|   | 
Details
   web
Records
Author Serrano-Sevillano, J.; Reynaud, M.; Saracibar, A.; Altantzis, T.; Bals, S.; van Tendeloo, G.; Casas-Cabanas, M.
Title Enhanced electrochemical performance of Li-rich cathode materials through microstructural control Type A1 Journal article
Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 20 Issue 20 Pages (down) 23112-23122
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microstructural complexity of Li-rich cathode materials has so far hampered understanding the critical link between size, morphology and structural defects with both capacity and voltage fadings that this family of materials exhibits. Li2MnO3 is used here as a model material to extract reliable structure–property

relationships that can be further exploited for the development of high-performing and long-lasting Li-rich oxides. A series of samples with microstructural variability have been prepared and thoroughly characterized using the FAULTS software, which allows quantification of planar defects and extraction of

average crystallite sizes. Together with transmission electron microscopy (TEM) and density functional theory (DFT) results, the successful application of FAULTS analysis to Li2MnO3 has allowed rationalizing the synthesis conditions and identifying the individual impact of concurrent microstructural features on

both voltage and capacity fadings, a necessary step for the development of high-capacity Li-ion cathode materials with enhanced cycle life.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000445220500071 Publication Date 2018-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 36 Open Access OpenAccess
Notes This work was supported by the Spanish Ministerio de la Economı´a y de la Competitividad through the project IONSTORE (MINECO ref. ENE2016-81020-R). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). JSS and AS are grateful for computing time provided by the Spanish i2Basque Centers. MR acknowledges the Spanish State for its financial support through her post-doctoral grant Juan de la Cierva – Formacio´n (MINECO ref. FJCI-2014-19990) and her international mobility grant Jose´ Castillejos (MECD ref. CAS15/00354). S. B. acknowledges funding from the European Research Council (ERC starting grant #335078 Colouratom) and T. A. a postdoctoral grant from the Research Foundation Flanders (FWO). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.123
Call Number EMAT @ emat @c:irua:154782UA @ admin @ c:irua:154782 Serial 5062
Permanent link to this record
 

 
Author Fix, T.; Ulhaq-Bouillet, C.; Colis, S.; Dinia, A.; Bertoni, G.; Verbeeck, J.; Van Tendeloo, G.
Title Nanoscale analysis of interfaces in a metal/oxide/oxide trilayer obtained by pulsed laser deposition Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 91 Issue 2 Pages (down) 023106-023106,3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sr2FeMoO6/SrTiO3/CoFe2 trilayers grown by pulsed laser deposition on SrTiO3 (001) are investigated by transmission electron microscopy and electron energy loss spectroscopy. The stack is epitaxial, independent of whether the CoFe2 electrode is grown at 500 or at 50 degrees C. Thus it is possible to obtain epitaxy near room temperature. The SrTiO3/CoFe2 interface is quite sharp, while the Sr2FeMoO6/SrTiO3 interface presents regions of Fe depletion. The chemical composition of the films is close to the nominal stoichiometries. These results could be useful for the growth of heteroepitaxial devices and magnetic tunnel junctions. (C) 2007 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000248017300079 Publication Date 2007-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 16 Open Access
Notes Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:94653UA @ admin @ c:irua:94653 Serial 2263
Permanent link to this record
 

 
Author Delfino, C.L.; Hao, Y.; Martin, C.; Minoia, A.; Gopi, E.; Mali, K.S.; Van der Auweraer, M.; Geerts, Y.H.; Van Aert, S.; Lazzaroni, R.; De Feyter, S.
Title Conformation-Dependent Monolayer and Bilayer Structures of an Alkylated TTF Derivative Revealed using STM and Molecular Modeling Type A1 Journal Article
Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C
Volume 127 Issue 47 Pages (down) 23023-23033
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract In this study, the multi-layer self-assembled molecular network formation of an alkylated tetrathiafulvalene compound is studied at the liquid-solid interface between 1-phenyloctane and graphite. A combined theoretical/experimental approach associating force-field and quantum-chemical calculations with scanning tunnelling microscopy is used to determine the two-dimensional self-assembly beyond the monolayer, but also to further the understanding of the molecular adsorption conformation and its impact on the molecular packing within the assemblies at the monolayer and bilayer level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001111637100001 Publication Date 2023-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Financial support from the Research Foundation-Flanders (FWO G081518N, G0A3220N) and KU Leuven–Internal Funds (C14/19/079) is acknowledged. This work was in part supported by FWO and F. R. S.-FNRS under the Excellence of Science EOS program (project 30489208 and 40007495). C.M. acknowledges the financial support: Grants PID2021-128761OA-C22 and CNS2022-136052 funded by MCIN/AEI/10.13039/501100011033 by the “European Union” and SBPLY/21/180501/000127 funded by JCCM and by the EU through “Fondo Europeo de Desarollo Regional” (FEDER). Research in Mons is also supported by the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif – CÉCI, under Grant 2.5020.11, and by the Walloon Region (ZENOBE Tier-1 supercomputer, under grant 1117545). Approved Most recent IF: 3.7; 2023 IF: 4.536
Call Number EMAT @ emat @c:irua:201671 Serial 8974
Permanent link to this record
 

 
Author Vanrompay, H.; Bladt, E.; Albrecht, W.; Béché, A.; Zakhozheva, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Bals, S.
Title 3D characterization of heat-induced morphological changes of Au nanostars by fast in situ electron tomography Type A1 Journal article
Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 10 Issue 10 Pages (down) 22792-22801
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A thorough understanding of the thermal stability and potential reshaping of anisotropic gold nanostars is required for various potential applications. Combination of a tomographic heating holder with fast tilt series acquisition has been used to monitor temperature-induced morphological changes of Au nanostars. The outcome of our 3D investigations can be used as an input for boundary element method simulations, enabling us to investigate the influence of reshaping on the nanostars’ plasmonic properties. Our work leads to a better understanding of the mechanism behind thermal reshaping. In addition, the approach presented here is generic and can hence be applied to a wide variety of nanoparticles made of different materials and with arbitrary morphology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453248100010 Publication Date 2018-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 55 Open Access OpenAccess
Notes H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). E.B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020. The authors acknowledge funding from European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M. and M.Z. and MUMMERING 765604 to S.B. and M.Z.). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078- COLOURATOMS).; Ecas_sara Approved Most recent IF: 7.367
Call Number EMAT @ emat @c:irua:155718UA @ admin @ c:irua:155718 Serial 5071
Permanent link to this record
 

 
Author Benetti, G.; Caddeo, C.; Melis, C.; Ferrini, G.; Giannetti, C.; Winckelmans, N.; Bals, S.; J Van Bael, M.; Cavaliere, E.; Gavioli, L.; Banfi, F.
Title Bottom-Up Mechanical Nanometrology of Granular Ag Nanoparticles Thin Films Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 121 Pages (down) 22434-22441
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ultrathin metal nanoparticles coatings, synthesized by gas-phase deposition, are emerging as go-to materials in a variety of fields ranging from pathogens control, sensing to energy storage. Predicting their morphology and mechanical properties beyond a trial-and-error approach is a crucial issue limiting their exploitation in real-life applications. The morphology and mechanical properties of Ag nanoparticles ultrathin films, synthesized by supersonic cluster beam deposition, are here assessed adopting a bottom-up, multi-technique approach. A virtual film model is proposed merging high resolution scanning transmission electron microscopy, supersonic cluster beam dynamics and molecular dynamics simulations. The model is validated against mechanical nanometrology measurements and is readily extendable to metals other than Ag. The virtual film is shown to be a flexible and reliable predictive tool to access morphology-dependent properties such as mesoscale gas-dynamics and elasticity of ultrathin films synthesized by gas-phase deposition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413131700072 Publication Date 2017-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 30 Open Access OpenAccess
Notes ; All authors thank Prof. Dr. Luciano Colombo for enlightening discussions. C.C. and F.B. acknowledge financial support from the MIUR Futuro in ricerca 2013 Grant in the frame of the ULTRANANO Project (Project No. RBFR13NEA4). F.B., G.F., and C.G. acknowledge support from Universita Cattolica del Sacro Cuore through D.2.2 and D.3.1 grants. F.B. acknowledges financial support from Fondazione E.U.L.O. The authors acknowledge financial support from the European Union through the seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). ; Approved Most recent IF: 4.536
Call Number EMAT @ emat @c:irua:145828UA @ admin @ c:irua:145828 Serial 4706
Permanent link to this record
 

 
Author Leus, K.; Concepcion, P.; Vandichel, M.; Meledina, M.; Grirrane, A.; Esquivel, D.; Turner, S.; Poelman, D.; Waroquier, M.; Van Speybroeck, V.; Van Tendeloo, G.; García, H.; Van Der Voort, P.;
Title Au@UiO-66 : a base free oxidation catalyst Type A1 Journal article
Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 5 Issue 5 Pages (down) 22334-22342
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present the in situ synthesis of Au nanoparticles within the Zr based Metal Organic Framework, UiO-66. The resulting Au@UiO-66 materials were characterized by means of N-2 sorption, XRPD, UV-Vis, XRF, XPS and TEM analysis. The Au nanoparticles (NP) are homogeneously distributed along the UiO-66 host matrix when using NaBH4 or H-2 as reducing agents. The Au@UiO-66 materials were evaluated as catalysts in the oxidation of benzyl alcohol and benzyl amine employing O-2 as oxidant. The Au@MOF materials exhibit a very high selectivity towards the ketone (up to 100%). Regenerability and stability tests demonstrate that the Au@UiO-66 catalyst can be recycled with a negligible loss of Au species and no loss of crystallinity. In situ IR measurements of UiO-66 and Au@UiO-66-NaBH4, before and after treatment with alcohol, showed an increase in IR bands that can be assigned to a combination of physisorbed and chemisorbed alcohol species. This was confirmed by velocity power spectra obtained from the molecular dynamics simulations. Active peroxo and oxo species on Au could be visualized with Raman analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000350643700005 Publication Date 2015-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 38 Open Access
Notes FWO; Hercules; 246791 COUNTATOMS; IAP-PAI Approved Most recent IF: 3.108; 2015 IF: 3.840
Call Number c:irua:125431 Serial 207
Permanent link to this record
 

 
Author Bekaert, J.; Saniz, R.; Partoens, B.; Lamoen, D.
Title Native point defects in CuIn1-xGaxSe2 : hybrid density functional calculations predict the origin of p- and n-type conductivity Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 16 Issue 40 Pages (down) 22299-22308
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We have performed a first-principles study of the p- and n-type conductivity in CuIn1−xGaxSe2 due to native point defects, based on the HSE06 hybrid functional. Band alignment shows that the band gap becomes larger with x due to the increasing conduction band minimum, rendering it hard to establish n-type conductivity in CuGaSe2. From the defect formation energies, we find that In/GaCu is a shallow donor, while VCu, VIn/Ga and CuIn/Ga act as shallow acceptors. Using the total charge neutrality of ionized defects and intrinsic charge carriers to determine the Fermi level, we show that under In-rich growth conditions InCu causes strongly n-type conductivity in CuInSe2. Under increasingly In-poor growth conditions, the conductivity type in CuInSe2 alters to p-type and compensation of the acceptors by InCu reduces, as also observed in photoluminescence experiments. In CuGaSe2, the native acceptors pin the Fermi level far away from the conduction band minimum, thus inhibiting n-type conductivity. On the other hand, CuGaSe2 shows strong p-type conductivity under a wide range of Ga-poor growth conditions. Maximal p-type conductivity in CuIn1−xGaxSe2 is reached under In/Ga-poor growth conditions, in agreement with charge concentration measurements on samples with In/Ga-poor stoichiometry, and is primarily due to the dominant acceptor CuIn/Ga.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000343072800042 Publication Date 2014-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 43 Open Access
Notes ; We gratefully acknowledge financial support from the science fund FWO-Flanders through project G.0150.13. The first-principles calculations have been carried out on the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Centre (VSC), supported financially by the Hercules foundation and the Flemish Government (EWI Department). We also like to thank Prof. S. Siebentritt of the University of Luxembourg for a presentation of her work on GIGS during a visit to our research group and for helpful discussions of our results. ; Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:120465 Serial 2284
Permanent link to this record
 

 
Author Abakumov, M.A.; Semkina, A.S.; Skorikov, A.S.; Vishnevskiy, D.A.; Ivanova, A.V.; Mironova, E.; Davydova, G.A.; Majouga, A.G.; Chekhonin, V.P.
Title Toxicity of iron oxide nanoparticles : size and coating effects Type A1 Journal article
Year 2018 Publication Journal of biochemical and molecular toxicology Abbreviated Journal
Volume 32 Issue 12 Pages (down) e22225
Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)
Abstract Toxicological research of novel nanomaterials is a major developmental step of their clinical approval. Since iron oxide magnetic nanoparticles have a great potential in cancer treatment and diagnostics, the investigation of their toxic properties is very topical. In this paper we synthesized bovine serum albumin-coated iron oxide nanoparticles with different sizes and their polyethylene glycol derivative. To prove high biocompatibility of obtained nanoparticles the number of in vitro toxicological tests on human fibroblasts and U251 glioblastoma cells was performed. It was shown that albumin nanoparticles' coating provides a stable and biocompatible shell and prevents cytotoxicity of magnetite core. On long exposure times (48 hours), cytotoxicity of iron oxide nanoparticles takes place due to free radical production, but this toxic effect may be neutralized by using polyethylene glycol modification.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000452532300008 Publication Date 2018-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1095-6670 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156269 Serial 8684
Permanent link to this record
 

 
Author Zeng, Y.-J.; Gauquelin, N.; Li, D.-Y.; Ruan, S.-C.; He, H.-P.; Egoavil, R.; Ye, Z.-Z.; Verbeeck, J.; Hadermann, J.; Van Bael, M.J.; Van Haesendonck, C.
Title Co-Rich ZnCoO Nanoparticles Embedded in Wurtzite Zn1-xCoxO Thin Films: Possible Origin of Superconductivity Type A1 Journal article
Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 7 Issue 7 Pages (down) 22166-22171
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Co-rich ZnCoO nanoparticles embedded in wurtzite Zn0.7Co0.3O thin films are grown by pulsed laser deposition on a Si substrate. Local superconductivity with an onset Tc at 5.9 K is demonstrated in the hybrid system. The unexpected superconductivity probably results from Co(3+) in the Co-rich ZnCoO nanoparticles or from the interface between the Co-rich nanoparticles and the Zn0.7Co0.3O matrix.
Address Solid State Physics and Magnetism Section, KU Leuven , Celestijnenlaan 200 D, BE-3001 Leuven, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000363001500007 Publication Date 2015-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 13 Open Access
Notes This work has been supported by the Research Foundation − Flanders (FWO, Belgium) as well as by the Flemish Concerted Research Action program (BOF KU Leuven, GOA/14/007). N. G. and J. V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Flemish Hercules Foundation. The work at Shenzhen University was supported by National Natural Science Foundation of China under Grant No. 61275144 and Natural Science Foundation of SZU. Y.-J. Z. acknowledges funding under grant No. SKL2015-12 from the State Key Laboratory of Silicon Materials; ECASJO_; Approved Most recent IF: 7.504; 2015 IF: 6.723
Call Number c:irua:129195 c:irua:129195UA @ admin @ c:irua:129195 Serial 3949
Permanent link to this record
 

 
Author Tikhomirov, V.K.; Rodriguez, V.D.; Kutznetsov, D.; Kirilenko, D.; Van Tendeloo, G.; Moshchalkov, V.V.
Title Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters Type A1 Journal article
Year 2010 Publication Optics express Abbreviated Journal Opt Express
Volume 18 Issue 21 Pages (down) 22032-22040
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Bulk oxyfluoride glasses doped with Ag nanoclusters have been prepared using the melt quenching technique. When pumped in the absorption band of Ag nanoclusters between 300 to 500 nm, these glasses emit a very broad luminescence band covering all the visible range with a weak tail extending into the near infrared. The maximum of the luminescence band and its color shifts to the blue with a shortening of the excitation wavelength and an increasing ratio of oxide to fluoride components, resulting in white color luminescence at a particular ratio of oxide to fluoride; with a quantum yield above 20%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000283686500057 Publication Date 2010-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 74 Open Access
Notes Methusalem Approved Most recent IF: 3.307; 2010 IF: 3.753
Call Number UA @ lucian @ c:irua:85802 Serial 2698
Permanent link to this record
 

 
Author Retuerto, M.; Calle-Vallejo, F.; Pascual, L.; Lumbeeck, G.; Fernandez-Diaz, M.T.; Croft, M.; Gopalakrishnan, J.; Pena, M.A.; Hadermann, J.; Greenblatt, M.; Rojas, S.
Title La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity Type A1 Journal article
Year 2019 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 11 Issue 24 Pages (down) 21454-21464
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Perovskites (ABO(3)) with transition metals in active B sites are considered alternative catalysts for the water oxidation to oxygen through the oxygen evolution reaction (OER) and for the oxygen reduction through the oxygen reduction reaction (ORR) back to water. We have synthesized a double perovskite (A(2)BB'O-6) with different cations in A, B, and B' sites, namely, ((La15Sr0.5)-Sr-.)(A)(Ni0.5Mn0.5)(B)(Ni0.5Ru0.5)(B)O-6 (LSNMR), which displays an outstanding OER/ORR bifunctional performance. The composition and structure of the oxide has been determined by powder X-ray diffraction, powder neutron diffraction, and transmission electron microscopy to be monoclinic with the space group P2(1)/n and with cationic ordering between the ions in the B and B' sites. X-ray absorption near-edge spectroscopy suggests that LSNMR presents a configuration of similar to Ni2+, similar to Mn4+, and similar to Ru5+. This bifunctional catalyst is endowed with high ORR and OER activities in alkaline media, with a remarkable bifunctional index value of similar to 0.83 V (the difference between the potentials measured at -1 mA cm(-2) for the ORR and +10 mA cm(-2) for the OER). The ORR onset potential (E-onset) of 0.94 V is among the best reported to date in alkaline media for ORR-active perovskites. The ORR mass activity of LSNMR is 1.1 A g(-1) at 0.9 V and 7.3 A g(-1) at 0.8 V. Furthermore, LSNMR is stable in a wide potential window down to 0.05 V. The OER potential to achieve a current density of 10 mA cm(-2) is 1.66 V. Density functional theory calculations demonstrate that the high ORR/OER activity of LSNMR is related to the presence of active Mn sites for the ORR- and Ru-active sites for the OER by virtue of the high symmetry of the respective reaction steps on those sites. In addition, the material is stable to ORR cycling and also considerably stable to OER cycling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472683300019 Publication Date 2019-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 12 Open Access
Notes ; This work was supported by the ENE2016-77055-C3-3-R project from the Spanish Ministry of Economy and Competitiveness (MINECO) and PIE 201480E122 from CSIC. M.R. thanks MINECO's Juan de la Cierva program for a grant (FPDI-2013-17582). F.C.-V. thanks the Spanish MEC for a Ramon y Cajal research contract (RYC-2015-18996). M.G. acknowledges the support from NSF-DMR-1507252 grant, NJ, USA. ; Approved Most recent IF: 7.504
Call Number UA @ admin @ c:irua:161320 Serial 5400
Permanent link to this record
 

 
Author Zalfani, M.; van der Schueren, B.; Hu, Z.-Y.; Rooke, J.C.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Su, B.-L.
Title Novel 3DOM BiVO4/TiO2nanocomposites for highly enhanced photocatalytic activity Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages (down) 21244-21256
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Novel 3DOM BiVO4/TiO2 nanocomposites with intimate contact were for the first time synthesized by a hydrothermal method in order to elucidate their visible-light-driven photocatalytic performances. BiVO4 nanoparticles and 3DOM TiO2 inverse opal were fabricated respectively. These materials were characterized by XRD, XPS, SEM, TEM, N2 adsorption–desorption and UV-vis diffuse (UV-vis) and photoluminescence spectroscopies. As references for comparison, a physical mixture of BiVO4 nanoparticles and 3DOM TiO2 inverse opal powder (0.08 : 1), and a BiVO4/P25 TiO2 (0.08 : 1) nanocomposite made also by the hydrothermal method were prepared. The photocatalytic performance of all the prepared materials was evaluated by the degradation of rhodamine B (RhB) as a model pollutant molecule under visible light irradiation. The highly ordered 3D macroporous inverse opal structure can provide more active surface areas and increased mass transfer because of its highly accessible 3D porosity. The results show that 3DOM BiVO4/TiO2 nanocomposites possess a highly prolonged lifetime and increased separation of visible light generated charges and extraordinarily high photocatalytic activity. Owing to the intimate contact between BiVO4 and large surface area 3DOM TiO2, the photogenerated high energy charges can be easily transferred from BiVO4 to the 3DOM TiO2 support. BiVO4 nanoparticles in the 3DOM TiO2 inverse opal structure act thus as a sensitizer to absorb visible light and to transfer efficiently high energy electrons to TiO2 to ensure long lifetime of the photogenerated charges and keep them well separated, owing to the direct band gap of BiVO4 of 2.4 eV, favourably positioned band edges, very low recombination rate of electron–hole pairs and stability when coupled with photocatalysts, explaining the extraordinarily high photocatalytic performance of 3DOM BiVO4/TiO2 nanocomposites. It is found that larger the amount of BiVO4 in the nanocomposite, longer the duration of photogenerated charge separation and higher the photocatalytic activity. This work can shed light on the development of novel visible light responsive nanomaterials for efficient solar energy utilisation by the intimate combination of an inorganic light sensitizing nanoparticle with an inverse opal structure with high diffusion efficiency and high accessible surface area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000363163200049 Publication Date 2015-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 88 Open Access
Notes This work was realized with the financial support of the Belgian FNRS (Fonds National de la Recherche Scientifique). This research used resources of the Electron Microscopy Service located at the University of Namur. This Service is a member of the “Plateforme Technologique Morphologie – Imagerie”. The XPS analyses were made in the LISE, Department of Physics of the University of Namur thanks to Dr P. Louette. This work was also supported by Changjiang Scholars and the Innovative Research Team (IRT1169) of the Ministry of Education of the People's Republic of China. B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Clare Hall Life Membership at the Clare Hall and the financial support of the Department of Chemistry, University of Cambridge. G. Van Tendeloo and Z. Y. Hu acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483).; esteem2_jra4 Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number c:irua:129476 c:irua:129476 Serial 3951
Permanent link to this record
 

 
Author Opherden, L.; Sieger, M.; Pahlke, P.; Hühne, R.; Schultz, L.; Meledin, A.; Van Tendeloo, G.; Nast, R.; Holzapfel, B.; Bianchetti, M.; MacManus-Driscoll, J.L.; Hänisch, J.
Title Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue 6 Pages (down) 21188
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7−δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370364500001 Publication Date 2016-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 39 Open Access
Notes The authors gratefully acknowledge J. Scheiter, U. Besold, and U. Fiedler for technical assistance. This work was financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007-2013) under Grant Agreement no. 280432. Approved Most recent IF: 4.259
Call Number c:irua:131920 Serial 4026
Permanent link to this record
 

 
Author Do, M.T.; Gauquelin, N.; Nguyen, M.D.; Blom, F.; Verbeeck, J.; Koster, G.; Houwman, E.P.; Rijnders, G.
Title Interface degradation and field screening mechanism behind bipolar-cycling fatigue in ferroelectric capacitors Type A1 Journal article
Year 2021 Publication Apl Materials Abbreviated Journal Apl Mater
Volume 9 Issue 2 Pages (down) 021113
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Polarization fatigue, i.e., the loss of polarization of ferroelectric capacitors upon field cycling, has been widely discussed as an interface related effect. However, mechanism(s) behind the development of fatigue have not been fully identified. Here, we study the fatigue mechanisms in Pt/PbZr0.52Ti0.48O3/SrRuO3 (Pt/PZT/SRO) capacitors in which all layers are fabricated by pulsed laser deposition without breaking the vacuum. With scanning transmission electron microscopy, we observed that in the fatigued capacitor, the Pt/PZT interface becomes structurally degraded, forming a 5 nm-10 nm thick non-ferroelectric layer of crystalline ZrO2 and diffused Pt grains. We then found that the fatigued capacitors can regain the full initial polarization switching if the externally applied field is increased to at least 10 times the switching field of the pristine capacitor. These findings suggest that polarization fatigue is driven by a two-step mechanism. First, the transient depolarization field that repeatedly appears during the domain switching under field cycling causes decomposition of the metal/ferroelectric interface, resulting in a non-ferroelectric degraded layer. Second, this interfacial non-ferroelectric layer screens the external applied field causing an increase in the coercive field beyond the usually applied maximum field and consequently suppresses the polarization switching in the cycled capacitor. Our work clearly confirms the key role of the electrode/ferroelectric interface in the endurance of ferroelectric-based devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000630052100006 Publication Date 2021-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 5 Open Access OpenAccess
Notes This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek through Grant No. F62.3.15559. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. N.G. and J.V. acknowledge funding from the GOA project “Solarpaint” of the University of Antwerp. This work has also received funding from the European Union's Horizon 2020 research and innovation program under Grant No. 823717-ESTEEM3. We acknowledge D. Chezganov for his useful insights. Approved Most recent IF: 4.335
Call Number UA @ admin @ c:irua:177663 Serial 6783
Permanent link to this record
 

 
Author Kurttepeli, M.; Deng, S.; Verbruggen, S.W.; Guzzinati, G.; Cott, D.J.; Lenaerts, S.; Verbeeck, J.; Van Tendeloo, G.; Detavernier, C.; Bals, S.
Title Synthesis and characterization of photoreactive TiO2carbon nanosheet composites Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 36 Pages (down) 21031-21037
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract We report the atomic layer deposition of titanium dioxide on carbon nanosheet templates and investigate the effects of postdeposition annealing in a helium environment using different characterization techniques. The crystallization of the titanium dioxide coating upon annealing is observed using in situ X-ray diffraction. The (micro)structural characterization of the films is carried out by scanning electron microscopy and advanced transmission electron microscopy techniques. Our study shows that the annealing of the atomic layer deposition processed and carbon nanosheets templated titanium dioxide layers in helium environment resulting in the formation of a porous, nanocrystalline and photocatalytically active titanium dioxide-carbon nanosheet composite film. Such composites are suitable for photocatalysis and dye-sensitized solar cells applications.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000341619500034 Publication Date 2014-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 9 Open Access OpenAccess
Notes This research was funded by the Flemish research foundation FWO-Vlaanderen, by the European Research Council (Starting Grant No. 239865) and by the Special Research Fund BOF of Ghent University (GOA-01G01513). G.G, M.K., J.V., S.B., and G.V.T. acknowledge funding from the European Research Council under the seventh Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX and No. 335078 COLOURATOMS. ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:119085 Serial 3416
Permanent link to this record
 

 
Author Pullini, D.; Sgroi, M.; Mahmoud, A.; Gauquelin, N.; Maschio, L.; Lorenzo-Ferrari, A.M.; Groenen, R.; Damen, C.; Rijnders, G.; van den Bos, K.H.W.; Van Aert, S.; Verbeeck, J.
Title One step toward a new generation of C-MOS compatible oxide p-n junctions: Structure of the LSMO/ZnO interface elucidated by an experimental and theoretical synergic work Type A1 Journal article
Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 9 Issue 9 Pages (down) 20974-20980
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Heterostructures formed by La0.7Sr0.3MnO3/ZnO (LSMO/ZnO) interfaces exhibit extremely interesting electronic properties making them promising candidates for novel oxide p–n junctions, with multifunctional features. In this work, the structure of the interface is studied through a combined experimental/theoretical approach. Heterostructures were grown epitaxially and homogeneously on 4″ silicon wafers, characterized by advanced electron microscopy imaging and spectroscopy and simulated by ab initio density functional theory calculations. The simulation results suggest that the most stable interface configuration is composed of the (001) face of LSMO, with the LaO planes exposed, in contact with the (112̅0) face of ZnO. The ab initio predictions agree well with experimental high-angle annular dark field scanning transmission electron microscopy images and confirm the validity of the suggested structural model. Electron energy loss spectroscopy confirms the atomic sharpness of the interface. From statistical parameter estimation theory, it has been found that the distances between the interfacial planes are displaced from the respective ones of the bulk material. This can be ascribed to the strain induced by the mismatch between the lattices of the two materials employed
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404090000079 Publication Date 2017-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 4 Open Access OpenAccess
Notes Financial support is acknowledged from the European Commission – DG research and innovation to the collaborative research project named Interfacing oxides (IFOX, Contract No. NMP3-LA-2010-246102). N.G. and J.V. acknowledge the European Union (EU) Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX for support. S.V.A. and K.H.W.B. acknowledge financial support from the Research Foundation Flanders through project fundings (G.0374.13N , G.0368.15N, and G.0369.15N) and a Ph.D. research grant to K.H.W.B. The microscope was partly funded by the Hercules Fund from the Flemish Government. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. CINECA is acknowledged for computational facilities (Iscra project HP10CMO1UP). Approved Most recent IF: 7.504
Call Number EMAT @ emat @ c:irua:144431UA @ admin @ c:irua:144431 Serial 4621
Permanent link to this record
 

 
Author Serrano-Montes, A.B.; Langer, J.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Solís, D.M.; Taboada, J.M.; Obelleiro, F.; Sentosun, K.; Bals, S.; Bekdemir, A.; Stellacci, F.; Liz-Marzán, L.M.
Title Gold Nanostar-Coated Polystyrene Beads as Multifunctional Nanoprobes for SERS Bioimaging Type A1 Journal article
Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 120 Issue 120 Pages (down) 20860-20868
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hybrid colloidal nanocomposites comprising polystyrene beads and plasmonic gold nanostars are reported as multifunctional optical nanoprobes. Such self-assembled structures are excellent Raman enhancers for bio-applications as they feature plasmon modes in the near infrared “first biological transparency window”. In this proof of concept study, we used 4- mercaptobenzoic acid as a Raman-active molecule to optimize the density of gold nanostars on polystyrene beads, improving SERS performance and thereby allowing in vitro cell culture imaging. Interestingly, intermediate gold nanostar loadings were found to yield higher SERS response, which was confirmed by electromagnetic modeling. These engineered hybrid nanostructures notably improve the possibilities of using gold nanostars as SERS tags. Additionally, when fluorescently labeled polystyrene bead are used as colloidal carriers, the composite particles can be applied as promising tools for multimodal bioimaging.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384034600045 Publication Date 2016-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 64 Open Access OpenAccess
Notes Funding is acknowledged from the European Commission (Grant #310445-2 SAVVY), the European Research Council (ERC Advanced Grant #267867 Plasmaquo, and ERC Starting Grant #335078 Colouratom) and the Spanish MINECO (Project MAT2013-46101-R). We thank IKERLAT Polymers for the non-fluorescent PS beads and Prof. Juan Mareque, Prof. Soledad Penades and Dr. Sergio Moya (CIC biomagune) for borrowing various cell lines. D.M.S., J.M.T, and F.O. acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish MINECO (Projects MAT2014-58201-C2-1-R, MAT2014- 58201-C2-2-R), from the ERDF and the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC), and from the ERDF and the Extremadura Regional Government (Junta de Extremadura) under Project IB13185. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ; ECAS_Sara; Approved Most recent IF: 4.536
Call Number c:irua:133952 Serial 4082
Permanent link to this record
 

 
Author Charkin, D.O.; Akinfiev, V.S.; Alekseeva, A.M.; Batuk, M.; Abakumov, A.M.; Kazakov, S.M.
Title Synthesis and cation distribution in the new bismuth oxyhalides with the Sillen-Aurivillius intergrowth structures Type A1 Journal article
Year 2015 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
Volume 44 Issue 44 Pages (down) 20568-20576
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract About 20 new compounds with the Sillen-Aurivillius intergrowth structure, (MeMeBi3Nb2O11X)-Me-1-Bi-2 (Me-1 = Pb, Sr, Ba; Me-2 = Ca, Sr, Ba; X = Cl, Br, I), have been prepared. They are composed of stacking of [ANb(2)O(7)] perovskite blocks, fluorite-type [M2O2] blocks and halogen sheets. The cation distribution between the fluorite and perovskite layers has been studied for Ba2Bi3Nb2O11I, Ca1.25Sr0.75Bi3Nb2O11Cl, BaCaBi3Nb2O11Br and Sr2Bi3Nb2O11Cl. The smaller Me cations tend to reside in the perovskite block while the larger ones are situated in the fluorite-type block. The distribution of the elements was confirmed for BaCaBi3Nb2O11Br using energy dispersive X-ray analysis combined with scanning transmission electron microscopy (STEM-EDX). An electron diffraction study of this compound reveals a local symmetry lowering caused by weakly correlated rotation of NbO6 octahedra. Based on our findings, we suggest a new stability criterion for mixed-layer structures, which is that net charges of any two consecutive layers do not compensate for each other and only the whole layer sequence is electroneutral.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000365411500036 Publication Date 2015-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.029 Times cited 5 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:130330 Serial 4256
Permanent link to this record
 

 
Author Bercx, M.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.
Title First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages (down) 20542-20549
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Chalcopyrite semiconductors are of considerable interest for application as absorber layers in thin-film photovoltaic cells. When growing films of these compounds, however, they are often found to contain CuAu-like domains, a metastable phase of chalcopyrite. It has been reported that for CuInS2, the presence of the CuAu-like phase improves the short circuit current of the chalcopyrite-based photovoltaic cell. We investigate the thermodynamic stability of both phases for a selected list of I-III-VI2 materials using a first-principles density functional theory approach. For the CuIn-VI2 compounds, the difference in formation energy between the chalcopyrite and CuAu-like phase is found to be close to 2 meV per atom, indicating a high likelihood of the presence of CuAu-like domains. Next, we calculate the spectroscopic limited maximum efficiency (SLME) of the CuAu-like phase and compare the results with those of the corresponding chalcopyrite phase. We identify several candidates with a high efficiency, such as CuAu-like CuInS2, for which we obtain an SLME of 29% at a thickness of 500 nm. We observe that the SLME can have values above the Shockley-Queisser (SQ) limit, and show that this can occur because the SQ limit assumes the absorptivity to be a step function, thus overestimating the radiative recombination in the detailed balance approach. This means that it is possible to find higher theoretical efficiencies within this framework simply by calculating the J-V characteristic with an absorption spectrum. Finally, we expand our SLME analysis to indirect band gap absorbers by studying silicon, and find that the SLME quickly overestimates the reverse saturation current of indirect band gap materials, drastically lowering their calculated efficiency.
Address EMAT & CMT groups, Department of Physics, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerp, Belgium. marnik.bercx@uantwerpen.be
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000381428600058 Publication Date 2016-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 34 Open Access
Notes We acknowledge financial support of FWO-Vlaanderen through projects G.0150.13N and G.0216.14N and ERA-NET RUS Plus/FWO, Grant G0D6515N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO FWOVlaanderen. Approved Most recent IF: 4.123
Call Number c:irua:135091 Serial 4112
Permanent link to this record
 

 
Author Vávra, O.; Gaži, S.; Golubović, D.S.; Vávra, I.; Dérer, J.; Verbeeck, J.; Van Tendeloo, G.; Moshchalkov, V.V.
Title 0 and π phase Josephson coupling through an insulating barrier with magnetic impurities Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue 2 Pages (down) 020502
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have studied the temperature and field dependencies of the critical current I(C) in the Nb-Fe(0.1)Si(0.9)-Nb Josephson junction with a tunneling barrier formed by a paramagnetic insulator. We demonstrate that in these junctions coexistence of both the 0 and the pi states within one tunnel junction occurs, and leads to the appearance of a sharp cusp in the temperature dependence I(C)(T), similar to the I(C)(T) cusp found for the 0-pi transition in metallic pi junctions. This cusp is not related to the 0-pi temperature-induced transition itself, but is caused by the different temperature dependencies of the opposing 0 and pi supercurrents through the barrier.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000239426600010 Publication Date 2006-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:60087 c:irua:60087 c:irua:60087 c:irua:60087UA @ admin @ c:irua:60087 Serial 1
Permanent link to this record
 

 
Author Yao, Y.; Ugras, T.J.; Meyer, T.; Dykes, M.; Wang, D.; Arbe, A.; Bals, S.; Kahr, B.; Robinson, R.D.
Title Extracting pure circular dichroism from hierarchically structured CdS magic cluster films Type A1 Journal article
Year 2022 Publication ACS nano Abbreviated Journal Acs Nano
Volume 16 Issue 12 Pages (down) 20457-20469
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Chiroptically active, hierarchically structured materials are difficult to accurately characterize due to linear anisotropic contributions (i.e., linear dichroism (LD) and linear birefringence (LB)) and parasitic ellipticities that produce artifactual circular dichroism (CD) signals, in addition to chiral analyte contributions ranging from molecular-scale clusters to micron-sized assemblies. Recently, we have shown that CdS magic-sized clusters (MSC) can self-assemble into ordered films that have a hierarchical structure spanning seven orders of length-scale. These films have a strong CD response, but the chiral origins are obfuscated by the hierarchical architecture and LDLB contributions. Here, we derive and demonstrate a method for extracting the “pure” CD signal (CD generated by structural dissymmetry) from hierarchical MSC films and identified the chiral origin. The theory behind the method is derived using Mueller matrix and Stokes vector conventions and verified experimentally before being applied to hierarchical MSC and nanoparticle films with varying macroscopic orderings. Each film's extracted “true CD” shares a bisignate profile aligned with the exciton peak, indicating the assemblies adopt a chiral arrangement and form an exciton coupled system. Interestingly, the linearly aligned MSC film possesses one of the highest g-factors (0.05) among semiconducting nanostructures reported. Additionally, we find that films with similar electronic transition dipole alignment can possess greatly different g-factors, indicating chirality change rather than anisotropy is the cause of the difference in the CD signal. The difference in g-factor is controllable via film evaporation geometry. This study provides a simple means to measure “true” CD and presents an example of experimentally understanding chiroptic interactions in hierarchical nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000888219600001 Publication Date 2022-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.1 Times cited 8 Open Access Not_Open_Access
Notes This work was supported in part by the National Science Foundation (NSF) under Award Nos. DMR-2003431 and CHE-2003586. This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (DMR-1719875). This work is partly supported by Grant PID2021-123438NB-I00 (MCIN/AEI/10.13039/501100011033 and “ERDF vA way of making Europe”) and Grant IT1566-22 (Eusko Jaurlaritza). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in the Horizon 2020 program (Grant 894254 SuprAtom). S.B. acknowledges financial support from ERC Consolidator Grant No. 815128 REALNANO. B.K. acknowledges NSF award DMR-2003968. We would like to thank Dr. Mark August Pfeifer for help with circular dichroism measurements. Additionally, we would like to thank Professor Luis M. Liz-Marzan for invaluable discussions on chirality. Approved Most recent IF: 17.1
Call Number UA @ admin @ c:irua:192070 Serial 7305
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.
Title Easily doped p-type, low hole effective mass, transparent oxides Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue 6 Pages (down) 20446
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Fulfillment of the promise of transparent electronics has been hindered until now largely by the lack of semiconductors that can be doped p-type in a stable way, and that at the same time present high hole mobility and are highly transparent in the visible spectrum. Here, a high-throughput study based on first-principles methods reveals four oxides, namely X2SeO2, with X = La, Pr, Nd, and Gd, which are unique in that they exhibit excellent characteristics for transparent electronic device applications – i.e., a direct band gap larger than 3.1 eV, an average hole effective mass below the electron rest mass, and good p-type dopability. Furthermore, for La2SeO2 it is explicitly shown that Na impurities substituting La are shallow acceptors in moderate to strong anion-rich growth conditions, with low formation energy, and that they will not be compensated by anion vacancies VO or VSe.
Address EMAT, Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000369568900001 Publication Date 2016-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 55 Open Access
Notes We acknowledge the financial support of FWO-Vlaanderen through project G.0150.13 and of a GOA fund from the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government–department EWI. Approved Most recent IF: 4.259
Call Number c:irua:131611 Serial 4036
Permanent link to this record
 

 
Author Bittencourt, C.; Navio, C.; Nicolay, A.; Ruelle, B.; Godfroid, T.; Snyders, R.; Colomer, J.-F.; Lagos, M.J.; Ke, X.; Van Tendeloo, G.; Suarez-Martinez, I.; Ewels, C.P.
Title Atomic oxygen functionalization of vertically aligned carbon nanotubes Type A1 Journal article
Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue 42 Pages (down) 20412-20418
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Vertically aligned multiwalled carbon nanotubes (v-MWCNTs) are functionalized using atomic oxygen generated in a microwave plasma. X-ray photoelectron spectroscopy depth profile analysis shows that the plasma treatment effectively grafts oxygen exclusively at the v-MWCNT tips. Electron microscopy shows that neither the vertical alignment nor the structure of v-MWCNTs were affected by the plasma treatment. Density functional calculations suggest assignment of XPS C 1s peaks at 286.6 and 287.5 eV, to epoxy and carbonyl functional groups, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000296205600009 Publication Date 2011-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 31 Open Access
Notes Iap Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:91890 Serial 174
Permanent link to this record
 

 
Author Kolen'ko, Y.V.; Kovnir, K.A.; Gavrilov, A.I.; Garshev, A.V.; Meskin, P.E.; Churagulov, B.R.; Bouchard, M.; Colbeau-Justin, C.; Lebedev, O.I.; Van Tendeloo, G.; Yoshimura, M.
Title Structural, textural, and electronic properties of a nanosized mesoporous ZnxTi1-xO2-x solid solution prepared by a supercritical drying route Type A1 Journal article
Year 2005 Publication Journal of physical chemistry B Abbreviated Journal J Phys Chem B
Volume 109 Issue 43 Pages (down) 20303-20309
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000232959800037 Publication Date 2005-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.177 Times cited 34 Open Access
Notes Approved Most recent IF: 3.177; 2005 IF: 4.033
Call Number UA @ lucian @ c:irua:54886 Serial 3264
Permanent link to this record
 

 
Author Renero-Lecuna, C.; Herrero, A.; Jimenez de Aberasturi, D.; Martínez-Flórez, M.; Valiente, R.; Mychinko, M.; Bals, S.; Liz-Marzán, L.M.
Title Nd3+-Doped Lanthanum Oxychloride Nanocrystals as Nanothermometers Type A1 Journal article
Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 125 Issue 36 Pages (down) 19887-19896
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The development of optical nanothermometers operating in the near-infrared (NIR) is of high relevance toward temperature measurements in biological systems. We propose herein the use of Nd3+-doped lanthanum oxychloride nanocrystals as an efficient system with intense photoluminescence under NIR irradiation in the first biological transparency window and emission in the second biological window with excellent emission stability over time under 808 nm excitation, regardless of Nd3+ concentration, which can be considered as a particular strength of our system. Additionally, surface passivation through overgrowth of an inert LaOCl shell around optically active LaOCl/Nd3+ cores was found to further enhance the photoluminescence intensity and also the lifetime of the 1066 nm, 4F3/2 to 4I11/2 transition, without affecting its (ratiometric) sensitivity toward temperature changes. As required for biological applications, we show that the obtained (initially hydrophobic) nanocrystals can be readily transferred into aqueous solvents with high, long-term stability, through either ligand exchange or encapsulation with an amphiphilic polymer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000697335100031 Publication Date 2021-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 9 Open Access OpenAccess
Notes The authors thank the financial support of the European Research Council (ERC-AdG-2017 787510, ERC-CoG-2019 815128) and of the European Commission (EUSMI, Grant 731019). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency−Grant MDM-2017−0720. Realnano; sygmaSB Approved Most recent IF: 4.536
Call Number EMAT @ emat @c:irua:181671 Serial 6831
Permanent link to this record
 

 
Author Singh, A.; Yuan, B.; Rahman, M.H.; Yang, H.; De, A.; Park, J.Y.; Zhang, S.; Huang, L.; Mannodi-Kanakkithodi, A.; Pennycook, T.J.; Dou, L.
Title Two-dimensional halide Pb-perovskite-double perovskite epitaxial heterostructures Type A1 Journal article
Year 2023 Publication Journal of the American Chemical Society Abbreviated Journal
Volume 145 Issue 36 Pages (down) 19885-19893
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Epitaxial heterostructures of two-dimensional (2D) halide perovskites offer a new platform for studying intriguing structural, optical, and electronic properties. However, difficulties with the stability of Pb- and Sn-based heterostructures have repeatedly slowed the progress. Recently, Pb-free halide double perovskites are gaining a lot of attention due to their superior stability and greater chemical diversity, but they have not been successfully incorporated into epitaxial heterostructures for further investigation. Here, we report epitaxial core-shell heterostructures via growing Pb-free double perovskites (involving combinations of Ag(I)-Bi(III), Ag-Sb, Ag-In, Na-Bi, Na-Sb, and Na-In) around Pb perovskite 2D crystals. Distinct from Pb-Pb and Pb-Sn perovskite heterostructures, growths of the Pb-free shell at 45 degrees on the (100) surface of the lead perovskite core are observed in all Pb-free cases. The in-depth structural analysis carried out with electron diffraction unequivocally demonstrates the growth of the Pb-free shell along the [110] direction of the Pb perovskite, which is likely due to the relatively lower surface energy of the (110) surface. Furthermore, an investigation of anionic interdiffusion across heterostructure interfaces under the influence of heat was carried out. Interestingly, halide anion diffusion in the Pb-free 2D perovskites is found to be significantly suppressed as compared to Pb-based 2D perovskites. The great structural tunability and excellent stability of Pb-free perovskite heterostructures may find uses in electronic and optoelectronic devices in the near future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001060980300001 Publication Date 2023-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited Open Access
Notes Approved Most recent IF: 15; 2023 IF: 13.858
Call Number UA @ admin @ c:irua:200342 Serial 9111
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Custers, K.; Kerkhofs, S.; Van Tendeloo, G.; Martens, J.A.
Title Hematite iron oxide nanorod patterning inside COK-12 mesochannels as an efficient visible light photocatalyst Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages (down) 19884-19891
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The uniform dispersion of functional oxide nanoparticles on the walls of ordered mesoporous silica to tailor optical, electronic, and magnetic properties for biomedical and environmental applications is a scientific challenge. Here, we demonstrate homogeneous confined growth of 5 nanometer-sized hematite iron oxide (α-Fe2O3) inside mesochannels of ordered mesoporous COK-12 nanoplates. The three-dimensional inclusion of the α-Fe2O3 nanorods in COK-12 particles is studied using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray (EDX) spectroscopy and electron tomography. High resolution imaging and EDX spectroscopy provide information about the particle size, shape and crystal phase of the loaded α-Fe2O3 material, while electron tomography provides detailed information on the spreading of the nanorods throughout the COK-12 host. This nanocomposite material, having a semiconductor band gap energy of 2.40 eV according to diffuse reflectance spectroscopy, demonstrates an improved visible light photocatalytic degradation activity with rhodamine 6G and 1-adamantanol model compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362041300033 Publication Date 2015-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 9 Open Access
Notes L.H.W. and S.T. thank the FWO-Vlaanderen for a postdoctoral research fellowship (12M1415N) and under contract number G004613N . J.A.M gratefully acknowledge financial supports from Flemish Government (Long-term structural funding-Methusalem). Collaboration among universities was supported by the Belgian Government (IAP-PAI network). Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number c:irua:132567 Serial 3959
Permanent link to this record
 

 
Author Lander, L.; Rousse, G.; Abakumov, A.M.; Sougrati, M.; Van Tendeloo, G.; Tarascon, J.-M.
Title Structural, electrochemical and magnetic properties of a novel KFeSO4F polymorph Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages (down) 19754-19764
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In the quest for sustainable and low-cost positive electrode materials for Li-ion batteries, we discovered, as reported herein, a new low temperature polymorph of KFeSO4F. Contrary to the high temperature phase crystallizing in a KTiOPO4-like structure, this new phase adopts a complex layer-like structure built on FeO4F2 octahedra and SO4 tetrahedra, with potassium cations located in between the layers, as solved using neutron and synchrotron diffraction experiments coupled with electron diffraction. The detailed analysis of the structure reveals an alternation of edge-and corner-shared FeO4F2 octahedra leading to a large monoclinic cell of 1771.774(7) angstrom(3). The potassium atoms are mobile within the structure as deduced by ionic conductivity measurements and confirmed by the bond valence energy landscape approach thus enabling a partial electrochemical removal of K+ and uptake of Li+ at an average potential of 3.7 V vs. Li+/Li-0. Finally, neutron diffraction experiments coupled with SQUID measurements reveal a long range antiferromagnetic ordering of the Fe2+ magnetic moments below 22 K with a possible magnetoelectric behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000362041300018 Publication Date 2015-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 11 Open Access
Notes Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number UA @ lucian @ c:irua:132566 Serial 4253
Permanent link to this record
 

 
Author dela Encarnacion, C.; Lenzi, E.; Henriksen-Lacey, M.; Molina, B.; Jenkinson, K.; Herrero, A.; Colas, L.; Ramos-Cabrer, P.; Toro-Mendoza, J.; Orue, I.; Langer, J.; Bals, S.; Jimenez de Aberasturi, D.; Liz-Marzan, L.M.
Title Hybrid magnetic-plasmonic nanoparticle probes for multimodal bioimaging Type A1 Journal article
Year 2022 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 126 Issue 45 Pages (down) 19519-19531
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Multimodal contrast agents, which take advantage of different imaging modalities, have emerged as an interesting approach to overcome the technical limitations of individual techniques. We developed hybrid nanoparticles comprising an iron oxide core and an outer gold spiky layer, stabilized by a biocompatible polymeric shell. The combined magnetic and optical properties of the different components provide the required functionalities for magnetic resonance imaging (MRI), surface-enhanced Raman scattering (SERS), and fluorescence imaging. The fabrication of such hybrid nanoprobes comprised the adsorption of small gold nanoparticles onto premade iron oxide cores, followed by controlled growth of spiky gold shells. The gold layer thickness and branching degree (tip sharpness) can be controlled by modifying both the density of Au nanoparticle seeds on the iron oxide cores and the subsequent nanostar growth conditions. We additionally demonstrated the performance of these hybrid multifunctional nanoparticles as multimodal contrast agents for correlative imaging of in vitro cell models and ex vivo tissues.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000883021700001 Publication Date 2022-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 10 Open Access Not_Open_Access
Notes The authors acknowledge financial support from the European Research Council (ERC-AdG-2017, 787510) and MCIN/AEI/10.13039/501100011033 through grants PID2019-108854RA-I00 and Maria de Maeztu Unit of Excellence No. MDM-2017-0720. S.B. and K.J. acknowledge financial support from the European Commission under the Horizon 2020Programme by Grant No. 823717 (ESTEEM3) and ERC Consolidator Grant No. 815128 (REALNANO) . Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:192104 Serial 7311
Permanent link to this record
 

 
Author Gasparotto, A.; Barreca, D.; Bekermann, D.; Devi, A.; Fischer, R.A.; Fornasiero, P.; Gombac, V.; Lebedev, O.I.; Maccato, C.; Montini, T.; Van Tendeloo, G.; Tondello, E.
Title F-doped Co3O4 photocatalysts for sustainable H2 generation from water/ethanol Type A1 Journal article
Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 133 Issue 48 Pages (down) 19362-19365
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract p-Type Co3O4 nanostructured films are synthesized by a plasma-assisted process and tested in the photocatalytic production of H2 from water/ethanol solutions under both near-UV and solar irradiation. It is demonstrated that the introduction of fluorine into p-type Co3O4 results in a remarkable performance improvement with respect to the corresponding undoped oxide, highlighting F-doped Co3O4 films as highly promising systems for hydrogen generation. Notably, the obtained yields were among the best ever reported for similar semiconductor-based photocatalytic processes.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000297606500027 Publication Date 2011-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 114 Open Access
Notes Approved Most recent IF: 13.858; 2011 IF: 9.907
Call Number UA @ lucian @ c:irua:93628 Serial 1164
Permanent link to this record