funds through FCT – Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013. The work of S. Ranjbar was supported by the Portuguese Science and Technology Foundation through Ph.D. grant SFRH/BD/78409/2011. The work of B. Vermang was supported by the Flemish Research Foundation FWO (mandate 12O4215N). Approved Most recent IF: 3.712
Call Number EMAT @ emat @ c:irua:143986 Serial 4583
Permanent link to this record
 

 
Author García Sánchez, C.; Van Tendeloo, G.; Gorle, C.
Title Quantifying inflow uncertainties in RANS simulations of urban pollutant dispersion Type A1 Journal article
Year 2017 Publication Atmospheric environment : an international journal Abbreviated Journal Atmos Environ
Volume 161 Issue Pages 263-273
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Numerical simulations of flow and pollutant dispersion in urban environments have the potential to support design and policy decisions that could reduce the population's exposure to air pollution. Reynolds-averaged Navier-Stokes simulations are a common modeling technique for urban flow and dispersion, but several sources of uncertainty in the simulations can affect the accuracy of the results. The present study proposes a method to quantify the uncertainty related to variability in the inflow boundary conditions. The method is applied to predict flow and pollutant dispersion in downtown Oklahoma City and the results are compared to field measurements available from the Joint Urban 2003 measurement campaign. Three uncertain parameters that define the inflow profiles for velocity, turbulence kinetic energy and turbulence dissipation are defined: the velocity magnitude and direction, and the terrain roughness length. The uncertain parameter space is defined based on the available measurement data, and a non-intrusive propagation approach that employs 729 simulations is used to quantify the uncertainty in the simulation output. A variance based sensitivity analysis is performed to identify the most influential uncertain parameters, and it is shown that the predicted tracer concentrations are influenced by all three uncertain variables. Subsequently, we specify different probability distributions for the uncertain inflow variables based on the available measurement data and calculate the corresponding means and 95% confidence intervals for comparison with the field measurements at 35 locations in downtown Oklahoma City. (C) 2017 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000403515900025 Publication Date 2017-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.629 Times cited 17 Open Access OpenAccess
Notes ; The first author's contribution to this work was supported by the doctoral (PhD) grant number 131423 for strategic basic research from the Agency for Innovation by Science and Technology in Flanders (IWT). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number CTS160009 (Towns et al., 2014). ; Approved Most recent IF: 3.629
Call Number UA @ lucian @ c:irua:145761 Serial 4749
Permanent link to this record
 

 
Author Leus, K.; Perez, J.P.H.; Folens, K.; Meledina, M.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P.
Title UiO-66-(SH)2 as stable, selective and regenerable adsorbent for the removal of mercury from water under environmentally-relevant conditions Type A1 Journal article
Year 2017 Publication Faraday discussions Abbreviated Journal Faraday Discuss
Volume 201 Issue Pages 145-161
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The dithiol functionalized UiO-66-(SH)(2) is developed as an efficient adsorbent for the removal of mercury in aqueous media. Important parameters for the application of MOFs in real-life circumstances include: stability and recyclability of the adsorbents, selectivity for the targeted Hg species in the presence of much higher concentrations of interfering species, and ability to purify wastewater below international environmental limits within a short time. We show that UiO-66-(SH)(2) meets all these criteria.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000409366000009 Publication Date 2017-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6640 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.588 Times cited 18 Open Access Not_Open_Access
Notes ; J. P. H. P. is grateful for the funding from the Vlaamse Interuniversitaire Raad-Universitaire Ontwikkelingssamenwerking (VLIR-UOS). K. L. acknowledges the financial support from the Ghent University BOF Postdoctoral Grant (01P06813T). ; Approved Most recent IF: 3.588
Call Number UA @ lucian @ c:irua:145653 Serial 4757
Permanent link to this record
 

 
Author Cavaliere, E.; Benetti, G.; Van Bael, M.; Winckelmans, N.; Bals, S.; Gavioli, L.
Title Exploring the Optical and Morphological Properties of Ag and Ag/TiO2 Nanocomposites Grown by Supersonic Cluster Beam Deposition Type A1 Journal article
Year 2017 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 7 Issue 7 Pages 442
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanocomposite systems and nanoparticle (NP) films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework, we investigate the optical and morphological properties of Ag nanoparticles (NPs) films and of Ag NPs/TiO₂ porous matrix films, one-step grown by supersonic cluster beam deposition. Morphology and structure of the Ag NPs film and of the Ag/TiO₂ (Ag/Ti 50-50) nanocomposite are related to the optical properties of the film employing spectroscopic ellipsometry (SE). We employ a simple Bruggeman effective medium approximation model, corrected by finite size effects of the nano-objects in the film structure to gather information on the structure and morphology of the nanocomposites, in particular porosity and average NPs size for the Ag/TiO₂ NP film. Our results suggest that SE is a simple, quick and effective method to measure porosity of nanoscale films and systems, where standard methods for measuring pore sizes might not be applicable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000419186800037 Publication Date 2017-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.553 Times cited 19 Open Access OpenAccess
Notes The authors thank Gabriele Ferrini for fruitful discussions on the spectroscopic ellipsometry model and Francesco Rossella from NEST for the optical profilometry data. The authors acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). Luca Gavioli, Emanuele Cavaliere and Giulio Benetti acknowledge support from Università Cattolica del Sacro Cuore through D.1.1 and D.3.1 grants. Approved Most recent IF: 3.553
Call Number EMAT @ emat @c:irua:147862UA @ admin @ c:irua:147862 Serial 4802
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Trashin, S.; Cuykx, M.; Covaci, A.; De Wael, K.; Janssens, K.
Title Photodegradation mechanisms and kinetics of Eosin-Y in oxic and anoxic conditions Type A1 Journal article
Year 2017 Publication Dyes and pigments Abbreviated Journal Dyes Pigments
Volume 145 Issue Pages 376-384
Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre
Abstract Lakes based on Eosin-Y are extensively used by 19th century artists. Unfortunately, the identification of these pigments in paintings is a difficult task because Eosin-Y degrades very fast under the influence of light. The characterization of the (photo)degradation products of Eosin-Y can be very useful for the identification of these pigments in historic works of art and related cultural heritage artifacts. Furthermore, knowledge on how different factors influence the discoloration process (e.g. different types of irradiation sources and presence/absence of oxygen) is a valuable tool for preventive conservation. To this aim we performed a study on the photodegradation of Eosin-Y in solution under different illumination and in both oxic and anoxic conditions. The photodegradation of Eosin-Y was monitored by UV-VIS spectrophotometry, LC-QTOFMS and electrochemistry techniques. Results indicated higher degradation rates, by a factor of 20 or higher, under illumination with wavelengths near to the main absorbance band of the red pigment. Two different degradation pathways are observed under the conditions studied. LC-QTOFMS and electrochemistry suggested that in the presence of oxygen the degradation mechanism is an oxidative process where the breakdown of the structure causes the total discoloration. Meanwhile under anoxic conditions, a debromination process takes place while the chromophore, and consequently the color of the molecule in solution, remains essentially intact.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405972900046 Publication Date 2017-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-7208 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.473 Times cited 18 Open Access
Notes ; ; Approved Most recent IF: 3.473
Call Number UA @ admin @ c:irua:144385 Serial 5770
Permanent link to this record
 

 
Author Eliaerts, J.; Dardenne, P.; Meert, N.; Van Durme, F.; Samyn, N.; Janssens, K.; De Wael, K.
Title Rapid classification and quantification of cocaine in seized powders with ATR-FTIR and chemometrics Type A1 Journal article
Year 2017 Publication Drug testing and analysis Abbreviated Journal Drug Test Anal
Volume 9 Issue 10 Pages 1480-1489
Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Traditionally, fast screening for the presence of cocaine in unknown powders is performed by means of colour tests. The major drawbacks of these tests are subjective colour evaluation depending on the operator (50 shades of blue) and a lack of selectivity. An alternative fast screening technique is Fourier Transform InfraRed (FTIR) spectrometry. This technique provides spectra that are difficult to interpret without specialized expertise and showing a lack of sensitivity for the detection of cocaine in mixtures. To overcome these limitations, a portable FTIR spectrometer using Attenuated Total Reflectance (ATR) sampling was combined with a multivariate technique, called Support Vector Machines (SVM). Representative street drug powders (n = 482), seized during the period January 2013 to July 2015, and reference powders (n = 33) were used to build and validate a classification model (n = 515) and a quantification model (n = 378). Both models were compared with the conventional chromatographic techniques. The SVM classification model showed a high sensitivity, specificity and efficiency (99%). The SVM quantification model determined cocaine content with a root mean squared error of prediction (RMSEP) of 6% calculated over a wide working range from 4 to 99 w%. In conclusion, the developed models resulted in a clear output (cocaine detected or cocaine not detected) and a reliable estimation of the cocaine content in a wide variety of mixtures. The ATR-FTIR technique combined with SVM is a straightforward, user-friendly and fast approach for routine classification and quantification of cocaine in seized powders.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413685200001 Publication Date 2016-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.469 Times cited 9 Open Access
Notes ; ; Approved Most recent IF: 3.469
Call Number UA @ admin @ c:irua:139483 Serial 5799
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Delabie, A.; Caymax, M.; Neyts, E.C.; Radu, I.; Huyghebaert, C.; De Gendt, S.
Title Two-dimensional WS2 nanoribbon deposition by conversion of pre-patterned amorphous silicon Type A1 Journal article
Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 28 Issue 28 Pages 04LT01
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present a method for area selective deposition of 2D WS2 nanoribbons with tunable thickness on a dielectric substrate. The process is based on a complete conversion of a prepatterned, H-terminated Si layer to metallic W by WF6, followed by in situ sulfidation by H2S. The reaction process, performed at 450 degrees C, yields nanoribbons with lateral dimension down to 20 nm and with random basal plane orientation. The thickness of the nanoribbons is accurately controlled by the thickness of the pre-deposited Si layer. Upon rapid thermal annealing at 900 degrees C under inert gas, the WS2 basal planes align parallel to the substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000391445100001 Publication Date 2016-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.44 Times cited 13 Open Access OpenAccess
Notes Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:140382 Serial 4471
Permanent link to this record
 

 
Author Petrovic, M.D.; Milovanović, S.P.; Peeters, F.M.
Title Scanning gate microscopy of magnetic focusing in graphene devices : quantum versus classical simulation Type A1 Journal article
Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 28 Issue 28 Pages 185202
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We compare classical versus quantum electron transport in recently investigated magnetic focusing devices (Bhandari et al 2016 Nano Lett. 16 1690) exposed to the perturbing potential of a scanning gate microscope (SGM). Using the Landauer-Buttiker formalism for a multi-terminal device, we calculate resistance maps that are obtained as the SGM tip is scanned over the sample. There are three unique regimes in which the scanning tip can operate (focusing, repelling, and mixed regime) which are investigated. Tip interacts mostly with electrons with cyclotron trajectories passing directly underneath it, leaving a trail of modified current density behind it. Other (indirect) trajectories become relevant when the tip is placed near the edges of the sample, and current is scattered between the tip and the edge. We point out that, in contrast to SGM experiments on gapped semiconductors, the STM tip can induce a pn junction in graphene, which improves contrast and resolution in SGM. We also discuss possible explanations for spatial asymmetry of experimentally measured resistance maps, and connect it with specific configurations of the measuring probes.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000399273800001 Publication Date 2017-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.44 Times cited 7 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:143639 Serial 4607
Permanent link to this record
 

 
Author Li, L.L.; Moldovan, D.; Xu, W.; Peeters, F.M.
Title Electric-and magnetic-field dependence of the electronic and optical properties of phosphorene quantum dots Type A1 Journal article
Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 28 Issue 8 Pages 085702
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Recently, black phosphorus quantum dots were fabricated experimentally. Motivated by these experiments, we theoretically investigate the electronic and optical properties of rectangular phosphorene quantum dots (RPQDs) in the presence of an in-plane electric field and a perpendicular magnetic field. The energy spectra and wave functions of RPQDs are obtained numerically using the tight-binding approach. We find edge states within the band gap of the RPQD which are well separated from the bulk states. In an undoped RPQD and for in-plane polarized light, due to the presence of well-defined edge states, we find three types of optical transitions which are between the bulk states, between the edge and bulk states, and between the edge states. The electric and magnetic fields influence the bulk-to-bulk, edge-to-bulk, and edge-to- edge transitions differently due to the different responses of bulk and edge states to these fields.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000403100700001 Publication Date 2017-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.44 Times cited 32 Open Access
Notes ; This work was financially supported by the China Scholarship Council (CSC), the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grant Nos. 11304316 and 11574319), and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:144325 Serial 4648
Permanent link to this record
 

 
Author Singh, V.; Mehta, B.R.; Sengar, S.K.; Karakulina, O.M.; Hadermann, J.; Kaushal, A.
Title Achieving independent control of core diameter and carbon shell thickness in Pd-C core–shell nanoparticles by gas phase synthesis Type A1 Journal article
Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 28 Issue 29 Pages 295603
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Pd-C core–shell nanoparticles with independently controllable core size and shell thickness are grown by gas phase synthesis. First, the core size is selected by electrical mobility values of charged particles, and second, the shell thickness is controlled by the concentration of carbon precursor gas. The carbon shell grows by adsorption of carbon precursor gas molecules on the surface of nanoparticles, followed by sintering. The presence of a carbon shell on Pd nanoparticles is potentially important in hydrogen-related applications operating at high temperatures or in catalytic reactions in acidic/aqueous environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404633200002 Publication Date 2017-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.44 Times cited 1 Open Access Not_Open_Access
Notes VS is thankful to the All India Council for Technical Education, India, for providing assistantship under its Quality Improvement Programme. BRM gratefully acknowledges the support of the Nanomission Programme of the Department of Science and Technology (DST), India and Schlumberger Chair Professorship. BRM would also like to acknowledge the support from the project funded by BRNS, DAE, India. Approved Most recent IF: 3.44
Call Number EMAT @ emat @c:irua:144831 Serial 4712
Permanent link to this record
 

 
Author Leenaerts, O.; Vercauteren, S.; Partoens, B.
Title Band alignment of lateral two-dimensional heterostructures with a transverse dipole Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 110 Issue 110 Pages 181602
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract It was recently shown that the electronic band alignment in lateral two-dimensional heterostructures is strongly dependent on the system geometry, such as heterostructure width and layer thickness. This is so even in the absence of polar edge terminations because of the appearance of an interface dipole between the two different materials. In this study, this work is expanded to include two-dimensional materials that possess an electronic dipole over their surface, i.e., in the direction transverse to the crystal plane. To this end, a heterostucture consisting of polar hydrofluorinated graphene and non-polar graphane layers is studied with first-principles calculations. As for nonpolar heterostructures, a significant geometry dependence is observed with two different limits for the band offset. For infinitely wide heterostructures, the potential step in the vacuum is equally divided over the two sides of the heterostructure, resulting in a finite potential step in the heterostructure. For infinitely thick heterostructure slabs, on the other hand, the band offset is reduced, similar to the three-dimensional case.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000400931900014 Publication Date 2017-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.411 Times cited 4 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-VI). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:143755 Serial 4586
Permanent link to this record
 

 
Author Volodin, A.; Van Haesendonck, C.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Stress dependence of the suspended graphene work function : vacuum Kelvin probe force microscopy and density functional theory Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 110 Issue 19 Pages 193101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report on work function measurements on graphene, which is exfoliated over a predefined array of wells in silicon oxide, by Kelvin probe force microscopy operating in a vacuum. The obtained graphene sealed microchambers can support large pressure differences, providing controllable stretching of the nearly impermeable graphene membranes. These measurements allow detecting variations of the work function induced by the mechanical stresses in the suspended graphene where the work function varies linearly with the strain and changes by 62 +/- 2 meV for 1 percent of strain. Our related ab initio calculations result in a work function variation that is a factor of 1.4 larger than the experimental value. The limited discrepancy between the theory and the experiment can be accounted for by a charge transfer from the unstrained to the strained graphene regions. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000402319200036 Publication Date 2017-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.411 Times cited 8 Open Access
Notes ; The authors wish to thank A. Klekachev (IMEC Leuven, Belgium) for the fabrication of the samples. This work was supported by the Science Foundation-Flanders (FWO, Belgium). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-Department EWI. The Hercules Foundation also funded the scanning probe microscopy equipment. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:144279 Serial 4690
Permanent link to this record
 

 
Author Milovanović, S.P.; Tadic, M.Z.; Peeters, F.M.
Title Graphene membrane as a pressure gauge Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 111 Issue 4 Pages 043101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Straining graphene results in the appearance of a pseudo-magnetic field which alters its local electronic properties. Applying a pressure difference between the two sides of the membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000406779700035 Publication Date 2017-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.411 Times cited 11 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem program, the Erasmus+ programme, and the Serbian Ministry of Education, Science and Technological Development. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:145202 Serial 4718
Permanent link to this record
 

 
Author Zhou, Y.; Ramaneti, R.; Anaya, J.; Korneychuk, S.; Derluyn, J.; Sun, H.; Pomeroy, J.; Verbeeck, J.; Haenen, K.; Kuball, M.
Title Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 111 Issue 4 Pages 041901
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline diamond (PCD) was grown onto high-k dielectric passivated AlGaN/GaN-on-Si high electron mobility transistor (HEMT) structures, with film thicknesses ranging from 155 to 1000 nm. Transient thermoreflectance results were combined with device thermal simulations to investigate the heat spreading benefit of the diamond layer. The observed thermal conductivity (k(Dia)) of PCD films is one-to-two orders of magnitude lower than that of bulk PCD and exhibits a strong layer thickness dependence, which is attributed to the grain size evolution. The films exhibit a weak temperature dependence of k(Dia) in the measured 25-225 degrees C range. Device simulation using the experimental jDia and thermal boundary resistance values predicts at best a 15% reduction in peak temperature when the source-drain opening of a passivated AlGaN/GaN-on-Si HEMT is overgrown with PCD. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000406779700008 Publication Date 2017-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.411 Times cited 78 Open Access Not_Open_Access
Notes ; The authors are grateful to Professor Michael Uren and Dr. Roland B. Simon (University of Bristol) for helpful discussions and to Dr. Sien Drijkoningen (Hasselt University) for taking the SEM micrographs. This work was in part supported by DARPA under Contract No. FA8650-15-C-7517, monitored by Dr. Avram Bar Cohen and Dr. John Blevins, and supported by Dr. Joseph Maurer and Dr. Abirami Sivananthan. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA. Y.Z. acknowledges China Scholarship Council for the financial support. S.K. and J.V. acknowledge the FWO-Vlaanderen for financial support under contract G.0044.13N “Charge ordering.” ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:145203 Serial 4728
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Tinck, S.; de Marneffe, J.-F.; Zhang, L.; Bogaerts, A.
Title Mechanisms for plasma cryogenic etching of porous materials Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 111 Issue 17 Pages 173104
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Porous materials are commonly used in microelectronics, as they can meet the demand for continuously shrinking electronic feature dimensions. However, they are facing severe challenges in plasma etching, due to plasma induced damage. In this paper, we present both the plasma characteristics and surface processing during the etching of porous materials. We explain how the damage occurs in the porous material during plasma etching for a wide range of chuck temperatures and the responsible mechanism for plasma damage-free etching at cryogenic temperature, by a combination of experiments and numerical modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413863400032 Publication Date 2017-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.411 Times cited 2 Open Access OpenAccess
Notes We acknowledge the support from Marie Skłodowska- Curie actions (Grant Agreement-702604). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. L. Zhang and J.-F. de Marneffe acknowledge Dr. M. Cooke and A. Goodyear from Oxford Instruments Plasma Technology for processing the samples at their Yatton facility in the United Kingdom. Approved Most recent IF: 3.411
Call Number PLASMANT @ plasmant @c:irua:147022 Serial 4762
Permanent link to this record
 

 
Author Bogaerts, A.; Aghaei, M.
Title Inductively coupled plasma-mass spectrometry: insights through computer modeling Type A1 Journal article
Year 2017 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 32 Issue 32 Pages 233-261
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this tutorial review paper, we illustrate how computer modeling can contribute to a better insight in inductively coupled plasma-mass spectrometry (ICP-MS). We start with a brief overview on previous efforts, studying the fundamentals of the ICP and ICP-MS, with main focus on previous modeling activities. Subsequently, we explain in detail the model that we developed in previous years, and we show typical calculation results, illustrating the plasma characteristics, gas flow patterns and the sample transport, evaporation and ionization. We also present the effect of various experimental parameters, such as operating conditions, geometrical aspects and sample characteristics, to illustrate how modeling can help to elucidate the optimal conditions for improved analytical performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000395529800002 Publication Date 2016-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.379 Times cited 14 Open Access OpenAccess
Notes The authors are very grateful to H. Lindner for the initial model development and for the many interesting discussions. They also gratefully acknowledge nancial support from the Fonds voor Wetenschappelijk Onderzoek (FWO; Grant number 6713). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.379
Call Number PLASMANT @ plasmant @ c:irua:140074 Serial 4416
Permanent link to this record
 

 
Author Vermeulen, M.; Sanyova, J.; Janssens, K.; Nuyts, G.; De Meyer, S.; De Wael, K.
Title The darkening of copper- or lead-based pigments explained by a structural modification of natural orpiment : a spectroscopic and electrochemical study Type A1 Journal article
Year 2017 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 32 Issue 7 Pages 1331-1341
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A combined Raman and electrochemical study of natural orpiment (As2S3), an arsenic sulfide pigment, was used to assess the quick formation of oxidized species such as arsenic oxide (As2O3) upon exposing the pigment to 405 nm or 532 nm monochromatic light while simultaneously recording the Raman spectra of the exposed sample. During this process, a distortion of the main band at 355 cm−1, associated with the stretching of the AsS3/2 pyramids of natural orpiment, was observed as well as an increased intensity of the 359 cm−1 band, corresponding to covalent AsAs bonds in natural orpiment. The distortion was accompanied by an overall decrease of the global Raman signal for natural orpiment, which could be explained by a loss in the crystal structure. The same phenomena were recorded in reference natural orpiment model paint samples stored for a long time together with verdigris (Cu(OH)2·(CH3COO)2·5H2O) and minium (Pb3O4) paints, the latter two appearing darkened on their sides closest to the orpiment sample as well as in several historical samples containing natural orpiment mixed with various blue pigments. By SEM-EDX and XRPD analysis, respectively on loose material and cast thin-sections of model paint samples, the darkening was identified as dark sulfide species such as chalcocite (Cu2S) and galena (PbS), suggesting the release of volatile sulfide or related species by the natural orpiment paint. XANES analyses of paint samples presenting AsAs bond increase indicated the presence of sulfur species most likely identified as organosulfur compounds formed upon the AsAs bond formation and explained the darkening of the Cu- and Pb-based pigments. To the best of our knowledge, this article reports for the first time the light-induced formation of AsAs bonds in natural orpiment used as an artists' pigment and objectively demonstrates the incompatibility between orpiment and (arsenic) sulfide-sensitive pigments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404998500007 Publication Date 2017-05-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.379 Times cited 10 Open Access
Notes ; This research is made possible with the support of the Belgian Science Policy Office (BELSPO, Brussels) through the research program Science for a Sustainable Development – SDD, “Long-term role and fate of metal-sulfides in painted works of art – S2ART” (SD/RI/04A). We gratefully acknowledge Julie Arslanoglu (Conservation and Scientific Research Department at the Metropolitan Museum of Art, New York, USA) for providing us the orpiment, verdigris and minium mock-up samples. We gratefully acknowledge the Paul Scherrer Institut, Villigen, Switzerland and the German Electron Synchrotron (DESY) for provision of synchrotron radiation beamtimes at respectively beamlines of the SLS and Petra III. ; Approved Most recent IF: 3.379
Call Number UA @ admin @ c:irua:144384 Serial 5564
Permanent link to this record
 

 
Author Cotte, M.; Pouyet, E.; Salome, M.; Rivard, C.; De Nolf, W.; Castillo-Michel, H.; Fabris, T.; Monico, L.; Janssens, K.; Wang, T.; Sciau, P.; Verger, L.; Cormier, L.; Dargaud, O.; Brun, E.; Bugnazet, D.; Fayard, B.; Hesse, B.; del Real, A.E.P.; Veronesi, G.; Langlois, J.; Balcar, N.; Vandenberghe, Y.; Sole, V.A.; Kieffer, J.; Barrett, R.; Cohen, C.; Cornu, C.; Baker, R.; Gagliardini, E.; Papillon, E.; Susini, J.
Title The ID21 X-ray and infrared microscopy beamline at the ESRF: status and recent applications to artistic materials Type A1 Journal article
Year 2017 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 32 Issue 3 Pages 477-493
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The ID21 beamline (European Synchrotron Radiation facility, France) is a multi micro-analytical platform combining X-ray and infrared micro-probes, for characterization of elements, species, molecular groups and crystalline structures in complex materials. Applications are mainly in the fields of cultural heritage, life science, environmental and earth sciences, materials sciences. Here, we first present the status of instruments: (i) the scanning micro-spectroscopy end-station, operating from 2.0 to 9.2 keV, under vacuum and offering cryo conditions, for the acquisition of 2D micro X-ray fluorescence (mu XRF) maps, single point micro X-ray Absorption Near Edge Structure (mu XANES) spectra and speciation maps with sub-micrometric resolution; (ii) the XANES full-field end-station, operating in the same vacuum and energy conditions, for the acquisition of hyper-spectral radiographs of thin concentrated samples, resulting in speciation maps with micrometric resolution and millimetric field of view; (iii) the scanning micro-X-ray diffraction (mu XRD)/mu XRF end-station, operating at 8.5 keV, in air, for the acquisition of 2D crystalline phase maps, with micrometric resolution; and (iv) the scanning infrared microscope, operating in the mid-infrared range for the acquisition of molecular maps and some structural maps with micrometric resolution. Recent hardware and software developments are presented, as well as new protocols for improved sample preparation of thin sections. Secondly, a review of recent applications for the study of cultural heritage is presented, illustrated by various examples: determination of the origin of the color in blue Chinese porcelains and in brown Sevres porcelains; detection of lead in ink on Herculaneum papyri; identification and degradation of modeling materials used by Auguste Rodin and of chrome yellow pigments used by Vincent van Gogh. Cryo capabilities are illustrated by the analysis of plants exposed to chromate solutions. These examples show the variety of materials analyzed, of questions tackled, and particularly the multiple advantages of the ID21 analytical platform for the analysis of ancient and artistic materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000396286900002 Publication Date 2016-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.379 Times cited 39 Open Access
Notes ; ; Approved Most recent IF: 3.379
Call Number UA @ admin @ c:irua:142493 Serial 5874
Permanent link to this record
 

 
Author Cuypers, B.; Vermeylen, S.; Hammerschmid, D.; Trashin, S.; Rahemi, V.; Konijnenberg, A.; De Schutter, A.; Cheng, C.-H.C.; Giordano, D.; Verde, C.; De Wael, K.; Sobott, F.; Dewilde, S.; Van Doorslaer, S.
Title Antarctic fish versus human cytoglobins : the same but yet so different Type A1 Journal article
Year 2017 Publication Journal of inorganic biochemistry Abbreviated Journal J Inorg Biochem
Volume 173 Issue Pages 66-78
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The cytoglobins of the Antarctic fish Chaenocephalus aceratus and Dissostichus mawsoni have many features in common with human cytoglobin. These cytoglobins are heme proteins in which the ferric and ferrous forms have a characteristic hexacoordination of the heme iron, i.e. axial ligation of two endogenous histidine residues, as confirmed by electron paramagnetic resonance, resonance Raman and optical absorption spectroscopy. The combined spectroscopic analysis revealed only small variations in the heme-pocket structure, in line with the small variations observed for the redox potential. Nevertheless, some striking differences were also discovered. Resonance Raman spectroscopy showed that the stabilization of an exogenous heme ligand, such as CO, occurs differently in human cytoglobin in comparison with Antarctic fish cytoglobins. Furthermore, while it has been extensively reported that human cytoglobin is essentially monomeric and can form an intramolecular disulfide bridge that can influence the ligand binding kinetics, 3D modeling of the Antarctic fish cytoglobins indicates that the cysteine residues are too far apart to form such an intramolecular bridge. Moreover, gel filtration and mass spectrometry reveal the occurrence of non-covalent multimers (up to pentamers) in the Antarctic fish cytoglobins that are formed at low concentrations. Stabilization of these oligomers by disulfide-bridge formation is possible, but not essential. If intermolecular disulfide bridges are formed, they influence the heme-pocket structure, as is shown by EPR measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405159600007 Publication Date 2017-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-0134 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.348 Times cited 7 Open Access
Notes ; The authors acknowledge the support of the University of Antwerp GOA-BOF funding (28312), FWO funding (G.0687.13) and the Hercules foundation for funding of the Synapt G2 instrument. This study was carried out in the framework of the SCAR program “Antarctic Thresholds – Ecosystem Resilience and Adaptation” (AnT-ERA). It was financially supported by the Italian National Program for Antarctic Research (PNRA). Research of A. De Schutter is funded by a PhD grant of the Agency for Innovation by Science and Technology (121339) (IWT, Belgium). C-H C. Cheng acknowledges funding support from US National Science Foundation Polar Programs (ANT-1142158). ; Approved Most recent IF: 3.348
Call Number UA @ admin @ c:irua:144826 Serial 5474
Permanent link to this record
 

 
Author Lizin, S.; Van Dael, M.; Van Passel, S.; Van Dael, M.
Title Battery pack recycling : behaviour change interventions derived from an integrative theory of planned behaviour study Type A1 Journal article
Year 2017 Publication Resources Conservation And Recycling Abbreviated Journal Resour Conserv Recy
Volume 122 Issue Pages 66-82
Keywords A1 Journal article; Economics; Engineering Management (ENM)
Abstract Belgium has passed the 45% cap, mandated by the European Union, by achieving a collection rate of over 50% in 2012. Having such a collection rate, Belgium is amongst the frontrunners in battery recycling in Europe. However, despite the efforts, about 40% of used batteries are still not properly collected. Particularly troublesome according to the national producer responsibility organization are the battery packs. In this paper we therefore investigate the drivers and barriers to battery pack drop-off intention perceived by Belgian households using an integrative model based on the Theory of Planned Behaviour. An R2 of 0.64 was found, which according to the literature on partial least squares structural equation modelling signals a moderate yet very close to substantial coefficient of determination. We find that on average perceived behavioural control and moral norms have the largest influence on the intention to drop-off used battery packs as quickly as possible. Based on the insights gained, recommendations are made for both behaviour change interventions and future research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401881300007 Publication Date 2017-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor (down) 3.313 Times cited 21 Open Access
Notes ; The corresponding author wishes to thank the Research Foundation Flanders (FWO) for granting him a postdoctoral grant [grant number: 12G5415N]. Furthermore, the second author wishes to express her gratitude for funding her to the SUMMA policy platform. Furthermore, we wish to express our sincere gratitude to Peter Coonen and Nele Peeters of Bebat for their time and willingness to share information with us. ; Approved Most recent IF: 3.313
Call Number UA @ admin @ c:irua:140681 Serial 6159
Permanent link to this record
 

 
Author Sun, S.R.; Kolev, S.; Wang, H.X.; Bogaerts, A.
Title Coupled gas flow-plasma model for a gliding arc: investigations of the back-breakdown phenomenon and its effect on the gliding arc characteristics Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 015003
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present a 3D and 2D Cartesian quasi-neutral plasma model for a low current argon gliding arc discharge, including strong interactions between the gas flow and arc plasma column.

The 3D model is applied only for a short time of 0.2 ms due to its huge computational cost. It mainly serves to verify the reliability of the 2D model. As the results in 2D compare well with those in 3D, they can be used for a better understanding of the gliding arc basic characteristics. More specifically, we investigate the back-breakdown phenomenon induced by an artificially controlled plasma channel, and we discuss its effect on the gliding arc characteristics. The

back-breakdown phenomenon, or backward-jump motion of the arc, as observed in the experiments, results in a drop of the gas temperature, as well as in a delay of the arc velocity with respect to the gas flow velocity, allowing more gas to pass through the arc, and thus increasing the efficiency of the gliding arc for gas treatment applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000419253000001 Publication Date 2016-11-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.302 Times cited 9 Open Access OpenAccess
Notes This work is financially supported by the Methusalem financing, by the Fund for Scientific Research Flanders (FWO) and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. This work was also supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11575019). S R Sun thanks the financial support from the China Scholarship Council. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:138993 Serial 4337
Permanent link to this record