|   | 
Details
   web
Records
Author Zhang, S.-H.; Yang, W.; Peeters, F.M.
Title Veselago focusing of anisotropic massless Dirac fermions Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 20 Pages (up) 205437
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000433026700005 Publication Date 2018-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0303400), the NSFC (Grants No. 11504018 and No. 11774021), the MOST of China (Grant No. 2014CB848700), and the NSFC program for “Scientific Research Center” (Grant No. U1530401). Support by the bilateral project (FWO-MOST) is gratefully acknowledged. S.H.Z. is also supported by “the Fundamental Research Funds for the Central Universities (ZY1824).” We acknowledge the computational support from the Beijing Computational Science Research Center (CSRC). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:151501UA @ admin @ c:irua:151501 Serial 5047
Permanent link to this record
 

 
Author Grujić, M.; Zarenia, M.; Chaves, A.; Tadić, M.; Farias, G.A.; Peeters, F.M.
Title Electronic and optical properties of a circular graphene quantum dot in a magnetic field : influence of the boundary conditions Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 20 Pages (up) 205441-205441,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An analytical approach, using the Dirac-Weyl equation, is implemented to obtain the energy spectrum and optical absorption of a circular graphene quantum dot in the presence of an external magnetic field. Results are obtained for the infinite-massand zigzag boundary conditions. We found that the energy spectrum of a dot with the zigzag boundary condition exhibits a zero-energy band regardless of the value of the magnetic field, while for the infinite-mass boundary condition, the zero-energy states appear only for high magnetic fields. The analytical results are compared to those obtained from the tight-binding model: (i) we show the validity range of the continuum model and (ii) we find that the continuum model with the infinite-mass boundary condition describes rather well its tight-binding analog, which can be partially attributed to the blurring of the mixed edges by the staggered potential.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297295400011 Publication Date 2011-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 78 Open Access
Notes ; This work was supported by the EuroGraphene programme of the ESF (project CONGRAN), the Ministry of Education and Science of Serbia, the Belgian Science Policy (IAP), the bilateral projects between Flanders and Brazil, the Flemish Science Foundation (FWO-Vl), and the Brazilian Research Council (CNPq). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94025 Serial 997
Permanent link to this record
 

 
Author Shylau, A.A.; Badalyan, S.M.; Peeters, F.M.; Jauho, A.P.
Title Electron polarization function and plasmons in metallic armchair graphene nanoribbons Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages (up) 205444
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Plasmon excitations in metallic armchair graphene nanoribbons are investigated using the random phase approximation. An exact analytical expression for the polarization function of Dirac fermions is obtained, valid for arbitrary temperature and doping. We find that at finite temperatures, due to the phase space redistribution among inter-band and intra-band electronic transitions in the conduction and valence bands, the full polarization function becomes independent of temperature and position of the chemical potential. It is shown that for a given width of nanoribbon there exists a single plasmon mode whose energy dispersion is determined by the graphene's fine structure constant. In the case of two Coulomb-coupled nanoribbons, this plasmon splits into in-phase and out-of-phase plasmon modes with splitting energy determined by the inter-ribbon spacing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000355315400007 Publication Date 2015-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; The Center for Nanostructured Graphene (CNG) is sponsored by the Danish National Research Foundation (DNRF58). The work at the University of Antwerp was supported by the Flemisch Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. S.M.B. gratefully acknowledges hospitality and support from the Department of Physics at the University of Missouri. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:126403 Serial 984
Permanent link to this record
 

 
Author Sena, S.H.R.; Pereira, J.M.; Peeters, F.M.; Farias, G.A.
Title Landau levels in asymmetric graphene trilayer Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 20 Pages (up) 205448-205448,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic spectrum of three coupled graphene layers (graphene trilayers) is investigated in the presence of an external magnetic field. We obtain analytical expressions for the Landau level spectrum for both the ABA and ABC type of stacking, which exhibit very different dependence on the magnetic field. We show that layer asymmetry and an external gate voltage can strongly influence the properties of the system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297295400018 Publication Date 2011-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 30 Open Access
Notes ; This work was supported by the Brazilian Council for Research (CNPq), the National Council for the Improvement of Higher Education (CAPES), the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the bilateral projects between Flanders and Brazil and the CNPq and FWO-Vl. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94026 Serial 1773
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M.
Title Electron-phonon bound state in graphene Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 20 Pages (up) 205453-205453,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The fine structure of the Dirac energy spectrum in graphene induced by electron-optical phonon coupling is investigated in the portion of the spectrum near the phonon emission threshold. The derived new dispersion equation in the immediate neighborhood below the threshold corresponds to an electron-phonon bound state. We find that the singular vertex corrections beyond perturbation theory strongly increase the electron-phonon binding energy scale. The predicted enhancement of the effective electron-phonon coupling can be measured using angle-resolved spectroscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304649400002 Publication Date 2012-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes ; We thank E. Rashba for the useful discussion and acknowledge support from the Belgian Science Policy (IAP) and BELSPO. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98939 Serial 982
Permanent link to this record
 

 
Author Krstajić, P.M.; Peeters, F.M.
Title Energy-momentum dispersion relation of plasmarons in graphene Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 20 Pages (up) 205454-205454,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The many-body correction to the band structure of a quasi-free-standing graphene layer is obtained within the Overhauser approach, where the electron-plasmon interaction is described as a field theoretical problem. We find that the Dirac-like spectrum is shifted by Delta E(k = 0), which is on the order of 50-150 meV, depending on the electron concentration n(e), and is in semiquantitative agreement with experimental data. The value of the Fermi velocity is renormalized by several percents and decreases with increasing electron concentration as found experimentally.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304649900004 Publication Date 2012-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the ESF-EuroGRAPHENE project CON-GRAN, and the Serbian Ministry of Education and Science (project No. TR 32008). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98937 Serial 1043
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Cottenier, S.; Lamoen, D.; Partoens, B.
Title Electronic structure of transparent oxides with the Tran-Blaha modified Becke-Johnson potential Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 20 Pages (up) 205503-205503,9
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present electronic band structures of transparent oxides calculated using the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. We studied the basic n-type conducting binary oxides In2O3, ZnO, CdO and SnO2 along with the p-type conducting ternary oxides delafossite CuXO2 (X = Al, Ga, In) and spinel ZnX2O4 (X = Co, Rh, Ir). The results are presented for calculated band gaps and effective electron masses. We discuss the improvements in the band gap determination using TB-mBJ compared to the standard generalized gradient approximation (GGA) in density functional theory (DFT) and also compare the electronic band structure with available results from the quasiparticle GW method. It is shown that the calculated band gaps compare well with the experimental and GW results, although the electron effective mass is generally overestimated.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000303507100009 Publication Date 2012-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 113 Open Access
Notes Iwt; Fwo Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:98222 Serial 1017
Permanent link to this record
 

 
Author Poltavets, V.V.; Lokshin, K.A.; Nevidomskyy, A.H.; Croft, M.; Tyson, T.A.; Hadermann, J.; Van Tendeloo, G.; Egami, T.; Kotliar, G.; ApRoberts-Warren, N.; Dioguardi, A.P.; Curro, N.J.; Greenblatt, M.;
Title Bulk magnetic order in a two-dimensional Ni1+/Ni2+ (d9/d8) nickelate, isoelectronic with superconducting cuprates Type A1 Journal article
Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 104 Issue 20 Pages (up) 206403
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Ni(1+)/Ni(2+) states of nickelates have the identical (3d(9)/3d(8)) electronic configuration as Cu(2+)/Cu(3+) in the high temperature superconducting cuprates, and are expected to show interesting properties. An intriguing question is whether mimicking the electronic and structural features of cuprates would also result in superconductivity in nickelates. Here we report experimental evidence for a bulklike magnetic transition in La(4)Ni(3)O(8) at 105 K. Density functional theory calculations relate the transition to a spin density wave nesting instability of the Fermi surface.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000277945900033 Publication Date 2010-05-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 35 Open Access
Notes Approved Most recent IF: 8.462; 2010 IF: 7.622
Call Number UA @ lucian @ c:irua:95613 Serial 260
Permanent link to this record
 

 
Author Komendová, L.; Chen, Y.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.
Title Two-band superconductors : hidden criticality deep in the superconducting state Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 108 Issue 20 Pages (up) 207002-207002,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show that two-band superconductors harbor hidden criticality deep in the superconducting state, stemming from the critical temperature of the weaker band taken as an independent system. For sufficiently small interband coupling gamma the coherence length of the weaker band exhibits a remarkable deviation from the conventional monotonic increase with temperature, namely, a pronounced peak close to the hidden critical point. The magnitude of the peak scales as proportional to gamma(-mu), with the Landau critical exponent mu = 1/3, the same as found for the mean-field critical behavior with respect to the source field in ferromagnets and ferroelectrics. Here reported hidden criticality of multiband superconductors can be experimentally observed by, e.g., imaging of the variations of the vortex core in a broader temperature range. Similar effects are expected for the superconducting multilayers.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000304064000017 Publication Date 2012-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 75 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Useful discussions with A. V. Vagov are acknowledged. ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:98945 Serial 3770
Permanent link to this record
 

 
Author Cambré, S.; Schoeters, B.; Luyckx, S.; Goovaerts, E.; Wenseleers, W.
Title Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3) Type A1 Journal article
Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 104 Issue 20 Pages (up) 207401,1-207401,4
Keywords A1 Journal article; Particle Physics Group; Nanostructured and organic optical and electronic materials (NANOrOPT); Condensed Matter Theory (CMT)
Abstract Single-file transport of water into carbon nanotubes is experimentally demonstrated for the first time through the splitting of the radial breathing mode (RBM) vibration in Raman spectra of bile salt solubilized tubes when both empty (closed) and water-filled (open-ended) tubes are present. D2O filling is observed for a wide range of diameters, d, down to very thin tubes [e.g., (5,3) tube, d=0.548  nm] for which only a single water molecule fits in the cross section of the internal nanotube channel. The shift in RBM frequency upon filling is found to display a very complex dependence on nanotube diameter and chirality, in support of a different yet well-defined ordering and orientation of water molecules at room temperature. Large shifts of the electronic transitions are also observed.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000277945900051 Publication Date 2010-05-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 140 Open Access
Notes ; Financial support from the Fund for Scientific Research Flanders, Belgium (FWO-Vlaanderen) (Project No. G.0129.07), is gratefully acknowledged. ; Approved Most recent IF: 8.462; 2010 IF: 7.622
Call Number UA @ lucian @ c:irua:83383 Serial 1141
Permanent link to this record
 

 
Author Van Pottelberge, R.; Zarenia, M.; Peeters, F.M.
Title Comment on “Impurity spectra of graphene under electric and magnetic fields” Type Editorial
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 20 Pages (up) 207403
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract In a recent paper [Phys. Rev. B 89, 155403 (2014)], the authors investigated the spectrum of a Coulomb impurity in graphene in the presence of magnetic and electric fields using the coupled series expansion approach. In the first part of their paper, they investigated how Coulomb impurity states collapse in the presence of a perpendicular magnetic field. We argue that the obtained spectrum does not give information about the atomic collapse and that their interpretation of the spectrum regarding atomic collapse is not correct. We also argue that the obtained results are only valid up to the dimensionless charge vertical bar alpha vertical bar = 0.5 and, to obtain correct results for alpha > 0.5, a proper regularization of the Coulomb interaction is required. Here we present the correct numerical results for the spectrum for arbitrary values of alpha.
Address
Corporate Author Thesis
Publisher Amer physical soc Place of Publication College pk Editor
Language Wos 000433288800015 Publication Date 2018-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:152042UA @ admin @ c:irua:152042 Serial 5017
Permanent link to this record
 

 
Author da Pieve, F.; Hogan, C.; Lamoen, D.; Verbeeck, J.; Vanmeert, F.; Radepont, M.; Cotte, M.; Janssens, K.; Gonze, X.; Van Tendeloo, G.
Title Casting light on the darkening of colors in historical paintings Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 20 Pages (up) 208302-208305
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The degradation of colors in historical paintings affects our cultural heritage in both museums and archeological sites. Despite intensive experimental studies, the origin of darkening of one of the most ancient pigments known to humankind, vermilion (α-HgS), remains unexplained. Here, by combining many-body theoretical spectroscopy and high-resolution microscopic x-ray diffraction, we clarify the composition of the damaged paint work and demonstrate possible physicochemical processes, induced by illumination and exposure to humidity and air, that cause photoactivation of the original pigment and the degradation of the secondary minerals. The results suggest a new path for the darkening process which was never considered by previous studies and prompt a critical examination of their findings.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000327244500003 Publication Date 2013-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 30 Open Access
Notes Vortex; ERC FP7; COUNTATOMS; ECASJO_; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:111396UA @ admin @ c:irua:111396 Serial 287
Permanent link to this record
 

 
Author Xavier, L.J.P.; Pereira, J.M.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Topological confinement in graphene bilayer quantum rings Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue 21 Pages (up) 212108,1-212108,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We find localized electron and hole states in a ring-shaped potential kink in biased bilayer graphene. Within the continuum description, we show that for sharp potential steps the Dirac equation describing carrier states close to the K (or K′) point of the first Brillouin zone can be solved analytically for a circular kink/antikink dot. The solutions exhibit interfacial states which exhibit AharonovBohm oscillations as functions of the height of the potential step and/or the radius of the ring.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000278183200039 Publication Date 2010-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 29 Open Access
Notes ; This work was financially supported by CNPq, under Contract No. NanoBioEstruturas 555183/2005-0, FUNCAP, CAPES, the Bilateral program between Flanders and Brazil, the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:83373 Serial 3675
Permanent link to this record
 

 
Author Halley, D.; Majjad, H.; Bowen, M.; Najjari, N.; Henry, Y.; Ulhaq-Bouillet, C.; Weber, W.; Bertoni, G.; Verbeeck, J.; Van Tendeloo, G.
Title Electrical switching in Fe/Cr/MgO/Fe magnetic tunnel junctions Type A1 Journal article
Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 92 Issue 21 Pages (up) 212115,1-3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hysteretic resistance switching is observed in epitaxial Fe/Cr/MgO/Fe magnetic tunnel junctions under bias voltage cycling between negative and positive values of about 1 V. The junctions switch back and forth between high- and low-resistance states, both of which depend on the device bias history. A linear dependence is found between the magnitude of the tunnel magnetoresistance and the crafted resistance of the junctions. To explain these results, a model is proposed that considers electron transport both by elastic tunneling and by defect-assisted transmission. (c) 2008 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000256303500042 Publication Date 2008-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 33 Open Access
Notes Approved Most recent IF: 3.411; 2008 IF: 3.726
Call Number UA @ lucian @ c:irua:69284UA @ admin @ c:irua:69284 Serial 894
Permanent link to this record
 

 
Author Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Fluxonic cellular automata Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 91 Issue 21 Pages (up) 212501,1-3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000251105500023 Publication Date 2007-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 45 Open Access
Notes Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:67176 Serial 1245
Permanent link to this record
 

 
Author Baelus, B.J.; Partoens, B.; Peeters, F.M.
Title One-dimensional modulation of the superconducting boundary condition for thin superconducting films Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 73 Issue 21 Pages (up) 212503,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000238696200029 Publication Date 2006-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:59706 Serial 2464
Permanent link to this record
 

 
Author He, Z.; Tian, H.; Deng, G.; Xu, Q.; Van Tendeloo, G.
Title Microstructure of bilayer manganite PrCa2Mn2O7 showing charge/orbital ordering Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 102 Issue 21 Pages (up) 212902-212905
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microstructure of the charge/orbital ordering Ruddleden-Popper phase PrCa2Mn2O7 was studied by transmission electron microscopy along both the [001] and the [110] orientation. Three coexisting charge/orbital ordering phases CO1, CO2, and CO3 were observed along the [001] orientation at room temperature. Different from the one-dimensional modulation in the CO1 and CO2 phase, the CO3 phase is characterized by two sets of mutually perpendicular structural modulations. From [110] high angle annular dark field-scanning transmission electron microscopy, we found that the Pr atoms locate in-between the bilayer MnO6 octahedra, which is different from the previous reports.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000320620400056 Publication Date 2013-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 4 Open Access
Notes Countatoms Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:108762 Serial 2068
Permanent link to this record
 

 
Author Sankaran, K.; Pourtois, G.; Degraeve, R.; Zahid, M.B.; Rignanese, G.-M.; Van Houdt, J.
Title First-principles modeling of intrinsic and extrinsic defects in \gamma-Al2O3 Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 97 Issue 21 Pages (up) 212906
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The electronic properties of a set of intrinsic and extrinsic point defects in gamma-Al2O3 are investigated using quasiparticle calculations within the G(0)W(0) approximation. We find that the electronic signature of atomic vacancies lie deep in the band gap, close to the top of the valence band edge. The introduction of C, Si, and N impurities induces defective levels that are located close to the conduction band edge and near the middle of the band gap of the oxide. The comparison with electrical measurements reveals that the energy levels of some of these defects match with the electronic fingerprint of the defects reported in gamma-Al2O3 based nonvolatile memories. (C) 2010 American Institute of Physics. [doi:10.1063/1.3507385]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000284618300039 Publication Date 2010-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 12 Open Access
Notes Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:105617 Serial 1213
Permanent link to this record
 

 
Author Abdullah, H.M.; Van der Donck, M.; Bahlouli, H.; Peeters, F.M.; Van Duppen, B.
Title Graphene quantum blisters : a tunable system to confine charge carriers Type A1 Journal article
Year 2018 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 112 Issue 21 Pages (up) 213101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Due to Klein tunneling, electrostatic confinement of electrons in graphene is not possible. This hinders the use of graphene for quantum dot applications. Only through quasi-bound states with finite lifetime has one achieved to confine charge carriers. Here, we propose that bilayer graphene with a local region of decoupled graphene layers is able to generate bound states under the application of an electrostatic gate. The discrete energy levels in such a quantum blister correspond to localized electron and hole states in the top and bottom layers. We find that this layer localization and the energy spectrum itself are tunable by a global electrostatic gate and that the latter also coincides with the electronic modes in a graphene disk. Curiously, states with energy close to the continuum exist primarily in the classically forbidden region outside the domain defining the blister. The results are robust against variations in size and shape of the blister which shows that it is a versatile system to achieve tunable electrostatic confinement in graphene. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000433140900025 Publication Date 2018-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 9 Open Access
Notes ; H.M.A. and H.B. acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group Project Nos. RG1502-1 and RG1502-2. This work was supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (B.V.D.) and a doctoral fellowship (M.V.d.D.). ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:151505UA @ admin @ c:irua:151505 Serial 5027
Permanent link to this record
 

 
Author Shakouri, K.; Vasilopoulos, P.; Vargiamidis, V.; Hai, G.-Q.; Peeters, F.M.
Title Spin- and valley-dependent commensurability oscillations and electric-field-induced quantum Hall plateaux in periodically modulated silicene Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue 21 Pages (up) 213109
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the commensurability oscillations in silicene subject to a perpendicular electric field E-z, a weak magnetic field B, and a weak periodic potential V = V-0 cos(Cy); C = 2 pi/a(0) with a(0) its period. The field E-z and/or the modulation lift the spin degeneracy of the Landau levels and lead to spin and valley resolved Weiss oscillations. The spin resolution is maximal when the field E-z is replaced by a periodic one E-z = E-0 cos(Dy); D = 2 pi/b(0), while the valley one is maximal for b(0) = a(0). In certain ranges of B values, the current is fully spin or valley polarized. Additional quantum Hall conductivity plateaux arise due to spin and valley intra-Landau-level transitions. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000337143000047 Publication Date 2014-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 16 Open Access
Notes ; The work was supported by the Flemish Science Foundation (FWO-VI), the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. Also, G. Q. H. was supported by FAPESP and CNPq (Brazil). ; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:118409 Serial 3078
Permanent link to this record
 

 
Author O'Regan, T.P.; Hurley, P.K.; Sorée, B.; Fischetti, M.V.
Title Modeling the capacitance-voltage response of In0.53Ga0.47As metal-oxide-semiconductor structures : charge quantization and nonparabolic corrections Type A1 Journal article
Year 2010 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue 21 Pages (up) 213514,1-213514,3
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract The capacitance-voltage (C-V) characteristic is calculated for p-type In<sub>0.53</sub>Ga<sub>0.47</sub>As metal-oxide-semiconductor (MOS) structures based on a self-consistent PoissonSchrödinger solution. For strong inversion, charge quantization leads to occupation of the satellite valleys which appears as a sharp increase in the capacitance toward the oxide capacitance. The results indicate that the charge quantization, even in the absence of interface defects (D<sub>it</sub>), is a contributing factor to the experimental observation of an almost symmetric C-V response for In<sub>0.53</sub>Ga<sub>0.47</sub>As MOS structures. In addition, nonparabolic corrections are shown to enhance the depopulation of the Γ valley, shifting the capacitance increase to lower inversion charge densities.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000278183200090 Publication Date 2010-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 26 Open Access
Notes Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:89509 Serial 2143
Permanent link to this record
 

 
Author Ejsmont, A.; Andreo, J.; Lanza, A.; Galarda, A.; Macreadie, L.; Wuttke, S.; Canossa, S.; Ploetz, E.; Goscianska, J.
Title Applications of reticular diversity in metal-organic frameworks : an ever-evolving state of the art Type A1 Journal article
Year 2021 Publication Coordination Chemistry Reviews Abbreviated Journal Coordin Chem Rev
Volume 430 Issue Pages (up) 213655
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Metal-organic frameworks (MOFs) are exciting materials due to their extensive applicability in a multitude of modern technological fields. Their most prominent characteristic and primary origin of their widespread success is the exceptional variety of their structures, which we termed 'reticular diversity'. Naturally, the ever-emerging applications of MOFs made it increasingly common that researchers from various areas delve into reticular chemistry to overcome their scientific challenges. This confers a crucial role to comprehensive overviews capable of providing newcomers with the knowledge of the state of the art, as well as with the key physics and chemistry considerations needed to design MOFs for a specific application. In this review, we commit to this purpose by outlining the fundamental understanding needed to carefully navigate MOFs' reticular diversity in their main fields of application, namely hostguest chemistry, chemical sensing, electronics, photophysics, and catalysis. Such knowledge and a meticulous, open-minded approach to the design of MOFs paves the way for their most innovative and successful applications, and for the global advancement of the research areas they are employed in. (C) 2020 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000615299000008 Publication Date 2020-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-8545 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.324 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 13.324
Call Number UA @ admin @ c:irua:176731 Serial 6715
Permanent link to this record
 

 
Author Wang, W.; Butterworth, T.; Bogaerts, A.
Title Plasma propagation in a single bead DBD reactor at different dielectric constants : insights from fluid modelling Type A1 Journal article
Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 54 Issue 21 Pages (up) 214004
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Packed bed dielectric barrier discharge (PB-DBD) plasma reactors are very promising for various plasma catalysis applications, but the exact mechanisms of plasma-catalyst interaction are far from understood, because the plasma discharge and catalyst/packing properties are mutually dependent. To better understand the effect of packing dielectric material on the electrical plasma properties, we study here a single bead DBD plasma reactor operating in dry air, with beads of different dielectric constant and for different applied voltages, by means of fluid modelling validated by optical imaging experiments. Our study reveals that the plasma in the single bead DBD reactor can manifest itself in two different modalities, i.e. (a) polar discharges at the bead poles in contact with the electrodes, and (b) a streamer discharge caused by surface ionization waves, which bridges the gas gap. Beads with high dielectric constant result in localised electric field enhancement and hence yield a reduction of the applied voltage required for plasma production. At low applied voltage, the discharge appears as polar discharges between the bead and the electrodes, and upon higher voltage it undergoes a transition into a bridging streamer discharge. The transition voltage to the streamer mode rises for beads with higher dielectric constant. These observations are important for plasma catalysis applications. A higher dielectric constant yields a higher electric field and thus higher average electron energy and density, giving rise to more reactive species, but it also yields a confined discharge near the contact points of packing beads, limiting the interaction area between the catalyst and the active plasma species. In addition, our model reveals that the dielectric bead behaves as a capacitor and traps charges, which can explain the significant occurrence of partial discharging in PB-DBDs and non-parallelogram shaped Lissajous plots. Hence, equivalent circuit modelling of PB-DBDs should take into account the role of packing beads in charge trapping as a capacitor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000626451000001 Publication Date 2021-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:177571 Serial 6772
Permanent link to this record
 

 
Author Chen, Q.; Wang, W.; Peeters, F.M.
Title Magneto-polarons in monolayer transition-metal dichalcogenides Type A1 Journal article
Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 123 Issue 21 Pages (up) 214303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Landau levels (LLs) are modified by the Frohlich interaction which we investigate within the improved Wigner-Brillouin theory for energies both below and above the longitudinal-optical-continuum in monolayer MoS2.., WS2, MoSe2, and WSe2. Polaron corrections to the LLs are enhanced in monolayer MoS2 as compared to WS2. A series of levels are found at h omega(LO) + lh omega(c), and in addition, the Frohlich interaction lifts the degeneracy between the levels nh omega(c) and h omega(LO) + lh omega(c) resulting in an anticrossing. The screening effect due to the environment plays an important role in the polaron energy corrections, which are also affected by the effective thickness r(eff) parameter. The polaron anticrossing energy gap E-gap decreases with increasing effective thickness r(eff). Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000434775500014 Publication Date 2018-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 19 Open Access
Notes ; Q. Chen and W. Wang acknowledge the financial support from the China Scholarship Council (CSC). This work was also supported by Hunan Provincial Natural Science Foundation of China (Grant No. 2015JJ2040), by the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 15A042), and by the National Natural Science Foundation of China (Grant No. 11404214). ; Approved Most recent IF: 2.068
Call Number UA @ lucian @ c:irua:151985UA @ admin @ c:irua:151985 Serial 5031
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; Fischetti, M.V.
Title Inter-ribbon tunneling in graphene: An atomistic Bardeen approach Type A1 Journal article
Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 119 Issue 119 Pages (up) 214306
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A weakly coupled system of two crossed graphene nanoribbons exhibits direct tunneling due to the overlap of the wavefunctions of both ribbons. We apply the Bardeen transfer Hamiltonian formalism, using atomistic band structure calculations to account for the effect of the atomic structure on the tunneling process. The strong quantum-size confinement of the nanoribbons is mirrored by the one-dimensional character of the electronic structure, resulting in properties that differ significantly from the case of inter-layer tunneling, where tunneling occurs between bulk two-dimensional graphene sheets. The current-voltage characteristics of the inter-ribbon tunneling structures exhibit resonance, as well as stepwise increases in current. Both features are caused by the energetic alignment of one-dimensional peaks in the density-of-states of the ribbons. Resonant tunneling occurs if the sign of the curvature of the coupled energy bands is equal, whereas a step-like increase in the current occurs if the signs are opposite. Changing the doping modulates the onset-voltage of the effects as well as their magnitude. Doping through electrostatic gating makes these structures promising for application towards steep slope switching devices. Using the atomistic empirical pseudopotentials based Bardeen transfer Hamiltonian method, inter-ribbon tunneling can be studied for the whole range of two-dimensional materials, such as transition metal dichalcogenides. The effects of resonance and of step-like increases in the current we observe in graphene ribbons are also expected in ribbons made from these alternative two-dimensional materials, because these effects are manifestations of the one-dimensional character of the density-of-states. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000378923100022 Publication Date 2016-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 2.068
Call Number UA @ lucian @ c:irua:134652 Serial 4198
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Perez-Mato, J.M.; Petřiček, V.; Rosner, H.; Yang, T.; Greenblatt, M.
Title Spiral ground state against ferroelectricity in the frustrated magnet BiMnFe2O6 Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 21 Pages (up) 214402-214402,10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The spiral magnetic structure and underlying spin lattice of BiMnFe2O6 are investigated by low-temperature neutron powder diffraction and density functional theory band structure calculations. In spite of the random distribution of the Mn3+ and Fe3+ cations, this centrosymmetric compound undergoes a transition into an incommensurate antiferromagnetically ordered state below TN≃220 K. The magnetic structure is characterized by the propagation vector k=[0,β,0] with β≃0.14 and the P221211′(0β0)0s0s magnetic superspace symmetry. It comprises antiferromagnetic helixes propagating along the b axis. The magnetic moments lie in the ac plane and rotate about π(1+β)≃204.8-deg angle between the adjacent magnetic atoms along b. The spiral magnetic structure arises from the peculiar frustrated arrangement of exchange couplings in the ab plane. The antiferromagnetic coupling along the c axis cancels the possible electric polarization and prevents ferroelectricity in BiMnFe2O6.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000291197400001 Publication Date 2011-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:90080 Serial 3107
Permanent link to this record
 

 
Author Stosic, D.; Ludermir, T.B.; Milošević, M.V.
Title Pinning of magnetic skyrmions in a monolayer Co film on Pt(111) : Theoretical characterization and exemplified utilization Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 21 Pages (up) 214403
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Magnetic skyrmions are nanoscale windings of the spin structure that can be observed in chiral magnets and hold promise for potential applications in storing or processing information. Pinning due to ever-present material imperfections crucially affects the mobility of skyrmions. Therefore, a proper understanding of how magnetic skyrmions pin to defects is necessary for the development and performance of spintronic devices. Here we present a fundamental analysis on the interactions of single skyrmions with atomic defects of distinctly different origins, in a Co monolayer on Pt, based on minimum-energy paths considerations and atomic-spin simulations. We first report the preferred pinning loci of the skyrmion as a function of its nominal size and the type of defect being considered, to further reveal the manipulation and \u0022breathing\u0022 of skyrmion core in the vicinity of a defect. We also show the behavior of skyrmions in the presence of an extended defect of particular geometry, that can lead to ratcheted skyrmion motion or a facilitated guidance on a defect \u0022trail.\u0022 We close the study with reflections on the expected thermal stability of the skyrmion against collapse on itself for a given nature of the defect, and discuss the applications where control of skyrmions by defects is of particular interest.'));
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000416846900002 Publication Date 2017-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 52 Open Access
Notes ; This work was supported by the Research Foundation, Flanders (FWO-Vlaanderen) and Brazilian agency CNPq (Grants No. 442668/2014-7 and No. 140840/2016-8). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:147684 Serial 4890
Permanent link to this record
 

 
Author Mulkers, J.; Milošević, M.V.; Van Waeyenberge, B.
Title Cycloidal versus skyrmionic states in mesoscopic chiral magnets Type A1 Journal article
Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages (up) 214405
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract When subjected to the interfacially induced Dzyaloshinskii-Moriya interaction, the ground state in thin ferromagnetic films with high perpendicular anisotropy is cycloidal. The period of this cycloidal state depends on the strength of the Dzyaloshinskii-Moriya interaction. In this work, we have studied the effect of confinement on the magnetic ground state and excited states, and we determined the phase diagram of thin strips and thin square platelets by means of micromagnetic calculations. We show that multiple cycloidal states with different periods can be stable in laterally confined films, where the period of the cycloids does not depend solely on the Dzyaloshinskii-Moriya interaction strength but also on the dimensions of the film. The more complex states comprising skyrmions are also found to be stable, though with higher energy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000377298600006 Publication Date 2016-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 28 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number c:irua:133919 Serial 4081
Permanent link to this record
 

 
Author Stosic, D.; Mulkers, J.; Van Waeyenberge, B.; Ludermir, T.B.; Milošević, M.V.
Title Paths to collapse for isolated skyrmions in few-monolayer ferromagnetic films Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 21 Pages (up) 214418
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnetic skyrmions are topological spin configurations in materials with chiral Dzyaloshinskii-Moriya interaction (DMI), that are potentially useful for storing or processing information. To date, DMI has been found in few bulk materials, but can also be induced in atomically thin magnetic films in contact with surfaces with large spin-orbit interactions. Recent experiments have reported that isolated magnetic skyrmions can be stabilized even near room temperature in few-atom-thick magnetic layers sandwiched between materials that provide asymmetric spin-orbit coupling. Here we present the minimum-energy path analysis of three distinct mechanisms for the skyrmion collapse, based on ab initio input and the performed atomic-spin simulations. We focus on the stability of a skyrmion in three atomic layers of Co, either epitaxial on the Pt(111) surface or within a hybrid multilayer where DMI nontrivially varies per monolayer due to competition between different symmetry breaking from two sides of the Co film. In laterally finite systems, their constrained geometry causes poor thermal stability of the skyrmion toward collapse at the boundary, which we show to be resolved by designing the high-DMI structure within an extended film with lower or no DMI.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404015500001 Publication Date 2017-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 48 Open Access
Notes This work was supported by the Research Foundation, Flanders (FWO-Vlaanderen) and Brazilian agency CNPq (Grants No. 442668/2014-7 and No. 140840/2016-8). Approved Most recent IF: 3.836
Call Number CMT @ cmt @c:irua:144865 Serial 4704
Permanent link to this record
 

 
Author Tsirlin, A.A.; Abakumov, A.M.; Ritter, C.; Henry, P.F.; Janson, O.; Rosner, H.
Title Short-range order of Br and three-dimensional magnetism in (CuBr)LaNb2O7 Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 21 Pages (up) 214427
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present a comprehensive study of the crystal structure, magnetic structure, and microscopic magnetic model of (CuBr)LaNb2O7, the Br analog of the spin-gap quantum magnet (CuCl) LaNb2O7. Despite similar crystal structures and spin lattices, the magnetic behavior and even peculiarities of the atomic arrangement in the Cl and Br compounds are very different. The high- resolution x-ray and neutron data reveal a split position of Br atoms in (CuBr) LaNb2O7. This splitting originates from two possible configurations developed by [CuBr] zigzag ribbons. While the Br atoms are locally ordered in the ab plane, their arrangement along the c direction remains partially disordered. The predominant and energetically more favorable configuration features an additional doubling of the c lattice parameter that was not observed in (CuCl) LaNb2O7. (CuBr) LaNb2O7 undergoes long-range antiferromagnetic ordering at T-N = 32 K, which is nearly 70% of the leading exchange coupling J4 similar or equal to 48 K. The Br compound does not show any experimental signatures of low-dimensional magnetism because the underlying spin lattice is three-dimensional. The coupling along the c direction is comparable to the couplings in the ab plane, even though the shortest Cu-Cu distance along c (11.69 angstrom) is three times larger than nearest-neighbor distances in the ab plane (3.55 angstrom). The stripe antiferromagnetic long-range order featuring columns of parallel spins in the ab plane and antiparallel spins along c is verified experimentally and confirmed by the microscopic analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305557600002 Publication Date 2012-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:100289 Serial 2998
Permanent link to this record