toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Schryvers, D.; Ma, Y.
  Title The growth of Ni5Al3 in L10 martensite studied by in situ transmission electron microscopy and high resolution electron microscopy Type A1 Journal article
  Year 1995 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
  Volume 221 Issue Pages 227-234
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos A1995QZ73800044 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.999 Times cited 19 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:13169 Serial 1397
Permanent link to this record
 

 
Author Muto, S.; Schryvers, D.
  Title In situ high resolution electron microscopy observation of electron-irradiation-induced martensitic transformation in a Ni63Al37 alloy Type A1 Journal article
  Year 1993 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
  Volume 199 Issue 1-2 Pages 1-6
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract An electron-irradiation-induced transformation from cubic beta2 austenite to monoclinic 7M martensite was observed in situ under high resolution electron microscopy conditions in a thin foil of Ni63Al37 beta2 phase (B2, CsCl structure), with the start temperature of the martensitic transformation below but very close to room temperature. The structure of the martensite is consistent with thermoelastic or stress-induced martensite at this composition, including the existence of multiple stacking faults. The transformation is described by a gradual increase in the shear and shuffle amplitudes already existing in the precursor domains. Possible origins of the transformation are discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos A1993LV15200004 Publication Date 2003-06-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.999 Times cited 8 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:102953 Serial 1576
Permanent link to this record
 

 
Author Muto, S.; Schryvers, D.
  Title In-situ HREM observation of electron-irradation-induced martensitic transformation in a Ni63Al37 alloy Type A1 Journal article
  Year 1993 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
  Volume 199 Issue Pages 1-6
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos A1993LV15200004 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.999 Times cited 8 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:6777 Serial 1579
Permanent link to this record
 

 
Author van den Broek, W.; Verbeeck, J.; de Backer, S.; Scheunders, P.; Schryvers, D.
  Title Acquisition of the EELS data cube by tomographic reconstruction Type A1 Journal article
  Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 106 Issue 4/5 Pages 269-276
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract Energy filtered TEM, EFTEM, provides three-dimensional data, two spatial and one spectral dimension. We propose to acquire these data by measuring a series of images with a defocused energy filter. It will be shown that each image is a projection of the data on the detector and that reconstruction of the data out of a sufficient number of such projections using a tomographic reconstruction algorithm is possible. This technique uses only a fraction of the electron dose an energy filtered series (EFS) needs for the same spectral and spatial resolution and the same mean signal-to-noise ratio. (c) 2005 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000236042300003 Publication Date 2005-11-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.843 Times cited 6 Open Access
  Notes Approved Most recent IF: 2.843; 2006 IF: 1.706
  Call Number UA @ lucian @ c:irua:56910UA @ admin @ c:irua:56910 Serial 55
Permanent link to this record
 

 
Author Potapov, P.L.; Schryvers, D.
  Title Measuring the absolute position of EELS ionisation edges in a TEM Type A1 Journal article
  Year 2004 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 99 Issue Pages 73-85
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000220804700005 Publication Date 2003-08-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.843 Times cited 29 Open Access
  Notes Approved Most recent IF: 2.843; 2004 IF: 2.215
  Call Number UA @ lucian @ c:irua:48781 Serial 1970
Permanent link to this record
 

 
Author van den Broek, W.; Verbeeck, J.; Schryvers, D.; de Backer, S.; Scheunders, P.
  Title Tomographic spectroscopic imaging; an experimental proof of concept Type A1 Journal article
  Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 109 Issue 4 Pages 296-303
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract Recording the electron energy loss spectroscopy data cube with a series of energy filtered images is a dose inefficient process because the energy slit blocks most of the electrons. When recording the data cube by scanning an electron probe over the sample, perfect dose efficiency is attained; but due to the low current in nanoprobes, this often is slower, with a smaller field of view. In W. Van den Broek et al. [Ultramicroscopy, 106 (2006) 269], we proposed a new method to record the data cube, which is more dose efficient than an energy filtered series. It produces a set of projections of the data cube and then tomographically reconstructs it. In this article, we demonstrate these projections in practice, we present a simple geometrical model that allows for quantification of the projection angles and we present the first successful experimental reconstruction, all on a standard post-column instrument.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000265345400003 Publication Date 2008-12-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.843 Times cited 1 Open Access
  Notes Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
  Call Number UA @ lucian @ c:irua:77271 Serial 3671
Permanent link to this record
 

 
Author Schryvers, D.; Salje, E.K.H.; Nishida, M.; De Backer, A.; Idrissi, H.; Van Aert, S.
  Title Quantification by aberration corrected (S)TEM of boundaries formed by symmetry breaking phase transformations Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 176 Issue Pages 194-199
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The present contribution gives a review of recent quantification work of atom displacements, atom site occupations and level of crystallinity in various systems and based on aberration corrected HR(S)TEM images. Depending on the case studied, picometer range precisions for individual distances can be obtained, boundary widths at the unit cell level determined or statistical evolutions of fractions of the ordered areas calculated. In all of these cases, these quantitative measures imply new routes for the applications of the respective materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000403992200026 Publication Date 2017-01-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.843 Times cited 1 Open Access OpenAccess
  Notes The authors acknowledge financial support from the Fund for Scientific Research-Flanders (G.0064.10N, G.0393.11N, G.0374.13N, G.0368.15N, G.0369.15N) and the Flemish Hercules 3 program for large infrastructure as well as financial support from the European Union Seventh Framework Programme (FP7/2007 – 2013) under Grant agreement no. 312483 (ESTEEM2). EKHS thanks EPSRC (EP/ K009702/1) and the Leverhulme trust (EM-2016-004) for support. DS and MN acknowledge financial support from the Japan Society for the Promotion of Science (JSPS, Japan) through the Grant-in-Aid for Scientific Research (A: No. 26249090) and the Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation (R2408). Approved Most recent IF: 2.843
  Call Number EMAT @ emat @c:irua:149654 Serial 4914
Permanent link to this record
 

 
Author Schryvers, D.; Boullay, P.; Potapov, P.L.; Kohn, R.V.; Ball, J.M.
  Title Microstructures and interfaces in Ni-Al martensite: comparing HRTEM observations with continuum theories Type A1 Journal article
  Year 2002 Publication International journal of solids and structures Abbreviated Journal Int J Solids Struct
  Volume 39 Issue Pages 3543-3554
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000176752500014 Publication Date 2002-10-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-7683; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.76 Times cited 13 Open Access
  Notes Approved Most recent IF: 2.76; 2002 IF: 1.080
  Call Number UA @ lucian @ c:irua:48771 Serial 2078
Permanent link to this record
 

 
Author Peirs, J.; Tirry, W.; Amin-Ahmadi, B.; Coghe, F.; Verleysen, P.; Rabet, L.; Schryvers, D.; Degrieck, J.
  Title Microstructure of adiabatic shear bands in Ti6Al4V Type A1 Journal article
  Year 2013 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 75 Issue Pages 79-92
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Microstructural deformation mechanisms in adiabatic shear bands in Ti6Al4V are studied using traditional TEM and selected area diffraction, and more advanced microstructural characterisation techniques such as energy dispersive X-ray spectroscopy, high angle annular dark field STEM and conical dark field TEM. The shear bands under investigation are induced in Ti6Al4V samples by high strain rate compression of cylindrical and hat-shaped specimens in a split Hopkinson pressure bar setup. Samples from experiments interrupted at different levels of deformation are used to study the evolution of the microstructure in and nearby the shear bands. From the early stages of adiabatic shear band formation, TEM revealed strongly elongated equiaxed grains in the shear band. These band-like grains become narrower towards the centre of the band and start to fraction even further along their elongated direction to finally result in a nano-crystalline region in the core. In fully developed shear bands, twins and a needle-like martensite morphology are observed near the shear band.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York Editor
  Language Wos 000314860900011 Publication Date 2012-11-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.714 Times cited 56 Open Access
  Notes Iuap; Fwo Approved Most recent IF: 2.714; 2013 IF: 1.925
  Call Number UA @ lucian @ c:irua:105300 Serial 2065
Permanent link to this record
 

 
Author Tang, Y.; Chen, Z.; Borbely, A.; Ji, G.; Zhong, S.Y.; Schryvers, D.; Ji, V.; Wang, H.W.
  Title Quantitative study of particle size distribution in an in-situ grown Al-TiB2 composite by synchrotron X-ray diffraction and electron microscopy Type A1 Journal article
  Year 2015 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 102 Issue 102 Pages 131-136
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Synchrotron X-ray diffraction and transmission electron microscopy (TEM) were applied to quantitatively characterize the average particle size and size distribution of free-standing TiB2 particles and TiB2 particles in an insitu grown Al–TiB2 composite. The detailed evaluations were carried out by X-ray line profile analysis using the restrictedmoment method and multiplewhole profile fitting procedure (MWP). Both numericalmethods indicate that the formed TiB2 particles are well crystallized and free of crystal defects. The average particle size determined from different Bragg reflections by the restricted moment method ranges between 25 and 55 nm, where the smallest particle size is determined using the 110 reflection suggesting the highest lateral-growth velocity of (110) facets. TheMWP method has shown that the in-situ grown TiB2 particles have a very low dislocation density (~1011 m−2) and their size distribution can be described by a log-normal distribution. Good agreement was found between the results obtained from the restricted moment and MWP methods, which was further confirmed by TEM.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York Editor
  Language Wos 000355335200017 Publication Date 2015-03-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.714 Times cited 41 Open Access
  Notes This work is financially supported by the National Natural Science Foundation of China (Grant No. 51201099 and No. 51301108) and the China Postdoctoral Science Foundation (Grant No. 2013T60443 and No. 2012M520891). The authors are grateful for the project 2013BB03 supported by NPL, CAEP. Many thanks are also due to the faculty of BL14B beamline at the Shanghai Synchrotron Radiation Facility for their help on synchrotron experiments. Approved Most recent IF: 2.714; 2015 IF: 1.845
  Call Number c:irua:126443 Serial 2764
Permanent link to this record
 

 
Author Espinoza Torres, C.; Condó, A.M.; Haberkorn, N.; Zelaya, E.; Schryvers, D.; Guimpel, J.; Lovey, F.C.
  Title Structures in textured Cu-Al-Ni shape memory thin films grown by sputtering Type A1 Journal article
  Year 2014 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 96 Issue Pages 256-262
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The structure and texture formation in CuAlNi thin films of different thicknesses (1 μm to 5 μm) grown by DC magnetron sputtering without any intentional heating of the substrate are reported. The as-grown films present grains with an average size of 20 nm. The films with thickness of 1 μm have a single metastable phase with a hexagonal structure and are textured with planes (0002) parallel to the plane of the films. It was observed that thicker films present phase coexistence between metastable hexagonal and body centered cubic structures with a gradual increment of the body centered cubic phase fraction. The films with thickness of 5 μm are textured with planes (0002) and View the MathML source101¯0 in the hexagonal structure, whereas in the body centered cubic structure the films are textured with {110} planes parallel to the plane of the films. This fact can be associated with self-heating of the substrate during the growth of the films and with the relative stability of the metastable phases. Free standing films annealed in a second step (1123 K for 1 h) present austenitic phase with L21 structure and sub-micrometric grains textured with {220}L21 planes parallel to the plane of the films. The martensitic transformation temperature was determined from the analysis of resistance against temperature measurements.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York Editor
  Language Wos 000343346400032 Publication Date 2014-08-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.714 Times cited 9 Open Access
  Notes (CONICET PIP 11220090100457) and MINCYT-FWO International Exchange Project FW/09/03 is also acknowledged Approved Most recent IF: 2.714; 2014 IF: 1.845
  Call Number UA @ lucian @ c:irua:118931 Serial 3321
Permanent link to this record
 

 
Author Ji, G.; Tan, Z.; Shabadi, R.; Li, Z.; Grünewald, W.; Addad, A.; Schryvers, D.; Zhang, D.
  Title Triple ion beam cutting of diamond/Al composites for interface characterization Type A1 Journal article
  Year 2014 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 89 Issue Pages 132-137
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A novel triple ion beam cutting technique was employed to prepare high-quality surfaces of diamond/Al composites for interfacial characterization, which has been unachievable so far. Near-perfect and artifact-free surfaces were obtained without mechanical pre-polishing. Hence, the as-prepared surfaces are readily available for further study and also, ready to be employed in a focus ion beam system for preferential selection of transmission electron microscopy samples. Dramatically different diamond/Al interface configurations – sub-micrometer Al2O3 particles and clean interfaces were unambiguously revealed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York Editor
  Language Wos 000333513400015 Publication Date 2014-01-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.714 Times cited 9 Open Access
  Notes Fwo Approved Most recent IF: 2.714; 2014 IF: 1.845
  Call Number UA @ lucian @ c:irua:113394 Serial 3735
Permanent link to this record
 

 
Author Tirry, W.; Bouvier, S.; Benmhenni, N.; Hammami, W.; Habraken, A.M.; Coghe, F.; Schryvers, D.; Rabet, L.
  Title Twinning in pure Ti subjected to monotonic simple shear deformation Type A1 Journal article
  Year 2012 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 72 Issue Pages 24-36
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The aim of this paper is to provide a thorough study on the occurrence and importance of deformation twinning in simple shear deformed pure α-Ti. A statistically relevant inspection of the morphology of the deformation twins in relation to the applied strain/deformation is performed. The investigated microstructural aspects are the twin volume fraction, the twin thickness distribution and the resolved shear stress distribution on the twin plane. All these aspects are examined as a function of the twin types and two initial textures. Monotonic simple shear experiments are carried out for three different loading directions with respect to a direction linked to the initial crystallographic texture. EBSD and TEM observations reveal the presence of View the MathML source and View the MathML source twins. The statistical analysis reveals that View the MathML source and View the MathML source twins have a similar average thickness around 1.9 nm, but the View the MathML source twins show a far larger spread on their thickness and can grow to almost the size of the original parent grain. Correlation of the twin fractions with the RSS analysis shows that RSS is an acceptable method explaining the difference in twin fractions for different textures and orientations. A detailed analysis shows that View the MathML source twins occur in average with a smaller volume fraction but with a higher RSS, indicating they are more difficult to nucleate or grow compared to View the MathML source twinning. In general a higher RSS value on the twin plane is not connected to a higher twin thickness; only in the case of View the MathML source twins the highest RSS values show clearly thicker twins.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York Editor
  Language Wos 000309086700004 Publication Date 2012-07-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.714 Times cited 25 Open Access
  Notes Iap Approved Most recent IF: 2.714; 2012 IF: 1.880
  Call Number UA @ lucian @ c:irua:101225 Serial 3768
Permanent link to this record
 

 
Author Ji, G.; Tan, Z.; Lu, Y.; Schryvers, D.; Li, Z.; Zhang, D.
  Title Heterogeneous interfacial chemical nature and bonds in a W-coated diamond/Al composite Type A1 Journal article
  Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 112 Issue 112 Pages 129-133
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Heterogeneous Al/Al4C3/Al2O3/diamond{111}, Al/nanolayered Al4C3/diamond{111} and Al12W particle/Al4C3/Al2O3/diamond{111} multi-interfaces have been developed at the nanoscale in a W-coated diamond/Al composite produced by vacuum hot pressing. The formation of nanoscale Al4C3 crystals is strongly associated with local O enrichment and can be further promoted by Al12W interfacial particles. The latter effectively contributes to enhance interfacial chemical bonding reducing interfacial thermal resistance and, in turn, enhancing thermal conductivity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000370109200015 Publication Date 2015-12-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.714 Times cited 7 Open Access
  Notes This work is financially supported by the FWO project of Belgium (No. U2 FA 070100/3506), the travel funding BQR (No. R8DIV AUE) provided by Université Lille 1, the National Natural Science Foundation of China (Grant No. 51401123) and the China Postdoctoral Science Foundation (Grant No. 2014 M561469) for Dr. Z.Q. Tan. Dr. W.G. Grünewald (LeicaMicrosystems, Germany) is also thanked for the assistance of surface preparation. Approved Most recent IF: 2.714
  Call Number c:irua:129976 Serial 3987
Permanent link to this record
 

 
Author Yan, L.; Tan, Z.; Ji, G.; Li, Z.; Fan, G.; Schryvers, D.; Shan, A.; Zhang, D.
  Title A quantitative method to characterize the Al4C3-formed interfacial reaction: the case study of MWCNT/Al composites Type A1 Journal article
  Year 2015 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 112 Issue 112 Pages 213-218
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The Al4C3-formed interfacial reaction plays an important role in tuning the mechanical and thermal properties of carbon/aluminum (C/Al) composites reinforced with carbonaceous materials such as multi-wall carbon nanotube (MWCNT) and graphene nanosheet. In terms of the hydrolysis nature of Al4C3, an electrochemical dissolution method was developed to quantitatively characterize the extent of C/Al interfacial reaction, which involves dissolving the composite samples in alkaline solution first, then collecting and measuring the CH4 gas released by Al4C3 hydrolysis with a gas chromatograph. Through a case study with powder metallurgy fabricated 2.0 wt.% MWCNT/Al composites, the detectability limit of the proposed method is 0.4 wt.% Al4C3, corresponding to 5 % extent of interfacial reaction with a measurement error of ±3 %. And then, with the already known MWCNT/Al reaction extent vs different sintering temperature and time, the reaction kinetics with an activation energy of 281 kJ mol-1 was successfully derived. Therefore, this rapid, sensitive, accurate method supplies an useful tool to optimize the processing and properties of all kinds of C/Al composites via interface design/control.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000370109200026 Publication Date 2015-12-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.714 Times cited 24 Open Access
  Notes The authors would like to acknowledge the financial support of the National Basic Research Program of China (973 Program, No. 2012CB619600), the National High-Tech R&D Program (863 Program, No. 2012AA030611), the National Natural Science Foundation (Nos. 51071100, 51131004, 51401123, 51511130038) and the research grant (Nos. 14DZ2261200, 15JC1402100, 14520710100) from Shanghai government. Dr. Z.Q. Tan would also like to thank the project funded by the China Postdoctoral Science Foundation (No. 2014M561469). The research leading to these results has partially received funding from the European Union Seventh Framework Program under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative – I3).; esteem2_jra2 Approved Most recent IF: 2.714; 2015 IF: 1.845
  Call Number c:irua:130066 c:irua:130066 Serial 3997
Permanent link to this record
 

 
Author Lu, J.B.; Schryvers, D.
  Title Microstructure and phase composition characterization in a Co38Ni33Al29 ferromagnetic shape memory alloy Type A1 Journal article
  Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 118 Issue 118 Pages 9-13
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Transmission electron microscopy was performed to investigate the microstructures of a secondary phase and its surrounding matrix in a Co38Ni33Al29 ferromagnetic shape memory alloy. The secondary phase shows a γ′ L12 structure exhibiting a dendritic morphology with enclosed B2 austenite regions while the matrix shows the L10 martensitic structure. A secondary phase-austenite-martensite sandwich structure with residual austenite ranging from several hundred nanometers to several micrometers wide is observed at the secondary phase-martensite interface due to the depletion of Co and enrichment of Al in the chemical gradient zone and the effect of the strong martensitic start temperature dependency of the element concentrations. The crystallographic orientation relationship of the secondary phase and the B2 austenite fits the Kurdjumov-Sachs relationship.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000383292000002 Publication Date 2016-05-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.714 Times cited 3 Open Access
  Notes J.B. Lu thanks the Belgian Science Ministry (Belspo) for support of his post-doctoral research stay at EMAT. We thank S. Sedlakova-Ignacova from the Institute of Physics in Prague, Czech Republic, for providing samples. Approved Most recent IF: 2.714
  Call Number c:irua:133100 Serial 4071
Permanent link to this record
 

 
Author Li, K.; Idrissi, H.; Sha, G.; Song, M.; Lu, J.; Shi, H.; Wang, W.; Ringer, S.P.; Du, Y.; Schryvers, D.
  Title Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys Type A1 Journal article
  Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 118 Issue 118 Pages 352-362
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cut by the foil surface. The method can be performed on a regular foil specimen with a modem LaB6 or field-emission-gun transmission electron microscope. Precisions around +/- 16% have been obtained for precipitate volume fractions of needle-like beta ''/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is dose to that directly obtained using 3DAP analysis by a misfit of 45%, and the estimated precision for number density measurement is about +/- 11%. The limitations of the method are also discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000383292000042 Publication Date 2016-06-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.714 Times cited 9 Open Access
  Notes This work is financially supported by National Natural Science Foundation of China (51501230 and 51531009) and Postdoctoral Science Foundation of Central South University (502042057). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21 and FWO project G.0576.09N. Approved Most recent IF: 2.714
  Call Number EMAT @ emat @ c:irua:137171 Serial 4334
Permanent link to this record
 

 
Author Du, C.; Hoefnagels, J.P.M.; Kolling, S.; Geers, M.G.D.; Sietsma, J.; Petrov, R.; Bliznuk, V.; Koenraad, P.M.; Schryvers, D.; Amin-Ahmadi, B.
  Title Martensite crystallography and chemistry in dual phase and fully martensitic steels Type A1 Journal article
  Year 2018 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 139 Issue Pages 411-420
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Lath martensite is important in industry because it is the key strengthening component in many advanced high strength steels. The study of crystallography and chemistry of lath martensite is extensive in the literature, however, mostly based on fully martensitic steels. In this work, lath martensite in dual phase steels is investigated with a focus on the substructure identification of the martensite islands and microstructural bands using electron backscattered diffraction, and on the influence of the accompanied tempering process during industrial coating process on the distribution of alloying elements using atom probe tomography. Unlike findings for the fully martensitic steels, no martensite islands with all 24 Kurdjumov-Sachs variants have been observed. Almost all martensite islands contain only one main packet with all six variants and minor variants from the remaining three packets of the same prior austenite grain. Similarly, the martensite bands are typically composed of connected domains originating from prior austenite grains, each containing one main packets (mostly with all variants) and few separate variants. The effect of tempering at similar to 450 degrees C (due to the industrial zinc coating process) has also been investigated. The results show a strong carbon partitioning to lath boundaries and Cottrell atmospheres at dislocation core regions due to the thermal process of coating. In contrast, auto-tempering contributes to the carbon redistribution only in a limited manner. The substitutional elements are all homogenously distributed. The phase transformation process has two effects on the material: mechanically, the earlier-formed laths are larger and softer and therefore more ductile (as revealed by nanoindentation); chemically, due to the higher dislocation density inside the later-formed laths, which are generally smaller, carbon Cottrell atmospheres are predominantly observed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York Editor
  Language Wos 000431469300044 Publication Date 2018-03-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.714 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 2.714
  Call Number UA @ lucian @ c:irua:151554 Serial 5033
Permanent link to this record
 

 
Author Pourbabak, S.; Montero-Sistiaga, M.L.; Schryvers, D.; Van Humbeeck, J.; Vanmeensel, K.
  Title Microscopic investigation of as built and hot isostatic pressed Hastelloy X processed by Selective Laser Melting Type A1 Journal article
  Year 2019 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 153 Issue Pages 366-371
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Microstructural characteristics of Hastelloy X produced by Selective Laser Melting have been investigated by various microscopic techniques in the as built (AB) condition and after hot isostatic pressing (HIP). At sub-grain level the AB material consists of columnar high density dislocation cells while the HIP sample consists of columnar sub-grains with lower dislocation density that originate from the original dislocation cells, contradicting existing models. The sub-grains contain nanoscale precipitates enriched in Al, Ti, Cr and O, located at sub-grain boundaries in the AB condition and within the grains after HIP. At some grain boundaries, micrometer sized chromium carbides are detected after HIP. Micro hardness within the grains was found to decrease after HIP, which was attributed to the decrease in dislocation density due to recovery annealing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000472696900040 Publication Date 2019-05-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.714 Times cited 2 Open Access Not_Open_Access
  Notes S.P. likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. The authors acknowledge ENGIE Research and Technology Division for the use of the SLM280HL machine and financial support. This work was also made possible through the AUHA13009 grant “TopSPIN for TEM nanostatistics” of the Flemish HERCULES foundation. Approved Most recent IF: 2.714
  Call Number EMAT @ emat @UA @ admin @ c:irua:159974 Serial 5178
Permanent link to this record
 

 
Author Boyat, X.; Ballat-Durand, D.; Marteau, J.; Bouvier, S.; Favergeon, J.; Orekhov, A.; Schryvers, D.
  Title Interfacial characteristics and cohesion mechanisms of linear friction welded dissimilar titanium alloys: Ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti17) and Ti–6Al–2Sn–4Zr–2Mo (Ti6242) Type A1 Journal article
  Year 2019 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 158 Issue Pages 109942
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract A detailed microstructural examination endeavoring to understand the interfacial phenomena yielding to cohesion

in solid-state assembling processes was performed. This study focuses on the transition zone of a dissimilar

titanium alloy joint obtained by Linear Friction Welding (LFW) the β-metastable Ti17 to the near-α

Ti6242. The transition zone delimitating both alloys is characterized by a sharp microstructure change from

acicular HCP (Hexagonal Close-Packed) α′ martensitic laths in the Ti6242 to equiaxed BCC β (Body-Centered

Cubic) subgrains in the Ti17; these α′ plates were shown to precipitate within prior-β subgrains remarkably more

rotated than the ones formed in the Ti17. Both α′ and β microstructures were found to be intermingled within

transitional subgrains demarcating a limited gradient from one chemical composition to the other. These peculiar

interfacial grains revealed that the cohesive mechanisms between the rubbing surfaces occurred in the

single-phase β domain under severe strain and high-temperature conditions. During the hot deformation process,

the mutual migration of the crystalline interfaces from one material to another assisted by a continuous dynamic

recrystallization process was identified as the main adhesive mechanism at the junction zone. The latter led to

successful cohesion between the rubbing surfaces. Once the reciprocating motion stopped, fast cooling caused

both materials to experience either a βlean→α′ or βlean→βmetastable transformation in the interfacial zone depending

on their local chemical composition. The limited process time and the subsequent hindered chemical

homogenization at the transition zone led to retaining the so-called intermingled α’/βm subgrains constituting

the border between both Ti-alloys.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000503314000018 Publication Date 2019-10-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.714 Times cited Open Access
  Notes The authors gratefully acknowledge the financial support of the French National Research Agency (ANR) through the OPTIMUM ANR- 14-CE27-0017 project. The authors would also like to thank the Hautsde- France Region and the European Regional Development Fund (ERDF) 2014/2020 for the co-funding of this work. The authors would also like to thank ACB for providing LFW samples as well as Airbus for their technical support. Approved Most recent IF: 2.714
  Call Number EMAT @ emat @c:irua:165084 Serial 5441
Permanent link to this record
 

 
Author Charalampopoulou, E.; Lambrinou, K.; Van der Donck, T.; Paladino, B.; Di Fonzo, F.; Azina, C.; Eklund, P.; Mraz, S.; Schneider, J.M.; Schryvers, D.; Delville, R.
  Title Early stages of dissolution corrosion in 316L and DIN 1.4970 austenitic stainless steels with and without anticorrosion coatings in static liquid lead-bismuth eutectic (LBE) at 500 degrees C Type A1 Journal article
  Year 2021 Publication Materials Characterization Abbreviated Journal Mater Charact
  Volume 178 Issue Pages 111234
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract This work addresses the early stages (<= 1000 h) of the dissolution corrosion behavior of 316L and DIN 1.4970 austenitic stainless steels in contact with oxygen-poor (C-O < 10(-8) mass%), static liquid lead-bismuth eutectic (LBE) at 500 degrees C for 600-1000 h. The objective of this study was to determine the relative early-stage resistance of the uncoated steels to dissolution corrosion and to assess the protectiveness of select candidate coatings (Cr2AlC, Al2O3, V2AlxCy). The simultaneous exposure of steels with intended differences in microstructure and thermomechanical state showed the effects of steel grain size, density of annealing/deformation twins, and secondary precipitates on the steel dissolution corrosion behavior. The findings of this study provide recommendations on steel manufacturing with the aim of using the steels to construct Gen-IV lead-cooled fast reactors.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000752582700001 Publication Date 2021-06-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.714 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 2.714
  Call Number UA @ admin @ c:irua:186509 Serial 7061
Permanent link to this record
 

 
Author Zelaya, E.; Esquivel, M.R.; Schryvers, D.
  Title Evolution of the phase stability of NiAl under low energy ball milling Type A1 Journal article
  Year 2013 Publication Advanced powder technology Abbreviated Journal Adv Powder Technol
  Volume 24 Issue 6 Pages 1063-1069
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Low energy mechanical alloying of Ni35 at.%Al and Ni40 at.%Al material was performed and the resulting structures were investigated by XRD and TEM. The final intermetallics observed consist of two phases, NiAl(B2) and Ni3Al while 7R and 3R martensite was observed in post-annealed samples. Different integrated milling times were associated to the intermetallic consolidation and initial blend dissociation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Zeist Editor
  Language Wos 000339175000024 Publication Date 2013-03-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-8831; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.659 Times cited 10 Open Access
  Notes Fwo Approved Most recent IF: 2.659; 2013 IF: 1.642
  Call Number UA @ lucian @ c:irua:107345 Serial 1102
Permanent link to this record
 

 
Author Guzzinati, G.; Altantzis, T.; Batuk, M.; De Backer, A.; Lumbeeck, G.; Samaee, V.; Batuk, D.; Idrissi, H.; Hadermann, J.; Van Aert, S.; Schryvers, D.; Verbeeck, J.; Bals, S.
  Title Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp Type A1 Journal article
  Year 2018 Publication Materials Abbreviated Journal Materials
  Volume 11 Issue 11 Pages 1304
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000444112800041 Publication Date 2018-07-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.654 Times cited 15 Open Access OpenAccess
  Notes Fonds Wetenschappelijk Onderzoek, G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N AUHA13009 ; European Research Council, COLOURATOM 335078 ; Universiteit Antwerpen, GOA Solarpaint ; G. Guzzinati, T. Altantzis and A. De Backer have been supported by postdoctoral fellowship grants from the Research Foundation Flanders (FWO). Funding was also received from the European Research Council (starting grant no. COLOURATOM 335078), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 770887), the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N, G.0401.16N) and from the University of Antwerp through GOA project Solarpaint. Funding for the TopSPIN precession system under grant AUHA13009, as well as for the Qu-Ant-EM microscope, is acknowledged from the HERCULES Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: 2.654
  Call Number EMAT @ emat @c:irua:153737UA @ admin @ c:irua:153737 Serial 5064
Permanent link to this record
 

 
Author Zhang, H.; Salje, E.K.H.; Schryvers, D.; Bartova, B.
  Title The martensitic phase transition in Ni-Al: experimental observation of excess entropy and heterogeneous spontaneous strain Type A1 Journal article
  Year 2008 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
  Volume 20 Issue 5 Pages 055220,1-7
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000252923400023 Publication Date 2008-01-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.649 Times cited 7 Open Access
  Notes Multimat (MRTN-CT-2004-505226) Approved Most recent IF: 2.649; 2008 IF: 1.900
  Call Number UA @ lucian @ c:irua:67710 Serial 1948
Permanent link to this record
 

 
Author Verleysen, E.; Bender, H.; Richard, O.; Schryvers, D.; Vandervorst, W.
  Title Compositional characterization of nickel silicides by HAADF-STEM imaging Type A1 Journal article
  Year 2011 Publication Journal of materials science Abbreviated Journal J Mater Sci
  Volume 46 Issue 7 Pages 2001-2008
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A methodology for the quantitative compositional characterization of nickel silicides by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imaging is presented. HAADF-STEM images of a set of nickel silicide reference samples Ni3Si, Ni31Si12, Ni2Si, NiSi and NiSi2 are taken at identical experimental conditions. The correlation between sample thickness and HAADF-STEM intensity is discussed. In order to quantify the relationship between the experimental Z-contrast intensities and the composition of the analysed layers, the ratio of the HAADF-STEM intensity to the sample thickness or to the intensity of the silicon substrate is determined for each nickel silicide reference sample. Diffraction contrast is still detected on the HAADF-STEM images, even though the detector is set at the largest possible detection angle. The influence on the quantification results of intensity fluctuations caused by diffraction contrast and channelling is examined. The methodology is applied to FUSI gate devices and to horizontal TFET devices with different nickel silicides formed on source, gate and drain. It is shown that, if the elements which are present are known, this methodology allows a fast quantitative 2-dimensional compositional analysis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000286633000002 Publication Date 2011-01-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.599 Times cited 1 Open Access
  Notes Approved Most recent IF: 2.599; 2011 IF: 2.015
  Call Number UA @ lucian @ c:irua:88950 Serial 446
Permanent link to this record
 

 
Author Ding, L.; Orekhov, A.; Weng, Y.; Jia, Z.; Idrissi, H.; Schryvers, D.; Muraishi, S.; Hao, L.; Liu, Q.
  Title Study of the Q′ (Q)-phase precipitation in Al–Mg–Si–Cu alloys by quantification of atomic-resolution transmission electron microscopy images and atom probe tomography Type A1 Journal article
  Year 2019 Publication Journal of materials science Abbreviated Journal J Mater Sci
  Volume 54 Issue 10 Pages 7943-7952
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The precipitation mechanism of the Q phase in Al-Mg-Si-Cu alloys has long been the subject of ambiguity and debate since its metastable phase (Q 0) has the same crystal structure and similar lattice parameters as its equilibrium counterparts. In the present work, the evolution of the Q 0 (Q) phase during aging is studied by combination of quantitative atomic-resolution scanning transmission electron microscopy and atom probe tomography. It was found that the transformation from the Q 0 to the Q phase involves changes of the occupancy of Al atoms in atomic columns of the Q 0 (Q) phase. The Al atoms incorporated in the Cu, Si and Mg columns are gradually released into the Al matrix, while mixing between Cu and Si atoms occurs in the Si columns. This transformation process is mainly attributed to the low lattice misfit of the equilibrium Q phase. Besides, the formation of various compositions of the Q phase is due to the different occupancy in the atomic columns of the Q phase. The occupancy changes in the columns of the Q phase are kinetically controlled and are strongly influenced by the alloy composition and aging temperature.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000460069500043 Publication Date 2019-02-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.599 Times cited 1 Open Access Not_Open_Access
  Notes Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing, cstc2017zdcy-zdzxX0006 ; Fundamental Research Funds for the Central Universities of China, 2018CDGFCL0002 106112017CDJQJ308822 ; Belgian National Fund for Scientific Research; the National Natural Science Foundation of China, 51871035 ; This work was supported by the Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing (Grant No. cstc2017zdcyzdzxX0006), the Fundamental Research Funds for the Central Universities of China (Grant No. 2018CDGFCL0002), the National Natural Science Foundation of China (Grant No. 51871035) and the Foundation for Innovative Research Groups J Mater Sci National Natural Science Foundation of China (Grant No. 51421001). H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 2.599
  Call Number EMAT @ emat @UA @ admin @ c:irua:158112 Serial 5158
Permanent link to this record
 

 
Author Huq, M.Z.; Celis, J.P.; Meneve, J.; Stals, L.; Schryvers, D.
  Title Oscillating sliding wear of mono- and multilayer ceramic coatings in air Type A1 Journal article
  Year 1999 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech
  Volume 113 Issue Pages 242-250
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000079807600007 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.589 Times cited 10 Open Access
  Notes Approved Most recent IF: 2.589; 1999 IF: 1.008
  Call Number UA @ lucian @ c:irua:29379 Serial 2532
Permanent link to this record
 

 
Author Yang, Z.Q.; Verbeeck, J.; Schryvers, D.; Tarcea, N.; Popp, J.; Rösler, W.
  Title TEM and Raman characterisation of diamond micro- and nanostructures in carbon spherules from upper soils Type A1 Journal article
  Year 2008 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
  Volume 17 Issue 6 Pages 937-943
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Carbonaceous spherules of millimeter size diameter and found in the upper soils throughout Europe are investigated by TEM, including SAED, HRTEM and EELS, and Raman spectroscopy. The spherules consist primarily of carbon and have an open cell-like internal structure. Most of the carbon appears in an amorphous state, but different morphologies of nano- and microdiamond particles have also been discovered including flake shapes. The latter observation, together with the original findings of some of these spherules in crater-like structures in the landscape and including severely deformed rocks with some spherules being embedded in the fused crust of excavated rocks, points towards unique conditions of origin for these spherules and particles, possibly of exogenic origin. (C) 2008 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000256940800005 Publication Date 2008-02-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.561 Times cited 26 Open Access
  Notes GAO project Approved Most recent IF: 2.561; 2008 IF: 2.092
  Call Number UA @ lucian @ c:irua:68518 Serial 3474
Permanent link to this record
 

 
Author Pourbabak, S.; Orekhov, A.; Schryvers, D.
  Title Twin-jet electropolishing for damage-free transmission electron microscopy specimen preparation of metallic microwires Type A1 Journal article
  Year 2020 Publication Microscopy Research And Technique Abbreviated Journal Microsc Res Techniq
  Volume Issue Pages 1-7
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A method to prepare TEM specimens from metallic microwires and based on conventional twin-jet electropolishing is introduced. The wire is embedded in an opaque epoxy resin medium and the hardened resin is mechanically polished to reveal the wire on both sides. The resin containing wire is then cut into discs of the appropriate size. The obtained embedded wire is electropolished in a conventional twin-jet electropolishing machine until electron transparency in large areas without radiation damage is achieved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000567944200001 Publication Date 2020-09-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1059-910x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.5 Times cited Open Access OpenAccess
  Notes ; Fonds Wetenschappelijk Onderzoek, Grant/Award Number: G.0366.15N ; Approved Most recent IF: 2.5; 2020 IF: 1.147
  Call Number UA @ admin @ c:irua:171969 Serial 6642
Permanent link to this record
 

 
Author Schryvers, D.; Ma, Y.
  Title In-situ TEM study of the Ni5Al3 to B2 + L12 decomposition in Ni65Al35 Type A1 Journal article
  Year 1995 Publication Materials letters Abbreviated Journal Mater Lett
  Volume 23 Issue Pages 105-111
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Homogenised and quenched Ni65Al35 samples were heated and studied in situ in a CM20 electron microscope up to 900 degrees C. The Ni5Al3 phase first forming around 550 degrees C in the quenched L1(0) microtwinned martensite starts to decompose around 800 degrees C yielding B2 precipitates in a twinned L1(2) matrix. The latter twinning is a remainder of the microtwinning in the original room temperature martensite. Also the crystallographic relations between precipitates and matrix can be traced back to the original formation of twinned martensite plates within the austenite. Some aspects of the dynamics of the process are discussed on the basis of snap shots and video recordings.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos A1995QW53500020 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0167-577X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) 2.489 Times cited 5 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:13166 Serial 1585
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: