|   | 
Details
   web
Records
Author Ceglia, A.; Nuyts, G.; Cagno, S.; Meulebroeck, W.; Baert, K.; Cosyns, P.; Nys, K.; Thienpont, H.; Janssens, K.; Terryn, H.
Title A XANES study of chromophores : the case of black glass Type A1 Journal article
Year 2014 Publication Analytical methods Abbreviated Journal Anal Methods-Uk
Volume 6 Issue 8 Pages (up) 2662-2671
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract We studied the Fe K-edge X-ray absorption near edge (XANES) spectra of several Roman black glass fragments in order to determine the Fe3+/ΣFe ratio of these materials. The selected archaeological glass samples cover the period 1st5th century AD in nine different sites of the North Western provinces of the Roman Empire. The fragments belong to two different compositional groups demonstrating a diachronic evolution: early Roman HMG (High Magnesia Glass) and Roman Imperial LMG (Low Magnesia Glass). The first group contains natural Fe levels (below 2 wt% as Fe2O3), while the LMG has concentrations above 5 wt%. This difference is also reflected by Fe3+/ΣFe values. Low iron glass was produced under strongly reducing conditions in order to obtain the black colour, with average Fe3+/ΣFe values ≈ 0.17. LMG glass is somewhat more oxidised (Fe3+/ΣFe ≈ 0.40.5). While HMG glass required active control of the furnace environment, LMG was made under ambient atmosphere and its higher oxidation degree is mainly determined by the chemistry of the raw glass.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000333524200032 Publication Date 2014-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1759-9660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.9 Times cited 14 Open Access
Notes ; The authors are grateful to the staff of beamline L in HASYLAB for their helpful support. The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no. 265010. Support from the University of Antwerp Research Council through GOA Programme “XANES meets ELNES” is gratefully acknowledged. This work was partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, project number 223268/F50. We would like to thank M. P. Riccardi and E. Basso of the University of Pavia and R. Falcone of the Stazione Sperimentale del Vetro who provided us with the reference glasses. ; Approved Most recent IF: 1.9; 2014 IF: 1.821
Call Number UA @ admin @ c:irua:116596 Serial 5919
Permanent link to this record
 

 
Author Gorbanev, Y.; Vervloessem, E.; Nikiforov, A.; Bogaerts, A.
Title Nitrogen fixation with water vapor by nonequilibrium plasma : toward sustainable ammonia production Type A1 Journal article
Year 2020 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng
Volume 8 Issue 7 Pages (up) 2996-3004
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ammonia is a crucial nutrient used for plant growth and as a building block in the pharmaceutical and chemical industry, produced via nitrogen fixation of the ubiquitous atmospheric N2. Current industrial ammonia production relies heavily on fossil resources, but a lot of work is put into developing nonfossil-based pathways. Among these is the use of nonequilibrium plasma. In this work, we investigated water vapor as a H source for nitrogen fixation into NH3 by nonequilibrium plasma. The highest selectivity toward NH3 was observed with low amounts of added H2O vapor, but the highest production rate was reached at high H2O vapor contents. We also studied the role of H2O vapor and of the plasma-exposed liquid H2O in nitrogen fixation by using isotopically labeled water to distinguish between these two sources of H2O. We show that added H2O vapor, and not liquid H2O, is the main source of H for NH3 generation. The studied catalyst- and H2-free method offers excellent selectivity toward NH3 (up to 96%), with energy consumption (ca. 95–118 MJ/mol) in the range of many plasma-catalytic H2-utilizing processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000516665500045 Publication Date 2020-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited 14 Open Access
Notes ; This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the Catalisti Moonshot project P2C, and the Methusalem project of the University of Antwerp. ; Approved Most recent IF: 8.4; 2020 IF: 5.951
Call Number UA @ admin @ c:irua:167134 Serial 6568
Permanent link to this record
 

 
Author Yan, M.; Bogaerts, A.; Gijbels, R.; Goedheer, W.J.
Title Spatial behavior of energy relaxation of electrons in capacitively coupled discharges: comparison between Ar and SiH4 Type A1 Journal article
Year 2000 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 87 Issue 8 Pages (up) 3628-3636
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000086169500003 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 14 Open Access
Notes Approved Most recent IF: 2.068; 2000 IF: 2.180
Call Number UA @ lucian @ c:irua:34074 Serial 3061
Permanent link to this record
 

 
Author Nikolaev, A.V.; Prassides, K.; Michel, K.H.
Title Charge transfer and polymer phases in AC60 (A=K, Rb, Cs) fullerides Type A1 Journal article
Year 1998 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 108 Issue Pages (up) 4912-4923
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000072588400025 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 14 Open Access
Notes Approved Most recent IF: 2.965; 1998 IF: 3.147
Call Number UA @ lucian @ c:irua:23985 Serial 338
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.H.; Barry, D.; Xin, B.; Yagmurcukardes, M.; Zhang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M.
Title Wien effect in interfacial water dissociation through proton-permeable graphene electrodes Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages (up) 5776-5777
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 10(7) V m(-1), sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O reversible arrow H+ + OH-) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 10(8) V m(-1). The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager's theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000862552600012 Publication Date 2022-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 14 Open Access OpenAccess
Notes Approved Most recent IF: 16.6
Call Number UA @ admin @ c:irua:191575 Serial 7228
Permanent link to this record
 

 
Author Yu, H.; Kopach, A.; Misko, V.R.; Vasylenko, A.A.; Makarov, D.; Marchesoni, F.; Nori, F.; Baraban, L.; Cuniberti, G.
Title Confined Catalytic Janus Swimmers in a Crowded Channel: Geometry-Driven Rectification Transients and Directional Locking Type A1 Journal article
Year 2016 Publication Small Abbreviated Journal Small
Volume 12 Issue 12 Pages (up) 5882-5890
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Self-propelled Janus particles, acting as microscopic vehicles, have the potential to perform complex tasks on a microscopic scale, suitable, e.g., for environmental applications, on-chip chemical information processing, or in vivo drug delivery. Development of these smart nanodevices requires a better understanding of how synthetic swimmers move in crowded and confined environments that mimic actual biosystems, e.g., network of blood vessels. Here, the dynamics of self-propelled Janus particles interacting with catalytically passive silica beads in a narrow channel is studied both experimentally and through numerical simulations. Upon varying the area density of the silica beads and the width of the channel, active transport reveals a number of intriguing properties, which range from distinct bulk and boundary-free diffusivity at low densities, to directional “locking” and channel “unclogging” at higher densities, whereby a Janus swimmer is capable of transporting large clusters of passive particles.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000389403900010 Publication Date 2016-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 14 Open Access
Notes ; H.Y., A.K., and L.B. contributed equally to this work. This work was funded in part by the European Union (ERDF) and the Free State of Saxony via the ESF project InnoMedTec, the DFG cluster for Excellence, the Center for Advancing Electronics Dresden (CfAED), and via the European Research Council under the European Union's Seventh Framework program (FP7/2007-2013)/ERC grant agreement no. 306277. V.R.M. and A.A.V. acknowledge support from the Odysseus Program of the Flemish Government and the FWO-VI. F.N. is partially supported by the RIKEN iTHES Project, the MURI Center for Dynamic Magneto-Optics via the AFOSR Grant No. FA9550-14-1-0040, the IMPACT program of the JST, and a Grant-in-Aid for the Scientific Research (A). ; Approved Most recent IF: 8.643
Call Number UA @ lucian @ c:irua:140256 Serial 4453
Permanent link to this record
 

 
Author Hilber, W.; Helm, M.; Peeters, F.M.; Alavi, K.; Pathak, R.N.
Title Impurity band and magnetic-field-induced metal-insulator transition in a doped GaAs/AlxGa1-xAs superlattice Type A1 Journal article
Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 53 Issue 11 Pages (up) 6919-6922
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A combination of infrared spectroscopy and magnetotransport is used to investigate the impurity band and the magnetic-field-induced metal-insulator transition in n-type GaAs/AlxGa1-xAs superlattices. The dropping of the Fermi level from the conduction band into the impurity band upon increasing magnetic field is observed in a sample doped to n=4n(c), where n(c) is the critical density according to the Mott criterion. The metal-insulator transition takes place while the Fermi level is in the impurity band, with no qualitative change from the metallic to the insulating side. Due to the anisotropy of the superlattice band structure, the metal-insulator transition is shifted to higher magnetic field, when the magnetic field is tilted away from the growth axis towards the layer planes.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1996UC74000018 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 14 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:99676 Serial 1571
Permanent link to this record
 

 
Author Deng, S.; Kurttepeli, M.; Deheryan, S.; Cott, D.J.; Vereecken, P.M.; Martens, J.A.; Bals, S.; Van Tendeloo, G.; Detavernier, C.
Title Synthesis of a 3D network of Pt nanowires by atomic layer deposition on a carbonaceous template Type A1 Journal article
Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue 12 Pages (up) 6939-6944
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The formation of a 3D network composed of free standing and interconnected Pt nanowires is achieved by a two-step method, consisting of conformal deposition of Pt by atomic layer deposition (ALD) on a forest of carbon nanotubes and subsequent removal of the carbonaceous template. Detailed characterization of this novel 3D nanostructure was carried out by transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS). The characterization showed that this pure 3D nanostructure of platinum is self-supported and offers an enhancement of the electrochemically active surface area by a factor of 50.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000337143900086 Publication Date 2014-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 14 Open Access OpenAccess
Notes The authors wish to thank the Research Foundation – Flanders (FWO) for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERCgrant agreement N°239865-COCOON, N°246791-COUNTATOMS and N°335078–COLOURATOM). The authors would also want to thank the support from UGENT-GOA-01G01513, IWT-SBO SOSLion and the Belgian government through Interuniversity Attraction Poles (IAPPAI).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:118393 Serial 3454
Permanent link to this record
 

 
Author Freire, J.A.K.; Matulis, A.; Peeters, F.M.; Freire, V.N.; Farias, G.A.
Title Fine structure of excitons in a quantum well in the presence of a non-homogeneous magnetic field Type A1 Journal article
Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 62 Issue Pages (up) 7316-7324
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000089413500083 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2000 IF: NA
Call Number UA @ lucian @ c:irua:34353 Serial 1195
Permanent link to this record
 

 
Author Yan, Y.; Zhou, X.; Jin, H.; Li, C.-Z.; Ke, X.; Van Tendeloo, G.; Liu, K.; Yu, D.; Dressel, M.; Liao, Z.-M.
Title Surface-Facet-Dependent Phonon Deformation Potential in Individual Strained Topological Insulator Bi2Se3 Nanoribbons Type A1 Journal article
Year 2015 Publication ACS nano Abbreviated Journal Acs Nano
Volume 9 Issue 9 Pages (up) 10244-10251
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Strain is an important method to tune the properties of topological insulators. For example, compressive strain can induce superconductivity in Bi2Se3 bulk material. Topological insulator nanostructures are the superior candidates to utilize the unique surface states due to the large surface to volume ratio. Therefore, it is highly desirable to monitor the local strain effects in individual topological insulator nanostructures. Here, we report the systematical micro-Raman spectra of single strained Bi2Se3 nanoribbons with different thicknesses and different surface facets, where four optical modes are resolved in both Stokes and anti-Stokes Raman spectral lines. A striking anisotropy of the strain dependence is observed in the phonon frequency of strained Bi2Se3 nanoribbons grown along the ⟨112̅0⟩ direction. The frequencies of the in-plane Eg2 and out-of-plane A1g1 modes exhibit a nearly linear blue-shift against bending strain when the nanoribbon is bent along the ⟨112̅0⟩ direction with the curved {0001} surface. In this case, the phonon deformation potential of the Eg2 phonon for 100 nm-thick Bi2Se3 nanoribbon is up to 0.94 cm–1/%, which is twice of that in Bi2Se3 bulk material (0.52 cm–1/%). Our results may be valuable for the strain modulation of individual topological insulator nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000363915300079 Publication Date 2015-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 14 Open Access
Notes Y.Y. would like to thank Xuewen Fu for helpful discussions. This work was supported by MOST (Nos. 2013CB934600, 2013CB932602) and NSFC (Nos. 11274014, 11234001). Approved Most recent IF: 13.942; 2015 IF: 12.881
Call Number c:irua:129216 Serial 3963
Permanent link to this record
 

 
Author Benito Llorens, J.; Embon, L.; Correa, A.; Gonzalez, J.D.; Herrera, E.; Guillamon, I.; Luccas, R.F.; Azpeitia, J.; Mompean, F.J.; Garcia-Hernandez, M.; Munuera, C.; Aragon Sanchez, J.; Fasano, Y.; Milošević, M.V.; Suderow, H.; Anahory, Y.
Title Observation of a gel of quantum vortices in a superconductor at very low magnetic fields Type A1 Journal article
Year 2020 Publication Physical review research Abbreviated Journal
Volume 2 Issue 1 Pages (up) 013329
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A gel consists of a network of particles or molecules formed for example using the sol-gel process, by which a solution transforms into a porous solid. Particles or molecules in a gel are mainly organized on a scaffold that makes up a porous system. Quantized vortices in type-II superconductors mostly form spatially homogeneous ordered or amorphous solids. Here we present high-resolution imaging of the vortex lattice displaying dense vortex clusters separated by sparse or entirely vortex-free regions in beta-Bi2Pd superconductor. We find that the intervortex distance diverges upon decreasing the magnetic field and that vortex lattice images follow a multifractal behavior. These properties, characteristic of gels, establish the presence of a novel vortex distribution, distinctly different from the well-studied disordered and glassy phases observed in high-temperature and conventional superconductors. The observed behavior is caused by a scaffold of one-dimensional structural defects with enhanced stress close to the defects. The vortex gel might often occur in type-II superconductors at low magnetic fields. Such vortex distributions should allow to considerably simplify control over vortex positions and manipulation of quantum vortex states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000602698100008 Publication Date 2020-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 14 Open Access
Notes ; We acknowledge support, discussions and critical reading of the manuscript from Eli Zeldov, who also devised and setup the SOT system. We also acknowledge critical reading and suggestions of Vladimir Kogan and Alexander Buzdin. Work performed in Spain was supported by the MINECO (FIS2017-84330-R, MAT2017-87134-C2-2-R, RYC-2014-16626 and RYC-2014-15093) and by the Region of Madrid through programs NANOFRONTMAG-CM (S2013/MIT-2850) and MAD2D-CM (S2013/ MIT-3007). The SEGAINVEX at UAM is also acknowledged as well as PEOPLE, Graphene Flagship, NMP programs of EU (Grant Agreements FP7-PEOPLE-2013-CIG 618321, 604391 and AMPHIBIAN H2020-NMBP-03-2016 NMP3-SL 2012-310516). Work in Israel was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 802952). Y.F. acknowledges the support of grant PICT 2017-2182 from the ANPCyT. R.F.L. acknowledges the support of grant PICT 2017-2898 from the ANPCyT. E.H. acknowledges support of Departamento Administrativo de Ciencia, Tecnologia e Innovacion, COLCIENCIAS (Colombia) Programa de estancias Postdoctorales convocatoria 784-2017 and the Cluster de investigacin en ciencias y tecnologas convergentes de la Universidad Central (Colombia). I.G. was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 679080). M.V.M. acknowledges support from Research FoundationFlanders (FWO). The international collaboration on this work was fostered by the EU-COST Action CA16218 Nanoscale Coherent Hybrid Devices for Superconducting Quantum Technologies (NANOCOHYBRI). J.D.G. and M.V.M. gratefully acknowledge support from the Research Fund (FONCIENCIAS) of Universidad del Magdalena. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:175138 Serial 6694
Permanent link to this record
 

 
Author Pogosov, W.V.; Misko, V.R.; Zhao, H.J.; Peeters, F.M.
Title Collective vortex phases in periodic plus random pinning potential Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 1 Pages (up) 014504,1-014504,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study theoretically the simultaneous effect of regular and random pinning potentials on the vortex lattice structure at filling factor of 1. This structure is determined by a competition between the square symmetry of regular pinning array, by the intervortex interaction favoring a triangular symmetry, and by the randomness trying to depin vortices from their regular positions. Both analytical and molecular-dynamics approaches are used. We construct a phase diagram of the system in the plane of regular and random pinning strengths and determine typical vortex lattice defects appearing in the system due to the disorder. We find that the total disordering of the vortex lattice can occur either in one step or in two steps. For instance, in the limit of weak pinning, a square lattice of pinned vortices is destroyed in two steps. First, elastic chains of depinned vortices appear in the film; but the vortex lattice as a whole remains still pinned by the underlying square array of regular pinning sites. These chains are composed into fractal-like structures. In a second step, domains of totally depinned vortices are generated and the vortex lattice depins from regular array.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000262977900092 Publication Date 2009-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:75982 Serial 386
Permanent link to this record
 

 
Author Rodal-Cedeira, S.; Vázquez-Arias, A.; Bodelon, G.; Skorikov, A.; Núñez-Sanchez, S.; La Porta, A.; Polavarapu, L.; Bals, S.; Liz-Marzán, L.M.; Perez-Juste, J.; Pastoriza-Santos, I.
Title An Expanded Surface-Enhanced Raman Scattering Tags Library by Combinatorial Encapsulation of Reporter Molecules in Metal Nanoshells Type A1 Journal article
Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano
Volume Issue Pages (up)
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Raman-encoded gold nanoparticles have been widely employed as photostable multifunctional probes for sensing, bioimaging, multiplex diagnostics, and surface-enhanced Raman scattering (SERS)-guided tumor therapy. We report a strategy toward obtaining a particularly large library of Au nanocapsules encoded with Raman codes defined by the combination of different thiol-free Raman reporters, encapsulated at defined molar ratios. The fabrication of SERS tags with tailored size and pre-defined codes is based on the in situ incorporation of Raman reporter molecules inside Au nanocapsules during their formation via Galvanic replacement coupled to seeded growth on Ag NPs. The hole-free closed shell structure of the nanocapsules is confirmed by electron tomography. The unusually wide encoding possibilities of the obtained SERS tags are investigated by means of either wavenumber-based encoding or Raman frequency combined with signal intensity, leading to an outstanding performance as exemplified by 26 and 54 different codes, respectively. We additionally demonstrate that encoded nanocapsules can be readily bioconjugated with antibodies for applications such as SERS-based targeted cell imaging and phenotyping.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000595533800019 Publication Date 2020-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.1 Times cited 14 Open Access OpenAccess
Notes L.M.L.-M. acknowledges financial support from the European Research Council (ERC-AdG-4DbioSERS-787510) and the Spanish State Research Agency (Grant No. MDM-2017-0720 and PID2019-108954RB-I00). I.P.-S. and J.P.-J. acknowledge financial support from the Spanish State Research Agency (Grant No. MAT2016-77809-R)) and Ramon Areces Foundation (Grant No. SERSforSAFETY). G.B. acknowledges financial support from CINBIO (Grant number ED431G 2019/07 Xunta de Galicia). S.B. and A.S. acknowledge financial support by the Research Foundation Flanders (FWO grant G038116N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI). S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). We thank Carlos Fernández-Lodeiro and Daniel García-Lojo for their helpful contribution to the SEM characterization and SERS analysis and Veronica Montes-García for her fruitful contribution in the PCA analysis.; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942
Call Number EMAT @ emat @c:irua:172492 Serial 6403
Permanent link to this record
 

 
Author Venturi, F.; Calizzi, M.; Bals, S.; Perkisas, T.; Pasquini, L.
Title Self-assembly of gas-phase synthesized magnesium nanoparticles on room temperature substrates Type A1 Journal article
Year 2015 Publication Materials research express Abbreviated Journal Mater Res Express
Volume 2 Issue 2 Pages (up) 015007
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract Magnesium nanoparticles (NPs) with initial size in the 10-50 nmrange were synthesized by inert gas condensation under helium flow and deposited on room temperature substrates. The morphology and crystal structure of the NPs ensemble were investigated as a function of the deposition time by complementary electron microscopy techniques, including high resolution imaging and chemical mapping. With increasing amount of material, strong coarsening phenomena were observed at room temperature: small NPs disappeared while large faceted NPs developed, leading to a 5-fold increase of the average NPs size within a few minutes. The extent of coarsening and the final morphology depended also on the nature of the substrate. Furthermore, large single-crystal NPs were seen to arise from the self-organization of primary NPs units, providing a mechanism for crystal growth. The dynamics of the self-assembly process involves the basic steps of NPs sticking, diffusion on substrate, coordinated rotation and attachment/coalescence. Key features are the surface energy anisotropy, reflected by the faceted shape of the NPs, and the low melting point of the material. The observed phenomena have strong implications in relation to the synthesis and stability of nanostructures based on Mg or other elements with similar features.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000369978500007 Publication Date 2014-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1591 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.068 Times cited 14 Open Access Not_Open_Access
Notes ; Financial support by COST Action MP1103 'Nanostructured Materials for Solid-State Hydrogen Storage' is gratefully acknowledged. ; Approved Most recent IF: 1.068; 2015 IF: NA
Call Number UA @ lucian @ c:irua:132275 Serial 4240
Permanent link to this record
 

 
Author Nakhaee, M.; Yagmurcukardes, M.; Ketabi, S.A.; Peeters, F.M.
Title Single-layer structures of a100- and b010-Gallenene : a tight-binding approach Type A1 Journal article
Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 28 Pages (up) 15798-15804
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the simplified linear combination of atomic orbitals (LCAO) method in combination with ab initio calculations, we construct a tight-binding (TB) model for two different crystal structures of monolayer gallium: a(100)- and b(010)-Gallenene. The analytical expression for the Hamiltonian and numerical results for the overlap matrix elements between different orbitals of the Ga atoms and for the Slater and Koster (SK) integrals are obtained. We find that the compaction of different structures affects significantly the formation of the orbitals. The results for a(100)-Gallenene can be very well explained with an orthogonal basis set, while for b(010)-Gallenene we have to assume a non-orthogonal basis set in order to construct the TB model. Moreover, the transmission properties of nanoribbons of both monolayers oriented along the AC and ZZ directions are also investigated and it is shown that both AC- and ZZ-b(010)-Gallenene nanoribbons exhibit semiconducting behavior with zero transmission while those of a(100)-Gallenene nanoribbons are metallic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476603700057 Publication Date 2019-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 14 Open Access
Notes ; This work is supported by the Methusalem program of the Flemish government and the FLAG-ERA project TRANS-2D-TMD. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (M. Y.). M. N. is partially supported by BFO (Uantwerpen). ; Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:161881 Serial 5427
Permanent link to this record
 

 
Author Amini, M.N.; Leenaerts, O.; Partoens, B.; Lamoen, D.
Title Graphane- and fluorographene-based quantum dots Type A1 Journal article
Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 117 Issue 31 Pages (up) 16242-16247
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract With the help of first-principles calculations, we investigate graphane/fluorographene heterostructures with special attention for graphane and fluorographene-based quantum dots. Graphane and fluorographene have large electronic band gaps, and we show that their band structures exhibit a strong type-II alignment. In this way, it is possible to obtain confined electron states in fluorographene nanostructures by embedding them in a graphane crystal. Bound hole states can be created in graphane domains embedded in a fluorographene environment. For circular graphane/fluorographene quantum dots, localized states can be observed in the band gap if the size of the radii is larger than approximately 4 to 5 Å.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000323082300046 Publication Date 2013-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 14 Open Access
Notes FWO; GOW; Hercules Approved Most recent IF: 4.536; 2013 IF: 4.835
Call Number UA @ lucian @ c:irua:109457 Serial 1367
Permanent link to this record
 

 
Author Goldoni, G.; Peeters, F.M.
Title Hole subbands and effective masses in p-doped [113]-grown heterojunctions Type A1 Journal article
Year 1995 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 51 Issue Pages (up) 17806-17813
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1995RF85700056 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 14 Open Access
Notes Approved CHEMISTRY, PHYSICAL 48/144 Q2 #
Call Number UA @ lucian @ c:irua:12195 Serial 1478
Permanent link to this record
 

 
Author Schouteden, K.; Li, Z.; Chen, T.; Song, F.; Partoens, B.; Van Haesendonck, C.; Park, K.
Title Moire superlattices at the topological insulator Bi2Te3 Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue 6 Pages (up) 20278
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We report on the observation of complex superlattices at the surface of the topological insulator Bi2Te3. Scanning tunneling microscopy reveals the existence of two different periodic structures in addition to the Bi2Te3 atomic lattice, which is found to strongly affect the local electronic structure. These three different periodicities are interpreted to result from a single small in-plane rotation of the topmost quintuple layer only. Density functional theory calculations support the observed increase in the DOS near the Fermi level, and exclude the possibility that strain is at the origin of the observed Moire pattern. Exploration of Moire superlattices formed by the quintuple layers of topological insulators holds great potential for further tuning of the properties of topological insulators.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000369543200001 Publication Date 2016-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 14 Open Access
Notes ; The research in Leuven and Antwerp has been supported by the Research Foundation – Flanders (FWO, Belgium). The research in Leuven received additional support from the Flemish Concerted Research Action program (BOF KU Leuven, Project No. GOA/14/007). Z.L. thanks the China Scholarship Council for financial support (No. 2011624021). K.S. acknowledges support from the FWO. K.P. was supported by U.S. National Science Foundation DMR-1206354 and San Diego Supercomputer Center (SDSC) Trestles under DMR060009N. T.C. and F.S. acknowledge the financial support of the National Key Projects for Basic Research of China (Grant Nos: 2013CB922103), the National Natural Science Foundation of China (Grant Nos: 91421109, 11522432), the PAPD project, and the Natural Science Foundation of Jiangsu Province (Grant BK20130054). ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:131612 Serial 4208
Permanent link to this record
 

 
Author Dong, H.M.; Xu, W.; Peeters, F.M.
Title Electrical generation of terahertz blackbody radiation from graphene Type A1 Journal article
Year 2018 Publication Optics express Abbreviated Journal Opt Express
Volume 26 Issue 19 Pages (up) 24621-24626
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent experimental work on the application of graphene for novel illumination motivated us to present a theoretical study of the blackbody radiation emission from a freely suspended graphene driven by a dc electric field. Strong terahertz (THz) emission, with intensity up to mW/cm(2), can be generated with increasing electric field strength due to the heating of electrons in graphene. We show that the intensity of the THz emission generated electrically from graphene depends rather sensitively on the lattice temperature in relatively weak electric fields, whereas it is less sensitive to the lattice temperature in relative strong electric fields. Our study highlights the practical application of graphene as intense THz source where the radiation is generated electrically. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000444705000026 Publication Date 2018-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 14 Open Access
Notes ; National Natural Science Foundation of China (NSFC) (11604380, 11574319); Center of Science and Technology of Hefei Academy of Science (2016FXZY002); Department of Science and Technology of Yunnan Province (2016FC001). ; Approved Most recent IF: 3.307
Call Number UA @ lucian @ c:irua:153632UA @ admin @ c:irua:153632 Serial 5095
Permanent link to this record
 

 
Author Euán-Díaz, E.C.; Misko, V.R.; Peeters, F.M.; Herrera-Velarde, S.; Castaneda-Priego, R.
Title Single-file diffusion in periodic energy landscapes : the role of hydrodynamic interactions Type A1 Journal article
Year 2012 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 86 Issue 3Part 1 Pages (up) 031123
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report on the dynamical properties of interacting colloids confined to one dimension and subjected to external periodic energy landscapes. We particularly focus on the influence of hydrodynamic interactions on the mean-square displacement. Using Brownian dynamics simulations, we study colloidal systems with two types of repulsive interparticle interactions, namely, Yukawa and superparamagnetic potentials. We find that in the homogeneous case, hydrodynamic interactions lead to an enhancement of the particle mobility and the mean-square displacement at long times scales as t(alpha), with alpha = 1/2 + epsilon and epsilon being a small correction. This correction, however, becomes much more important in the presence of an external field, which breaks the homogeneity of the particle distribution along the line and, therefore, promotes a richer dynamical scenario due to the hydrodynamical coupling among particles. We provide here the complete dynamical scenario in terms of the external potential parameters: amplitude and commensurability.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000308873500002 Publication Date 2012-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 14 Open Access
Notes ; This work was partially supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-Vl), and PIFI 3.4-PROMEP and CONACyT (Grant Nos. 61418/2007 and 102339/2008, Ph.D. Scholarship No. 230171/ 2010). ; Approved Most recent IF: 2.366; 2012 IF: 2.313
Call Number UA @ lucian @ c:irua:101840 Serial 3021
Permanent link to this record
 

 
Author Misko, V.R.; Zhao, H.J.; Peeters, F.M.; Oboznov, V.; Dubonos, S.V.; Grigorieva, I.V.
Title Formation of vortex shells in mesoscopic superconducting squares Type A1 Journal article
Year 2009 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 22 Issue 3 Pages (up) 034001,1-034001,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study vortex configurations in mesoscopic superconducting squares. Our theoretical approach is based on the analytical solution of the London equation using the Green's function method. The potential energy landscape found is then used in Langevin-type molecular-dynamics simulations to obtain stable vortex configurations. We show that the filling rules for vortices in squares with increasing applied magnetic field can be formulated, although in a different manner than in disks, in terms of the formation of vortex 'shells'. We discuss metastable states and the stability of the vortex configurations found with respect to variations of the material parameters and deformations of the shape of the sample.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000263564500002 Publication Date 2009-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 14 Open Access
Notes Approved Most recent IF: 2.878; 2009 IF: 2.694
Call Number UA @ lucian @ c:irua:76312 Serial 1267
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Leenaerts, O.; Liu, X.-J.; Peeters, F.M.
Title New group-V elemental bilayers : a tunable structure model with four-, six-, and eight-atom rings Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 3 Pages (up) 035123
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional group-V elemental materials have attracted widespread attention due to their nonzero band gap while displaying high electron mobility. Using first-principles calculations, we propose a series of new elemental bilayers with group-V elements (Bi, Sb, As). Our study reveals the dynamical stability of four-, six-, and eight-atom ring structures, demonstrating their possible coexistence in such bilayer systems. The proposed structures for Sb and As are large-gap semiconductors that are potentially interesting for applications in future nanodevices. The Bi structures have nontrivial topological properties with a direct nontrivial band gap. The nontrivial gap is shown to arise from a band inversion at the Brillouin zone center due to the strong intrinsic spin-orbit coupling in Bi atoms. Moreover, we demonstrate the possibility of tuning the properties of these materials by enhancing the ratio of six-atom rings to four-and eight-atom rings, which results in wider nontrivial band gaps and lower formation energies.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000405363900005 Publication Date 2017-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work is supported by Ministry of Science and Technology of China (MOST) (Grant No. 2016YFA0301604), National Natural Science Foundation of China (NSFC) ( No. 11574008), the Thousand-Young-Talent Program of China, and the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:144834 Serial 4721
Permanent link to this record
 

 
Author Li, L.L.; Zarenia, M.; Xu, W.; Dong, H.M.; Peeters, F.M.
Title Exciton states in a circular graphene quantum dot: Magnetic field induced intravalley to intervalley transition Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 95 Pages (up) 045409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The magnetic-field dependence of the energy spectrum, wave function, binding energy, and oscillator strength of exciton states confined in a circular graphene quantum dot (CGQD) is obtained within the configuration interaction method. We predict that (i) excitonic effects are very significant in the CGQD as a consequence of a combination of geometric confinement, magnetic confinement, and reduced screening; (ii) two types of excitons (intravalley and intervalley) are present in the CGQD because of the valley degree of freedom in graphene; (iii) the intravalley and intervalley exciton states display different magnetic-field dependencies due to the different electron-hole symmetries of the single-particle energy spectra; (iv) with increasing magnetic field, the exciton ground state in the CGQD undergoes an intravalley to intervalley transition accompanied by a change of angular momentum; (v) the exciton binding energy does not increase monotonically with the magnetic field due to the competition between geometric and magnetic confinements; and (vi) the optical transitions of the intervalley and intravalley excitons can be tuned by the magnetic field, and valley-dependent excitonic transitions can be realized in a CGQD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000391856000006 Publication Date 2017-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was financially supported by the China Scholarship Council (CSC), the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grants No. 11304316, No. 11574319, and No. 11604380), and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:141444 Serial 4555
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Mogulkoc, Y.; Akgenc, B.; Mogulkoc, A.; Peeters, F.M.
Title Prediction of monoclinic single-layer Janus Ga₂ Te X (X = S and Se) : strong in-plane anisotropy Type A1 Journal article
Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 104 Issue 4 Pages (up) 045425
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By using density functional theory (DFT) based first-principles calculations, electronic, vibrational, piezo-electric, and optical properties of monoclinic Janus single-layer Ga2TeX (X = S or Se) are investigated. The dynamical, mechanical, and thermal stability of the proposed Janus single layers are verified by means of phonon bands, stiffness tensor, and quantum molecular dynamics simulations. The calculated vibrational spectrum reveals the either pure or coupled optical phonon branches arising from Ga-Te and Ga-X atoms. In addition to the in-plane anisotropy, single-layer Janus Ga2TeX exhibits additional out-of-plane asymmetry, which leads to important consequences for its electronic and optical properties. Electronic band dispersions indicate the direct band-gap semiconducting nature of the constructed Janus structures with energy band gaps falling into visible spectrum. Moreover, while orientation-dependent linear-elastic properties of Janus single layers indicate their strong anisotropy, the calculated in-plane stiffness values reveal the ultrasoft nature of the structures. In addition, predicted piezoelectric coefficients show that while there is a strong in-plane anisotropy between piezoelectric constants along armchair (AC) and zigzag (ZZ) directions, there exists a tiny polarization along the out-of-plane direction as a result of the formation of Janus structure. The optical response to electromagnetic radiation has been also analyzed through density functional theory by considering the independent-particle approximation. Finally, the optical spectra of Janus Ga2TeX structures is investigated and it showed a shift from the ultraviolet region to the visible region. The fact that the spectrum is between these regions will allow it to be used in solar energy and many nanoelectronics applications. The predicted monoclinic single-layer Janus Ga2TeX are relevant for promising applications in optoelectronics, optical dichroism, and anisotropic nanoelasticity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000678811100007 Publication Date 2021-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:180404 Serial 7013
Permanent link to this record
 

 
Author Ferreira, W.P.; Matulis, A.; Farias, G.A.; Peeters, F.M.
Title Structure and correlations in two-dimensional classical artificial atoms confined by a Coulomb potential Type A1 Journal article
Year 2003 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 67 Issue 4Part 2 Pages (up) 046601-46608
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The ordering of N equally charged particles (-e) moving in two dimensions and confined by a Coulomb potential, resulting from a displaced positive charge Ze is discussed. This is a classical model system for atoms. We obtain the configurations of charged particles which, depending on the value of N and Z, may result in ring structures, hexagonal-type configurations, and for N/Z approximate to 1 in an inner structure of particles which is separated by an outer ring of particles. For N/Z << 1, the Hamiltonian of the parabolic confinement case is recovered. For N/Z approximate to 1, the configurations are very different from those found in the case of a parabolic confinement potential. A hydrodynamic analysis is presented in order to highlight the correlations effects.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000182825400087 Publication Date 2003-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 14 Open Access
Notes Approved Most recent IF: 2.366; 2003 IF: 2.202
Call Number UA @ lucian @ c:irua:104123 Serial 3273
Permanent link to this record
 

 
Author Tkachenko, D.V.; Misko, V.R.; Peeters, F.M.
Title Dynamics of colloids in a narrow channel driven by a nonuniform force Type A1 Journal article
Year 2009 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 80 Issue 5 Pages (up) 051401,1-051401,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using Brownian dynamics simulations, we investigate the dynamics of colloids confined in two-dimensional narrow channels driven by a nonuniform force Fdr(y). We considered linear-gradient, parabolic, and deltalike driving-force profiles. This driving force induces melting of the colloidal solid (i.e., shear-induced melting), and the colloidal motion experiences a transition from elastic to plastic regime with increasing Fdr. For intermediate Fdr (i.e., in the transition region) the response of the system, i.e., the distribution of the velocities of the colloidal chains õi(y), in general does not coincide with the profile of the driving force Fdr(y), and depends on the magnitude of Fdr, the width of the channel, and the density of colloids. For example, we show that the onset of plasticity is first observed near the boundaries while the motion in the central region is elastic. This is explained by: (i) (in)commensurability between the chains due to the larger density of colloids near the boundaries, and (ii) the gradient in Fdr. Our study provides a deeper understanding of the dynamics of colloids in channels and could be accessed in experiments on colloids (or in dusty plasma) with, e.g., asymmetric channels or in the presence of a gradient potential field.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000272309500045 Publication Date 2009-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 14 Open Access
Notes Approved Most recent IF: 2.366; 2009 IF: 2.400
Call Number UA @ lucian @ c:irua:80313 Serial 774
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Superconducting nanofilms: Andreev-type states induced by quantum confinement Type A1 Journal article
Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue 5 Pages (up) 054505,1-054505,8
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract Quantum confinement of the transverse electron motion is the major effect governing the superconducting properties of high-quality metallic nanofilms, leading to a nonuniform transverse distribution of the superconducting condensate. In this case the order parameter can exhibit significant local enhancements due to these quantum-size effects and, consequently, quasiparticles have lower energies when they avoid the local enhancements of the pair condensate. Such excitations can be considered as new Andreev-type quasiparticles but now induced by quantum confinement. By numerically solving the Bogoliubovde Gennes equations and using Anderson's approximate solution to these equations, we: (a) formulate a criterion for such new Andreev-type states (NATS) and (b) study their effect on the superconducting characteristics in metallic nanofilms. We also argue that nanofilms made of low-carrier-density materials, e.g., of superconducting semiconductors, can be a more optimal choice for the observations of NATS and other quantum-size superconducting effects.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000259368200109 Publication Date 2008-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76526 Serial 3356
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B.; Hulman, M.; Kuzmany, H.; Krause, M.
Title Superposition of quantum and classical rotational motions in Sc2C2@C84 fullerite Type A1 Journal article
Year 2007 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 126 Issue 6 Pages (up) 064304,1-15
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000244250200008 Publication Date 2007-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 14 Open Access
Notes Approved Most recent IF: 2.965; 2007 IF: 3.044
Call Number UA @ lucian @ c:irua:63628 Serial 3381
Permanent link to this record
 

 
Author Kalina, R.; Szafran, B.; Bednarek, S.; Peeters, F.M.
Title Magnetic-field asymmetry of electron wave packet transmission in bent channels capacitively coupled to a metal gate Type A1 Journal article
Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 102 Issue 6 Pages (up) 066807,1-066807,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the electron wave packet moving through a bent channel. We demonstrate that the packet transmission probability becomes an asymmetric function of the magnetic field when the electron packet is capacitively coupled to a metal plate. The coupling occurs through a nonlinear potential which translates a different kinetics of the transport for opposite magnetic-field orientations into a different potential felt by the scattered electron.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000263389500056 Publication Date 2009-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 14 Open Access
Notes Approved Most recent IF: 8.462; 2009 IF: 7.328
Call Number UA @ lucian @ c:irua:76315 Serial 1867
Permanent link to this record
 

 
Author Amin-Ahmadi, B.; Idrissi, H.; Delmelle, R.; Pardoen, T.; Proost, J.; Schryvers, D.
Title High resolution transmission electron microscopy characterization of fcc -> 9R transformation in nanocrystalline palladium films due to hydriding Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 102 Issue 7 Pages (up) 071911-71914
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sputtered nanocrystalline palladium thin films with nanoscale growth twins have been subjected to hydriding cycles. The evolution of the twin boundaries has been investigated using high resolution transmission electron microscopy. Surprisingly, the Sigma 3{112} incoherent twin boundaries dissociate after hydriding into two phase boundaries bounding a 9R phase. This phase which corresponds to single stacking faults located every three {111} planes in the fcc Pd structure was not expected because of the high stacking fault energy of Pd. This observation is connected to the influence of the Hydrogen on the stacking fault energy of palladium and the high compressive stresses building up during hydriding. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793512]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000315596700023 Publication Date 2013-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes Iap Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:108303 Serial 1462
Permanent link to this record