|   | 
Details
   web
Records
Author Bogaerts, A.; Naylor, J.; Hatcher, M.; Jones, W.J.; Mason, R.
Title Influence of sticking coefficients on the behavior of sputtered atoms in an argon glow discharge: modeling and comparison with experiment Type A1 Journal article
Year 1998 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume 16 Issue 4 Pages (down) 2400-2410
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000074852700061 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 12 Open Access
Notes Approved Most recent IF: 1.374; 1998 IF: 1.612
Call Number UA @ lucian @ c:irua:24124 Serial 1634
Permanent link to this record
 

 
Author Georgieva, V.; Bogaerts, A.; Gijbels, R.
Title Particle-in-cell/Monte Carlo simulation of a capacitively coupled radio frequency Ar/Cf4 discharge: effect of gas composition Type A1 Journal article
Year 2003 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 93 Issue Pages (down) 2369-2379
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000181307000007 Publication Date 2003-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 57 Open Access
Notes Approved Most recent IF: 2.068; 2003 IF: 2.171
Call Number UA @ lucian @ c:irua:44011 Serial 2561
Permanent link to this record
 

 
Author Bengtson, C.; Bogaerts, A.
Title On the Anti-Cancer Effect of Cold Atmospheric Plasma and the Possible Role of Catalase-Dependent Apoptotic Pathways Type A1 Journal article
Year 2020 Publication Cells Abbreviated Journal Cells
Volume 9 Issue 10 Pages (down) 2330
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma (CAP) is a promising new agent for (selective) cancer treatment, but the underlying cause of the anti-cancer effect of CAP is not well understood yet. Among different theories and observations, one theory in particular has been postulated in great detail and consists of a very complex network of reactions that are claimed to account for the anti-cancer effect of CAP. Here, the key concept is a reactivation of two specific apoptotic cell signaling pathways through catalase inactivation caused by CAP. Thus, it is postulated that the anti-cancer effect of CAP is due to its ability to inactivate catalase, either directly or indirectly. A theoretical investigation of the proposed theory, especially the role of catalase inactivation, can contribute to the understanding of the underlying cause of the anti-cancer effect of CAP. In the present study, we develop a mathematical model to analyze the proposed catalase-dependent anti-cancer effect of CAP. Our results show that a catalase-dependent reactivation of the two apoptotic pathways of interest is unlikely to contribute to the observed anti-cancer effect of CAP. Thus, we believe that other theories of the underlying cause should be considered and evaluated to gain knowledge about the principles of CAP-induced cancer cell death.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000584186700001 Publication Date 2020-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4409 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:173632 Serial 6429
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.; Goedheer, W.J.
Title Two-dimensional model of a direct current glow discharge: description of the electrons, argon ions and fast argon atoms Type A1 Journal article
Year 1996 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 68 Issue 14 Pages (down) 2296-2303
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos A1996UY08700002 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.636 Times cited 70 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:16241 Serial 3776
Permanent link to this record
 

 
Author Herrebout, D.; Bogaerts, A.; Yan, M.; Gijbels, R.; Goedheer, W.; Vanhulsel, A.
Title Modeling of a capacitively coupled radio-frequency methane plasma: comparison between a one-dimensional and a two-dimensional fluid model Type A1 Journal article
Year 2002 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 92 Issue 5 Pages (down) 2290-2295
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000177548500011 Publication Date 2002-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 15 Open Access
Notes Approved Most recent IF: 2.068; 2002 IF: 2.281
Call Number UA @ lucian @ c:irua:40188 Serial 2113
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.; Goedheer, W.
Title Hybrid Monte Carlo-fluid model of a direct current glow discharge Type A1 Journal article
Year 1995 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 78 Issue Pages (down) 2233-2241
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1995RP71800009 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.183 Times cited 117 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12262 Serial 1526
Permanent link to this record
 

 
Author Baguer, N.; Bogaerts, A.; Gijbels, R.
Title Role of the fast Ar atoms, Ar+ ions and metastable Ar atoms in a hollow cathode glow discharge: study by a hybrid model Type A1 Journal article
Year 2003 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 94 Issue Pages (down) 2212-2222
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000184469800011 Publication Date 2003-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 19 Open Access
Notes Approved Most recent IF: 2.068; 2003 IF: 2.171
Call Number UA @ lucian @ c:irua:44013 Serial 2926
Permanent link to this record
 

 
Author Wang, W.; Patil, B.; Heijkers, S.; Hessel, V.; Bogaerts, A.
Title Nitrogen fixation by gliding arc plasma : better insight by chemical kinetics modelling Type A1 Journal article
Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 10 Issue 10 Pages (down) 2145-2157
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO2 yields and the corresponding energy efficiency for NOx formation for different N2/O2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NOx. The results indicate that vibrational excitation of N2 in the gliding arc contributes significantly to activating the N2 molecules, and leads to an energy efficient way of NOx production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NOx formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale HaberBosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000402122100006 Publication Date 2017-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 42 Open Access OpenAccess
Notes Approved Most recent IF: 7.226
Call Number UA @ lucian @ c:irua:143261 Serial 4672
Permanent link to this record
 

 
Author Wang, W.; Patil, B.; Heijkers, S.; Hessel, V.; Bogaerts, A.
Title Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling Type A1 Journal Article
Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 10 Issue 10 Pages (down) 2110-2110
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO2 yields and the corresponding energy efficiency for NOx formation for different N2/O2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NOx. The results indicate that vibrational excitation of N2 in the gliding arc contributes significantly to activating the N2 molecules, and leads to an energy efficient way of NOx production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NOx formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber–Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which lowtemperature plasma technology might play an important role.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2017-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links
Impact Factor 7.226 Times cited Open Access Not_Open_Access
Notes This research was supported by the European Marie Skłodowska- Curie Individual Fellowship “GlidArc” within Horizon 2020 (Grant No.657304), by the FWO project (grant G.0383.16 N) and by the EU project MAPSYN: Microwave, Acoustic and Plasma assisted SYNthesis, under the grant agreement no. CP-IP 309376 of the European Community’s Seventh Framework Program. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 7.226
Call Number PLASMANT @ plasmant @ Serial 4573
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.
Title Influence of internal energy and impact angle on the sticking behaviour of reactive radicals in thin a-C:H film growth: a molecular dynamics study Type A1 Journal article
Year 2006 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 8 Issue 17 Pages (down) 2066-2071
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000236970300011 Publication Date 2006-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 7 Open Access
Notes Approved Most recent IF: 4.123; 2006 IF: 2.892
Call Number UA @ lucian @ c:irua:57353 Serial 1625
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Verloy, R.; Cardenas Delahoz, E.; Lin, A.; Vanlanduit, S.; Smits, E.; Bogaerts, A.
Title Cold Atmospheric Plasma Does Not Affect Stellate Cells Phenotype in Pancreatic Cancer Tissue in Ovo Type A1 Journal article
Year 2022 Publication International Journal Of Molecular Sciences Abbreviated Journal Int J Mol Sci
Volume 23 Issue 4 Pages (down) 1954
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Pancreatic ductal adenocarcinoma (PDAC) is a challenging neoplastic disease, mainly due to the development of resistance to radio- and chemotherapy. Cold atmospheric plasma (CAP) is an alternative technology that can eliminate cancer cells through oxidative damage, as shown in vitro, in ovo, and in vivo. However, how CAP affects the pancreatic stellate cells (PSCs), key players in the invasion and metastasis of PDAC, is poorly understood. This study aims to determine the effect of an anti-PDAC CAP treatment on PSCs tissue developed in ovo using mono- and co-cultures of RLT-PSC (PSCs) and Mia PaCa-2 cells (PDAC). We measured tissue reduction upon CAP treatment and mRNA expression of PSC activation markers and extracellular matrix (ECM) remodelling factors via qRT-PCR. Protein expression of selected markers was confirmed via immunohistochemistry. CAP inhibited growth in Mia PaCa-2 and co-cultured tissue, but its effectiveness was reduced in the latter, which correlates with reduced ki67 levels. CAP did not alter the mRNA expression of PSC activation and ECM remodelling markers. No changes in MMP2 and MMP9 expression were observed in RLT-PSCs, but small changes were observed in Mia PaCa-2 cells. Our findings support the ability of CAP to eliminate PDAC cells, without altering the PSCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000763630900001 Publication Date 2022-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1422-0067 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.6 Times cited Open Access OpenAccess
Notes The authors would like to thank Hanne Verswyvel for her support with sample collection from the in ovo model and Peter Ponsaerts for providing the facilities for the microscopy studies. Approved Most recent IF: 5.6
Call Number PLASMANT @ plasmant @c:irua:187155 Serial 7049
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M.
Title Densification of thin a-C: H films grown from low-kinetic energy hydrocarbon radicals under the influence of H and C particle fluxes: a molecular dynamics study Type A1 Journal article
Year 2006 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 39 Issue 9 Pages (down) 1948-1953
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000238233900035 Publication Date 2006-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 3 Open Access
Notes Approved Most recent IF: 2.588; 2006 IF: 2.077
Call Number UA @ lucian @ c:irua:57254 Serial 634
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Bengtson, C.; Razzokov, J.; Smits, E.; Bogaerts, A.
Title Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal Cancers
Volume 11 Issue 12 Pages (down) 1920
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Tumours are complex systems formed by cellular (malignant, immune, and endothelial cells, fibroblasts) and acellular components (extracellular matrix (ECM) constituents and secreted factors). A close interplay between these factors, collectively called the tumour microenvironment, is required to respond appropriately to external cues and to determine the treatment outcome. Cold plasma (here referred as ‘plasma’) is an emerging anticancer technology that generates a unique cocktail of reactive oxygen and nitrogen species to eliminate cancerous cells via multiple mechanisms of action. While plasma is currently regarded as a local therapy, it can also modulate the mechanisms of cell-to-cell and cell-to-ECM communication, which could facilitate the propagation of its effect in tissue and distant sites. However, it is still largely unknown how the physical interactions occurring between cells and/or the ECM in the tumour microenvironment affect the plasma therapy outcome. In this review, we discuss the effect of plasma on cell-to-cell and cell-to-ECM communication in the context of the tumour microenvironment and suggest new avenues of research to advance our knowledge in the field. Furthermore, we revise the relevant state-of-the-art in three-dimensional in vitro models that could be used to analyse cell-to-cell and cell-to-ECM communication and further strengthen our understanding of the effect of plasma in solid tumours.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000507382100097 Publication Date 2019-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Figure 4 was created using resources from the ‘Mind the Graph’ platform, free trial version. Spheroid image obtained in collaboration with Sander Bekeschus (INP Greifswald, Germany); organoid image kindly provided by Christophe Deben (Center for Oncological Research, University of Antwerp, Belgium). Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:164892 Serial 5437
Permanent link to this record
 

 
Author Tsonev, I.; O’Modhrain, C.; Bogaerts, A.; Gorbanev, Y.
Title Nitrogen Fixation by an Arc Plasma at Elevated Pressure to Increase the Energy Efficiency and Production Rate of NOx Type A1 Journal article
Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 11 Issue 5 Pages (down) 1888-1897
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-based nitrogen fixation for fertilizer production is an attractive alternative to the fossil fuel-based industrial processes. However, many factors hinder its applicability, e.g., the commonly observed inverse correlation between energy consumption and production rates or the necessity to enhance the selectivity toward NO2, the desired product for a more facile formation of nitrate-based fertilizers. In this work, we investigated the use of a rotating gliding arc plasma for nitrogen fixation at elevated pressures (up to 3 barg), at different feed gas flow rates and composition. Our results demonstrate a dramatic increase in the amount of NOx produced as a function of increasing pressure, with a record-low EC of 1.8 MJ/(mol N) while yielding a high production rate of 69 g/h and a high selectivity (94%) of NO2. We ascribe this improvement to the enhanced thermal Zeldovich mechanism and an increased rate of NO oxidation compared to the back reaction of NO with atomic oxygen, due to the elevated pressure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000924366700001 Publication Date 2023-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G0G2322N ; Horizon 2020 Framework Programme, 965546 ; Approved Most recent IF: 8.4; 2023 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:194281 Serial 7239
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; Gijbels, R.; Benedikt, J.; van den Sanden, M.C.M.
Title Molecular dynamics simulations for the growth of diamond-like carbon films from low kinetic energy species Type A1 Journal article
Year 2004 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
Volume 13 Issue Pages (down) 1873-1881
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000223883400021 Publication Date 2004-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 53 Open Access
Notes Approved Most recent IF: 2.561; 2004 IF: 1.670
Call Number UA @ lucian @ c:irua:48276 Serial 2173
Permanent link to this record
 

 
Author Bogaerts, A.; van Straaten, M.; Gijbels, R.
Title Description of the thermalization process of the sputtered atoms in a glow discharge using a 3-dimensional Monte Carlo method Type A1 Journal article
Year 1995 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 77 Issue Pages (down) 1868-1874
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1995RC30300006 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.183 Times cited 87 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12270 Serial 655
Permanent link to this record
 

 
Author Bogaerts, A.; Chen, Z.; Gijbels, R.; Vertes, A.
Title Laser ablation for analytical sampling: what can we learn from modeling? Type A1 Journal article
Year 2003 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 58 Issue Pages (down) 1867-1893
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000187237900001 Publication Date 2003-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 321 Open Access
Notes Approved Most recent IF: 3.241; 2003 IF: 2.361
Call Number UA @ lucian @ c:irua:44023 Serial 1783
Permanent link to this record
 

 
Author de Bleecker, K.; Herrebout, D.; Bogaerts, A.; Gijbels, R.; Descamps, P.
Title One-dimensional modelling of a capacitively coupled rf plasma in silane/helium, including small concentrations of O2 and N2 Type A1 Journal article
Year 2003 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 36 Issue Pages (down) 1826-1833
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access
Notes Approved Most recent IF: 2.588; 2003 IF: 1.265
Call Number UA @ lucian @ c:irua:44022 Serial 2463
Permanent link to this record
 

 
Author Van Alphen, S.; Jardali, F.; Creel, J.; Trenchev, G.; Snyders, R.; Bogaerts, A.
Title Sustainable gas conversion by gliding arc plasmas: a new modelling approach for reactor design improvement Type A1 Journal article
Year 2021 Publication Sustainable energy & fuels Abbreviated Journal Sustainable Energy Fuels
Volume 5 Issue 6 Pages (down) 1786-1800
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Research in plasma reactor designs is developing rapidly as plasma technology is gaining increasing interest for sustainable gas conversion applications, like the conversion of greenhouse gases into value-added chemicals and renewable fuels, and fixation of N<sub>2</sub>from air into precursors of mineral fertilizer. As plasma is generated by electric power and can easily be switched on/off, these applications allows for efficient conversion and energy storage of intermittent renewable electricity. In this paper, we present a new comprehensive modelling approach for the design and development of gliding arc plasma reactors, which reveals the fluid dynamics, the arc behaviour and the plasma chemistry by solving a unique combination of five complementary models. This results in a complete description of the plasma process, which allows one to efficiently evaluate the performance of a reactor and indicate possible design improvements before actually building it. We demonstrate the capabilities of this method for an experimentally validated study of plasma-based NO<sub>x</sub>formation in a rotating gliding arc reactor, which is gaining increasing interest as a flexible, electricity-driven alternative for the Haber–Bosch process. The model demonstrates the importance of the vortex flow and the presence of a recirculation zone in the reactor, as well as the formation of hot spots in the plasma near the cathode pin and the anode wall that are responsible for most of the NO<sub>x</sub>formation. The model also reveals the underlying plasma chemistry and the vibrational non-equilibrium that exists due to the fast cooling during each arc rotation. Good agreement with experimental measurements on the studied reactor design proves the predictive capabilities of our modelling approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000631643300013 Publication Date 2021-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, GoF9618n ; Vlaamse regering, HBC.2019.0107 ; European Research Council, 810182 ; This research was supported by the Excellence of Science FWOFNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 810182 – SCOPE ERC Synergy project), the 1798 | Sustainable Energy Fuels, 2021, 5, 1786–1800 Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:177540 Serial 6745
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A.
Title Cold Atmospheric Plasma Increases Temozolomide Sensitivity of Three-Dimensional Glioblastoma Spheroids via Oxidative Stress-Mediated DNA Damage Type A1 Journal article
Year 2021 Publication Cancers Abbreviated Journal Cancers
Volume 13 Issue 8 Pages (down) 1780
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Glioblastoma multiforme (GBM) is the most frequent and aggressive primary malignant brain tumor in adults. Current standard radiotherapy and adjuvant chemotherapy with the alkylating agent temozolomide (TMZ) yield poor clinical outcome. This is due to the stem-like properties of tumor cells and genetic abnormalities in GBM, which contribute to resistance to TMZ and progression. In this study, we used cold atmospheric plasma (CAP) to enhance the sensitivity to TMZ through inhibition of antioxidant signaling (linked to TMZ resistance). We demonstrate that CAP indeed enhances the cytotoxicity of TMZ by targeting the antioxidant specific glutathione (GSH)/glutathione peroxidase 4 (GPX4) signaling. We optimized the threshold concentration of TMZ on five different GBM cell lines (U251, LN18, LN229, U87-MG and T98G). We combined TMZ with CAP and tested it on both TMZ-sensitive (U251, LN18 and LN229) and TMZ-resistant (U87-MG and T98G) cell lines using two-dimensional cell cultures. Subsequently, we used a three-dimensional spheroid model for the U251 (TMZ-sensitive) and U87-MG and T98G (TMZ-resistant) cells. The sensitivity of TMZ was enhanced, i.e., higher cytotoxicity and spheroid shrinkage was obtained when TMZ and CAP were administered together. We attribute the anticancer properties to the release of intracellular reactive oxygen species, through inhibiting the GSH/GPX4 antioxidant machinery, which can lead to DNA damage. Overall, our findings suggest that the combination of CAP with TMZ is a promising combination therapy to enhance the efficacy of TMZ towards the treatment of GBM spheroids.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000644001200001 Publication Date 2021-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes We thank the Department of Biomedical Sciences, and the Laboratory of Protein Science, Proteomics & Epigenetic Signalling, at the University of Antwerp, for providing the facilities for the cell experiments. We are also grateful to Peter Ponsaerts from the Laboratory of Experimental Haematology, at the University of Antwerp, for providing the fluorescence microscope. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:177779 Serial 6746
Permanent link to this record
 

 
Author Van Alphen, S.; Vermeiren, V.; Butterworth, T.; van den Bekerom, D.C.M.; van Rooij, G.J.; Bogaerts, A.
Title Power Pulsing To Maximize Vibrational Excitation Efficiency in N2Microwave Plasma: A Combined Experimental and Computational Study Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 3 Pages (down) 1765-1779
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma is gaining increasing interest for N2 fixation, being a flexible, electricity-driven alternative for the current conventional fossil fuel-based N2 fixation processes. As the vibrational-induced dissociation of N2 is found to be an energy-efficient pathway to acquire atomic N for the fixation processes, plasmas that are in vibrational nonequilibrium seem promising for this application. However, an important challenge in using nonequilibrium plasmas lies in preventing vibrational−translational (VT) relaxation processes, in which vibrational energy crucial for N2 dissociation is lost to gas heating. We present here both experimental and modeling results for the vibrational and gas temperature in a microsecond-pulsed microwave (MW) N2 plasma, showing how power pulsing can suppress this unfavorable VT relaxation and achieve a maximal vibrational nonequilibrium. By means of our kinetic model, we demonstrate that pulsed plasmas take advantage of the long time scale on which VT processes occur, yielding a very pronounced nonequilibrium over the whole N2 vibrational ladder. Additionally, the effect of pulse parameters like the pulse frequency and pulse width are investigated, demonstrating that the advantage of pulsing to inhibit VT relaxation diminishes for high pulse frequencies (around 7000 kHz) and long power pulses (above 400 μs). Nevertheless, all regimes studied here demonstrate a clear vibrational nonequilibrium while only requiring a limited power-on time, and thus, we may conclude that a pulsed plasma seems very interesting for energyefficient vibrational excitation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000509438600001 Publication Date 2020-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access
Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; This research was supported by the Excellence of Science FWO-FNRS project (FWO Grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:165586 Serial 5443
Permanent link to this record
 

 
Author Yi, Y.; Wang, X.; Jafarzadeh, A.; Wang, L.; Liu, P.; He, B.; Yan, J.; Zhang, R.; Zhang, H.; Liu, X.; Guo, H.; Neyts, E.C.; Bogaerts, A.
Title Plasma-Catalytic Ammonia Reforming of Methane over Cu-Based Catalysts for the Production of HCN and H2at Reduced Temperature Type A1 Journal article
Year 2021 Publication Acs Catalysis Abbreviated Journal Acs Catal
Volume 11 Issue 3 Pages (down) 1765-1773
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Industrial production of HCN from NH3 and CH4 not only uses precious Pt or Pt−Rh catalysts but also requires extremely high temperatures (∼1600 K). From an energetic, operational, and safety perspective, a drastic decrease in temperature is highly desirable. Here, we report ammonia reforming of methane for the production of HCN and H2 at 673 K by the combination of CH4/NH3 plasma and a supported Cu/silicalite-1 catalyst. 30% CH4 conversion has been achieved with 79% HCN selectivity. Catalyst characterization and plasma diagnostics reveal that the excellent reaction performance is attributed to metallic Cu active sites. In addition, we propose a possible reaction pathway, viz. E-R reactions with N, NH, NH2, and CH radicals produced in the plasma, for the production of HCN, based on density functional theory calculations. Importantly, the Cu/silicalite-1 catalyst costs less than 5% of the commercial Pt mesh catalyst.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000618540300057 Publication Date 2021-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.614 Times cited Open Access OpenAccess
Notes Universiteit Antwerpen, 32249 ; China Postdoctoral Science Foundation, 2015M580220 2016T90217 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; National Natural Science Foundation of China, 21503032 ; We acknowledge financial support from the National Natural Science Foundation of China [21503032], the China Postdoctoral Science Foundation [grant numbers 2015M580220 and 2016T90217, 2016], the PetroChina Innovation Foundation [2018D-5007-0501], and the TOP research project of the Research Fund of the University of Antwerp [grant ID 32249]. Approved Most recent IF: 10.614
Call Number PLASMANT @ plasmant @c:irua:175880 Serial 6675
Permanent link to this record
 

 
Author Jardali, F.; Van Alphen, S.; Creel, J.; Ahmadi Eshtehardi, H.; Axelsson, M.; Ingels, R.; Snyders, R.; Bogaerts, A.
Title NOxproduction in a rotating gliding arc plasma: potential avenue for sustainable nitrogen fixation Type A1 Journal article
Year 2021 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 23 Issue 4 Pages (down) 1748-1757
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The fast growing world population demands food to survive, and nitrogen-based fertilizers are essential to ensure sufficient food production. Today, fertilizers are mainly produced from non-sustainable fossil fuels<italic>via</italic>the Haber–Bosch process, leading to serious environmental problems. We propose here a novel rotating gliding arc plasma, operating in air, for direct NO<sub>x</sub>production, which can yield high nitrogen content organic fertilizers without pollution associated with ammonia emission. We explored the efficiency of NO<sub>x</sub>production in a wide range of feed gas ratios, and for two arc modes: rotating and steady. When the arc is in steady mode, record-value NO<sub>x</sub>concentrations up to 5.5% are achieved which are 1.7 times higher than the maximum concentration obtained by the rotating arc mode, and with an energy consumption of 2.5 MJ mol<sup>−1</sup>(or<italic>ca.</italic>50 kW h kN<sup>−1</sup>);<italic>i.e.</italic>the lowest value so far achieved by atmospheric pressure plasma reactors. Computer modelling, using a combination of five different complementary approaches, provides a comprehensive picture of NO<sub>x</sub>formation in both arc modes; in particular, the higher NO<sub>x</sub>production in the steady arc mode is due to the combined thermal and vibrationally-promoted Zeldovich mechanisms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000629630600021 Publication Date 2021-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.125 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, GoF9618n 30505023 ; H2020 European Research Council, 810182 ; This research was supported by a Bilateral Project with N2 Applied, the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 810182 – SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. We also thank J.-L. Liu for the RGA design, L. Van ‘t dack and K. Leyssens for MS calibration and practical support, and K. Van ‘t Veer for the fruitful discussions on plasma kinetic modelling and for calculating the electron energy losses. Approved Most recent IF: 9.125
Call Number PLASMANT @ plasmant @c:irua:176022 Serial 6678
Permanent link to this record
 

 
Author Attri, P.; Kaushik, N.K.; Kaushik, N.; Hammerschmid, D.; Privat-Maldonado, A.; De Backer, J.; Shiratani, M.; Choi, E.H.; Bogaerts, A.
Title Plasma treatment causes structural modifications in lysozyme, and increases cytotoxicity towards cancer cells Type A1 Journal Article
Year 2021 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol
Volume 182 Issue Pages (down) 1724-1736
Keywords A1 Journal Article; Lysozyme; Cold atmospheric plasma; Cancer cell death; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Bacterial and mammalian proteins, such as lysozyme, are gaining increasing interest as anticancer drugs. This study aims to modify the lysozyme structure using cold atmospheric plasma to boost its cancer cell killing effect. We investigated the structure at acidic and neutral pH using various experimental techniques (circular dichroism, fluorescence, and mass spectrometry) and molecular dynamics simulations. The controlled structural modification of lysozyme at neutral pH enhances its activity, while the activity was lost at acidic pH at the same treatment conditions. Indeed, a larger number of amino acids were oxidized at acidic pH after plasma treatment, which results in a greater distortion of the lysozyme structure, whereas only limited structural changes were observed in lysozyme after plasma treatment at neutral pH. We found that the plasma-treated lysozyme significantly induced apoptosis to the cancer cells. Our results reveal that plasma-treated lysozyme could have potential as a new cancer cell killing drug.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000675794700005 Publication Date 2021-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.671 Times cited Open Access OpenAccess
Notes Japan Society for the Promotion of Science; We gratefully acknowledge the European H2020 Marie SkłodowskaCurie Actions Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). This work was also supported by JSPS-KAKENHI grant number 20K14454. NK thanks to National Research Foundation of Korea under Ministry of Science and ICT (NRF2021R1C1C1013875) of Korean Government. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.671
Call Number PLASMANT @ plasmant @c:irua:178813 Serial 6792
Permanent link to this record
 

 
Author Eshtehardi, H.A.; van 't Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A.
Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 11 Issue 5 Pages (down) 1720-1733
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is emerging for plasma-assisted gas conversion processes. However, the underlying mechanisms of plasma catalysis are poorly understood. In this work, we present a 1D heterogeneous catalysis model with axial dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in the process stream in the axial direction), for plasma-catalytic NO production from N2/O2 mixtures. We investigate the concentration and reaction rates of each species formed as a function of time and position across the catalyst, in order to determine the underlying mechanisms. To obtain insights into how the performance of the process can be further improved, we also study how changes in the postplasma gas flow composition entering the catalyst bed and in the operation conditions of the catalytic stage affect the performance of NO production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926412800001 Publication Date 2023-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7241
Permanent link to this record
 

 
Author Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A.
Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 11 Issue 5 Pages (down) 1720-1733
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926412800001 Publication Date 2023-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182 − SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 8.4; 2023 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7257
Permanent link to this record
 

 
Author Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A.
Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 11 Issue 5 Pages (down) 1720-1733
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926412800001 Publication Date 2023-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique – FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7258
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.; Carman, R.J.
Title Collisional-radiative model for the sputtered copper atoms and ions in a direct current argon glow discharge Type A1 Journal article
Year 1998 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 53 Issue Pages (down) 1679-1703
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000078046700005 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 71 Open Access
Notes Approved Most recent IF: 3.241; 1998 IF: 2.758
Call Number UA @ lucian @ c:irua:24126 Serial 388
Permanent link to this record
 

 
Author Mortet, V.; Zhang, L.; Eckert, M.; D'Haen, J.; Soltani, A.; Moreau, M.; Troadec, D.; Neyts, E.; De Jaeger, J.C.; Verbeeck, J.; Bogaerts, A.; Van Tendeloo, G.; Haenen, K.; Wagner, P.
Title Grain size tuning of nanocrystalline chemical vapor deposited diamond by continuous electrical bias growth : experimental and theoretical study Type A1 Journal article
Year 2012 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 209 Issue 9 Pages (down) 1675-1682
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, a detailed structural and spectroscopic study of nanocrystalline diamond (NCD) thin films grown by a continuous bias assisted CVD growth technique is reported. This technique allows the tuning of grain size and phase purity in the deposited material. The crystalline properties of the films are characterized by SEM, TEM, EELS, and Raman spectroscopy. A clear improvement of the crystalline structure of the nanograined diamond film is observed for low negative bias voltages, while high bias voltages lead to thin films consisting of diamond grains of only ∼10 nm nanometer in size, showing remarkable similarities with so-called ultrananocrystalline diamond. These layers arecharacterized by an increasing amount of sp2-bonded carbon content of the matrix in which the diamond grains are embedded. Classical molecular dynamics simulations support the observed experimental data, giving insight in the underlying mechanism for the observed increase in deposition rate with bias voltage. Furthermore, a high atomic concentration of hydrogen has been determined in these films. Finally, Raman scattering analyses confirm that the Raman line observed at ∼1150 cm−1 cannot be attributed to trans-poly-acetylene, which continues to be reported in literature, reassigning it to a deformation mode of CHx bonds in NCD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000308942100009 Publication Date 2012-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 31 Open Access
Notes M.E. and E.N. acknowledge financial support from, respectively, the Institute for Promotion of Innovation through Science and Technology in Flanders (IWT), and the Research Foundation-Flanders (FWO). J.V. gratefully acknowledges financial support from the GOA project “XANES meets ELNES” of the research fund of the University of Antwerp. Calculation support was provided by the University of Antwerp through the core facility CALCUA. G.V.T. acknowledges the ERC grant COUNTATOMS. The work was also financially supported by the joint UAUHasseltMethusalem “NANO” network, the Research Programs G.0068.07 and G.0555.10N of the Research Foundation-Flanders (FWO), the IAP-P6/42 project “Quantum Effects in Clusters and Nanowires”, and by the EU FP7 through the Integrated Infrastructure Initiative “ESMI” (No. 262348), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). Approved Most recent IF: 1.775; 2012 IF: 1.469
Call Number UA @ lucian @ c:irua:101516UA @ admin @ c:irua:101516 Serial 1364
Permanent link to this record
 

 
Author Neyts, E.; Tacq, M.; Bogaerts, A.
Title Reaction mechanisms of low-kinetic energy hydrocarbon radicals on typical hydrogenated amorphous carbon (a-C:H) sites: a molecular dynamics study Type A1 Journal article
Year 2006 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
Volume 15 Issue 10 Pages (down) 1663-1676
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000241224000026 Publication Date 2006-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 18 Open Access
Notes Approved Most recent IF: 2.561; 2006 IF: 1.935
Call Number UA @ lucian @ c:irua:59634 Serial 2819
Permanent link to this record