toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rowenczyk, L.; Dazzi, A.; Deniset-Besseau, A.; Beltran, V.; Goudounèche, D.; Wong-Wah-Chung, P.; Boyron, O.; George, M.; Fabre, P.; Roux, C.; Mingotaud, A.F.; ter Halle, A. pdf  doi
openurl 
  Title Microstructure characterization of oceanic polyethylene debris Type A1 Journal article
  Year 2020 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 54 Issue 7 Pages (down) 4102-4109  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Plastic pollution has become a worldwide concern. It was demonstrated that plastic breaks down to nanoscale particles in the environment, forming so-called nanoplastics. It is important to understand their ecological impact, but their structure is not elucidated. In this original work, we characterize the microstructure of oceanic polyethylene debris and compare it to the nonweathered objects. Cross sections are analyzed by several emergent mapping techniques. We highlight deep modifications of the debris within a layer a few hundred micrometers thick. The most intense modifications are macromolecule oxidation and a considerable decrease in the molecular weight. The adsorption of organic pollutants and trace metals is also confined to this outer layer. Fragmentation of the oxidized layer of the plastic debris is the most likely source of nanoplastics. Consequently the nanoplastic chemical nature differs greatly from plastics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526418000041 Publication Date 2020-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 3 Open Access  
  Notes ; Foundation and The French National Reaserch Program for Environmental and Occupational Health of Anses (EST/2017/1/219). We thank the 7th Continent Expedition Association, as well as the staff and crew, for the sea sampling campaign. ; Approved Most recent IF: 11.4; 2020 IF: 6.198  
  Call Number UA @ admin @ c:irua:172890 Serial 6560  
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M.; Peeters, F.M.; Farias, G.A. doi  openurl
  Title Electrostatically confined quantum rings in bilayer graphene Type A1 Journal article
  Year 2009 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 9 Issue 12 Pages (down) 4088-4092  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B0) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B0 ¨ −B0 transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000272395400023 Publication Date 2009-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 42 Open Access  
  Notes Approved Most recent IF: 12.712; 2009 IF: 9.991  
  Call Number UA @ lucian @ c:irua:80318 Serial 1024  
Permanent link to this record
 

 
Author van der Stam, W.; Geuchies, J.J.; Altantzis, T.; van den Bos, K.H.W.; Meeldijk, J.D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C. pdf  url
doi  openurl
  Title Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3Perovskite Nanocrystals through Cation Exchange Type A1 Journal article
  Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages (down) 4087-4097  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal CsPbX3 (X = Br, Cl, and I) perovskite nanocrystals (NCs) have emerged as promising phosphors and solar cell materials due to their remarkable optoelectronic properties. These properties can be tailored by not only controlling the size and shape of the NCs but also postsynthetic composition tuning through topotactic

anion exchange. In contrast, property control by cation exchange is still underdeveloped for colloidal CsPbX3 NCs. Here, we present a method that allows partial cation exchange in colloidal CsPbBr3 NCs, whereby Pb2+ is exchanged for several isovalent cations, resulting in doped CsPb1−xMxBr3 NCs (M= Sn2+, Cd2+, and Zn2+; 0 < x ≤ 0.1), with preservation of the original NC shape. The size of the parent NCs is also preserved in the product NCs, apart from a small (few

%) contraction of the unit cells upon incorporation of the guest cations. The partial Pb2+ for M2+ exchange leads to a blue-shift of the optical spectra, while maintaining the high photoluminescence quantum yields (>50%), sharp absorption features, and narrow emission of the parent CsPbBr3 NCs. The blue-shift in the optical spectra is attributed to the lattice contraction that accompanies the Pb2+ for M2+ cation exchange and is observed to scale linearly with the lattice contraction. This work opens up new possibilities to engineer the properties of halide perovskite NCs, which to date are demonstrated to be the only known

system where cation and anion exchange reactions can be sequentially combined while preserving the original NC shape, resulting in compositionally diverse perovskite NCs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397477700027 Publication Date 2017-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 535 Open Access OpenAccess  
  Notes W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. J.J.G. and D.V. acknowledge financial support from the Debye Graduate program. S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). K.H.W.v.d.B., S.B., S.V.A. and T.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0368.15N, G.0369.15N), a Ph.D. grant to K.H.W.v.d.B, and a postdoctoral research grant to T.A. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:141754UA @ admin @ c:irua:141754 Serial 4482  
Permanent link to this record
 

 
Author Morozov, V.A.; Arakcheeva, A.V.; Chapuis, G.; Guiblin, N.; Rossell, M.D.; Van Tendeloo, G. pdf  doi
openurl 
  Title KNd(MoO4)2: a new incommensurate modulated structure in the scheelite family Type A1 Journal article
  Year 2006 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 18 Issue 17 Pages (down) 4075-4082  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000239758300022 Publication Date 2006-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 46 Open Access  
  Notes Iap V-1 Approved Most recent IF: 9.466; 2006 IF: 5.104  
  Call Number UA @ lucian @ c:irua:60688 Serial 3538  
Permanent link to this record
 

 
Author Retuerto, M.; Emge, T.; Hadermann, J.; Stephens, P.W.; Li, M.R.; Yin, Z.P.; Croft, M.; Ignatov, A.; Zhang, S.J.; Yuan, Z.; Jin, C.; Simonson, J.W.; Aronson, M.C.; Pan, A.; Basov, D.N.; Kotliar, G.; Greenblatt, M.; doi  openurl
  Title Synthesis and properties of charge-ordered thallium halide perovskites, CsTl0.5+Tl0.53+X3 (X = F or Cl) : theoretical precursors for superconductivity? Type A1 Journal article
  Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 25 Issue 20 Pages (down) 4071-4079  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Recently, CsTlCl3 and CsTlF3 perovskites were theoretically predicted to be potential superconductors if they were optimally doped. The syntheses of these two compounds together with a complete characterization of the samples are reported. CsTlCl3 was obtained as orange crystals in two different polymorphs: a tetragonal phase (I4/m) and a cubic phase (Fm (3) over barm). CsTlF3 was formed as a light brown powder, and also as a double cubic perovskite (Fm (3) over barm). In all three CsTlX3 phases, Tl+ and Tl3+ were located in two different crystallographic positions that accommodate their different bond lengths. In CsTlCl3, some Tl vacancies were found in the Tl+ position. The charge ordering between Tl+ and Tl3+ was confirmed by X-ray absorption and Raman spectroscopy. The Raman spectroscopy of CsTlCl3 at high pressure (58 GPa) did not indicate any phase transition to a possible single Tl2+ state. However, the highly insulating material became less resistive with an increasing high pressure, while it underwent a change in its optical properties, from transparent to deeply opaque red, indicative of a decrease in the magnitude of the band gap. The theoretical design and experimental validation of the existence of CsTlF3 and CsTlCl3 cubic perovskites are the necessary first steps in confirming the theoretical prediction of superconductivity in these materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000326209200017 Publication Date 2013-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 28 Open Access  
  Notes Approved Most recent IF: 9.466; 2013 IF: 8.535  
  Call Number UA @ lucian @ c:irua:112248 Serial 3434  
Permanent link to this record
 

 
Author Szalóki, I.; Osán, J.; Van Grieken, R.E. doi  openurl
  Title X-ray spectrometry Type A1 Journal article
  Year 2006 Publication Analytical chemistry Abbreviated Journal  
  Volume 78 Issue 12 Pages (down) 4069-4096  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000238252600016 Publication Date 2006-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:58857 Serial 8771  
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Ciocarlan, R.-G.; Minjauw, M.; Detavernier, C.; Cool, P.; Bals, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO2Photocatalytic Systems Type A1 Journal article
  Year 2019 Publication ACS applied nano materials Abbreviated Journal ACS Appl. Nano Mater.  
  Volume 2 Issue 2 Pages (down) 4067-4074  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The major mechanism responsible for plasmonic enhancement of titanium dioxide photocatalysis using gold nanoparticles is still under contention. This work introduces an experimental strategy to disentangle the significance of the charge transfer and near-field mechanisms in plasmonic photocatalysis. By controlling the thickness and conductive nature of a nanoparticle shell that acts as a spacer layer separating the plasmonic metal core from the TiO2 surface, field enhancement or charge transfer effects can be selectively repressed or evoked. Layer-by-layer and in situ polymerization methods are used to synthesize gold core–polymer shell nanoparticles with shell thickness control up to the sub-nanometer level. Detailed optical and electrical characterization supported by near-field simulation models corroborate the trends in photocatalytic activity of the different systems. This approach mainly points at an important contribution of the enhanced near field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477917700006 Publication Date 2019-05-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 32 Open Access OpenAccess  
  Notes This work was supported by Research Foundation Flanders (FWO). P.C. and R-G.C. acknowledge financial support from FWO (Project No. G038215N). N.C. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant No. 335078-COLOURATOM). Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160579 Serial 5184  
Permanent link to this record
 

 
Author Vlasov, I.L.; Lebedev, O.I.; Ralchenko, V.G.; Goovaerts, E.; Bertoni, G.; Van Tendeloo, G.; Konov, V.I. pdf  doi
openurl 
  Title Hybrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition Type A1 Journal article
  Year 2007 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 19 Issue 22 Pages (down) 4058-4062  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Nanostructured and organic optical and electronic materials (NANOrOPT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000251383900055 Publication Date 2007-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 75 Open Access  
  Notes Approved Most recent IF: 19.791; 2007 IF: NA  
  Call Number UA @ lucian @ c:irua:66983 Serial 1518  
Permanent link to this record
 

 
Author Schryvers, D.; Ma, Y.; Toth, L.; Tanner, L.E. doi  openurl
  Title Electron microscopy study of the formation of Ni5Al3 in a Ni62.5Al37.5 B2 alloy: 2: plate crystallography Type A1 Journal article
  Year 1995 Publication Acta metallurgica et materialia Abbreviated Journal  
  Volume 43 Issue 11 Pages (down) 4057-4065  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos A1995TA33200015 Publication Date 2003-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-7151; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:13165 Serial 974  
Permanent link to this record
 

 
Author Burriel, M.; Garcia, G.; Rossell, M.D.; Figueras, A.; Van Tendeloo, G.; Santiso, J. pdf  doi
openurl 
  Title Enhanced high-temperature electronic transport properties in nanostructured epitaxial thin films of the Lan+1NinO3n+1 Ruddlesden-Popper series (n = 1, 2, 3, ∞) Type A1 Journal article
  Year 2007 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 19 Issue 16 Pages (down) 4056-4062  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000248439400029 Publication Date 2007-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 22 Open Access  
  Notes Approved Most recent IF: 9.466; 2007 IF: 4.883  
  Call Number UA @ lucian @ c:irua:65937 Serial 1050  
Permanent link to this record
 

 
Author Vallicrosa, H.; Lugli, L.F.; Fuchslueger, L.; Sardans, J.; Ramirez-Rojas, I.; Verbruggen, E.; Grau, O.; Brechet, L.; Peguero, G.; Van Langenhove, L.; Verryckt, L.T.; Terrer, C.; Llusia, J.; Ogaya, R.; Marquez, L.; Roc-Fernandez, P.; Janssens, I.; Penuelas, J. url  doi
openurl 
  Title Phosphorus scarcity contributes to nitrogen limitation in lowland tropical rainforests Type A1 Journal article
  Year 2023 Publication Ecology Abbreviated Journal  
  Volume 104 Issue 6 Pages (down) e4049-12  
  Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract There is increasing evidence to suggest that soil nutrient availability can limit the carbon sink capacity of forests, a particularly relevant issue considering today's changing climate. This question is especially important in the tropics, where most part of the Earth's plant biomass is stored. To assess whether tropical forest growth is limited by soil nutrients and to explore N and P limitations, we analyzed stem growth and foliar elemental composition of the five stem widest trees per plot at two sites in French Guiana after 3 years of nitrogen (N), phosphorus (P), and N + P addition. We also compared the results between potential N-fixer and non-N-fixer species. We found a positive effect of N fertilization on stem growth and foliar N, as well as a positive effect of P fertilization on stem growth, foliar N, and foliar P. Potential N-fixing species had greater stem growth, greater foliar N, and greater foliar P concentrations than non-N-fixers. In terms of growth, there was a negative interaction between N-fixer status, N + P, and P fertilization, but no interaction with N fertilization. Because N-fixing plants do not show to be completely N saturated, we do not anticipate N providing from N-fixing plants would supply non-N-fixers. Although the soil-age hypothesis only anticipates P limitation in highly weathered systems, our results for stem growth and foliar elemental composition indicate the existence of considerable N and P co-limitation, which is alleviated in N-fixing plants. The evidence suggests that certain mechanisms invest in N to obtain the scarce P through soil phosphatases, which potentially contributes to the N limitation detected by this study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000977760600001 Publication Date 2023-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658; 1939-9170 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:196804 Serial 9218  
Permanent link to this record
 

 
Author Dong, H.M.; Liang, H.P.; Tao, Z.H.; Duan, Y.F.; Milošević, M.V.; Chang, K. doi  openurl
  Title Interface thermal conductivities induced by van der Waals interactions Type A1 Journal article
  Year 2024 Publication Physical chemistry, chemical physics Abbreviated Journal  
  Volume 26 Issue 5 Pages (down) 4047-4051  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interface heat transfer of two layers induced by van der Waals (vdW) contacts is theoretically investigated, based on first-principles calculations at low temperatures. The results suggest that out-of-plane acoustic phonons with low frequencies dominate the interface thermal transport due to the vdW interaction. The interface thermal conductivity is proportional to the cubic of temperature at very low temperatures, but becomes linearly proportional to temperature as temperature increases. We show that manipulating the strain alters vdW coupling, leading to increased interfacial thermal conductivity at the interface. Our findings provide valuable insights into the interface heat transport in vdW heterostructures and support further design and optimization of electronic and optoelectronic nanodevices based on vdW contacts. The heat transfer induced by van der Waals contacts is dominated by ZA phonons. The interface thermal conductivity is proportional to the cubic of temperature, but becomes linearly proportional to temperature as temperature increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001142323400001 Publication Date 2024-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.3; 2024 IF: 4.123  
  Call Number UA @ admin @ c:irua:202795 Serial 9050  
Permanent link to this record
 

 
Author Schryvers, D.; Ma, Y.; Toth, L.; Tanner, L.E. doi  openurl
  Title Electron microscopy study of the formation of Ni5Al3 in a Ni62.5Al37.5 B2 alloy: 1: precipitation and growth Type A1 Journal article
  Year 1995 Publication Acta metallurgica et materialia Abbreviated Journal  
  Volume 43 Issue 11 Pages (down) 4045-4056  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos A1995TA33200014 Publication Date 2003-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-7151; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 27 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:13164 Serial 973  
Permanent link to this record
 

 
Author McNaughton, B.; Pinto, N.; Perali, A.; Milošević, M.V. url  doi
openurl 
  Title Causes and consequences of ordering and dynamic phases of confined vortex rows in superconducting nanostripes Type A1 Journal article
  Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 12 Issue 22 Pages (down) 4043-18  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Understanding the behaviour of vortices under nanoscale confinement in superconducting circuits is important for the development of superconducting electronics and quantum technologies. Using numerical simulations based on the Ginzburg-Landau theory for non-homogeneous superconductivity in the presence of magnetic fields, we detail how lateral confinement organises vortices in a long superconducting nanostripe, presenting a phase diagram of vortex configurations as a function of the stripe width and magnetic field. We discuss why the average vortex density is reduced and reveal that confinement influences vortex dynamics in the dissipative regime under sourced electrical current, mapping out transitions between asynchronous and synchronous vortex rows crossing the nanostripe as the current is varied. Synchronous crossings are of particular interest, since they cause single-mode modulations in the voltage drop along the stripe in a high (typically GHz to THz) frequency range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000887683200001 Publication Date 2022-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 5.3  
  Call Number UA @ admin @ c:irua:192731 Serial 7286  
Permanent link to this record
 

 
Author Hoffman, B.M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D.R.; Seefeldt, L.C. pdf  url
doi  openurl
  Title Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage Type A1 Journal Article
  Year 2014 Publication Chemical Reviews Abbreviated Journal Chem. Rev.  
  Volume 114 Issue 8 Pages (down) 4041-4062  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Ammonia is a crucial nutrient used for plant growth and as a building block in pharmaceutical and chemical industry, produced via nitrogen fixation of the ubiquitous atmospheric N2. Current industrial ammonia production relies heavily on fossil resources, but a lot of work is put into developing non-fossil based pathways. Among these is the use of nonequilibrium plasma. In this work, we investigated water vapor as H source for nitrogen fixation into NH3 by non-equilibrium plasma. The highest selectivity towards NH3 was observed with low amounts of added H2O vapor, but the highest production rate was reached at high H2O vapor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2014-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2665 ISBN Additional Links  
  Impact Factor Times cited Open Access  
  Notes We would like to thank Sylvia Dewilde (Department of Biomedical Sciences) for providing analytical equipment. Approved no  
  Call Number PLASMANT @ plasmant @ Serial 6337  
Permanent link to this record
 

 
Author Baguer, N.; Georgieva, V.; Calderin, L.; Todorov, I.T.; van Gils, S.; Bogaerts, A. doi  openurl
  Title Study of the nucleation and growth of TiO2 and ZnO thin films by means of molecular dynamics simulations Type A1 Journal article
  Year 2009 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth  
  Volume 311 Issue 16 Pages (down) 4034-4043  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The nucleation and growth of titanium dioxide (TiO2) and zinc oxide (ZnO) thin films on Fe2O3 (hematite), Al2O3 (á-alumina) and SiO2 (á-quartz) are studied by molecular dynamics simulations. The results show the formation of a strong interface region between the substrate and the film in the six systems studied here. A combination of polycrystalline and amorphous phases are observed in the TiO2 films grown on the three substrates. ZnO deposition on the Fe2O3 and Al2O3 crystals yields a monocrystalline film growth. The ZnO film deposited on the SiO2 crystal exhibits less crystallinity. The simulation results are compared with experimental results available in the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000269580100012 Publication Date 2009-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.751 Times cited 23 Open Access  
  Notes Approved Most recent IF: 1.751; 2009 IF: 1.534  
  Call Number UA @ lucian @ c:irua:77453 Serial 3338  
Permanent link to this record
 

 
Author Zhou, Z.; Tan, Y.; Yang, Q.; Bera, A.; Xiong, Z.; Yagmurcukardes, M.; Kim, M.; Zou, Y.; Wang, G.; Mishchenko, A.; Timokhin, I.; Wang, C.; Wang, H.; Yang, C.; Lu, Y.; Boya, R.; Liao, H.; Haigh, S.; Liu, H.; Peeters, F.M.; Li, Y.; Geim, A.K.; Hu, S. url  doi
openurl 
  Title Gas permeation through graphdiyne-based nanoporous membranes Type A1 Journal article
  Year 2022 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 13 Issue 1 Pages (down) 4031-4036  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeance. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows. Using isotope and cryogenic temperature measurements, the seemingly conflicting characteristics are explained by a high density of straight-through holes (direct porosity of similar to 0.1%), in which heavy atoms are adsorbed on the walls, partially blocking Knudsen flows. Our work offers important insights into intricate transport mechanisms playing a role at nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000918423100001 Publication Date 2022-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 10 Open Access OpenAccess  
  Notes Approved Most recent IF: 16.6  
  Call Number UA @ admin @ c:irua:194402 Serial 7308  
Permanent link to this record
 

 
Author Kolen'ko, Y.V.; Kovnir, K.A.; Gavrilov, A.I.; Garshev, A.V.; Frantti, J.; Lebedev, O.I.; Churagulov, B.R.; Van Tendeloo, G.; Yoshimura, M. pdf  doi
openurl 
  Title Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide Type A1 Journal article
  Year 2006 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 110 Issue 9 Pages (down) 4030-4038  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000235944500033 Publication Date 2006-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 234 Open Access  
  Notes Approved Most recent IF: 3.177; 2006 IF: 4.115  
  Call Number UA @ lucian @ c:irua:56988 Serial 1540  
Permanent link to this record
 

 
Author Cleiren, E.; Heijkers, S.; Ramakers, M.; Bogaerts, A. pdf  url
doi  openurl
  Title Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 20 Pages (down) 4025-4036  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Dry reforming of methane (DRM) in a gliding arc plasmatron is studied for different CH4 fractions in the mixture. The CO2 and CH4 conversions reach their highest values of approximately 18 and 10%, respectively, at 25% CH4 in the gas mixture, corresponding to an overall energy cost of 10 kJ L@1 (or 2.5 eV per molecule) and an energy efficiency of 66%. CO and H2 are the major products, with the formation of smaller fractions of C2Hx (x=2, 4, or 6) compounds and H2O. A chemical kinetics model is used to investigate the underlying chemical processes. The calculated CO2 and CH4 conversion and the energy efficiency are in good agreement with the experimental data. The model calculations reveal that the reaction of CO2 (mainly at vibrationally excited levels) with H radicals is mainly responsible for

the CO2 conversion, especially at higher CH4 fractions in the mixture, which explains why the CO2 conversion increases with increasing CH4 fraction. The main process responsible for CH4 conversion is the reaction with OH radicals. The excellent energy efficiency can be explained by the non-equilibrium character of the plasma, in which the electrons mainly activate the gas molecules, and by the important role of the vibrational kinetics of CO2. The results demonstrate that a gliding arc plasmatron is very promising for DRM.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413565100012 Publication Date 2017-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 23 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Federaal Wetenschapsbeleid; Approved Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @c:irua:146665 Serial 4759  
Permanent link to this record
 

 
Author Shevchenko, V.A.; Glazkova, I.S.; Novichkov, D.A.; Skvortsova, I.; V. Sobolev, A.; Abakumov, A.M.; Presniakov, I.A.; Drozhzhin, O.A.; V. Antipov, E. pdf  doi
openurl 
  Title Competition between the Ni and Fe redox in the O3-NaNi1/3Fe1/3Mn1/3O2 cathode material for Na-ion batteries Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume 35 Issue 10 Pages (down) 4015-4025  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sodium-ion batteries are attracting great attention due to their low cost and abundance of sodium. The O3-type NaNi1/3Fe1/3Mn1/3O2 layered oxide material is a promising candidate for positive electrodes (cathodes) in Na-ion batteries. However, its stable electrochemical performance is restricted by the upper voltage limit of 4.0 V (vs Na/Na+), which allows for reversibly removing 0.5-0.55 Na+ per formula unit, corresponding to the capacity of 120-130 mAh.g(-1). Further reduction of sodium content inevitably accelerates capacity degradation, and this issue calls for a detailed study of the redox reactions that accompany the electrochemical (de)intercalation of a large amount of sodium. Here, we present operando and ex situ studies using powder X-ray diffraction and X-ray absorption spectroscopy combined with Fe-57 Mossbauer spectroscopy. Our approach reveals the sequence of the redox transitions that occur during the charge and discharge of O3-NaNi1/3Fe1/3Mn1/3O2. Our data show that in addition to nickel and iron cations oxidizing to M+4, a part of iron transforms into the “3 + delta” state owing to the fast electron exchange Fe3+ + Fe4+ <-> Fe4+ + Fe3+. This process freezes upon cooling the material to 35 K, producing Fe4+ cations, some of which occupy tetrahedral positions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000985970200001 Publication Date 2023-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited Open Access  
  Notes Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number UA @ admin @ c:irua:197352 Serial 9013  
Permanent link to this record
 

 
Author Jacquet, S.H.M.; Henjes, J.; Dehairs, F.; Worobiec, A.; Savoye, N.; Cardinal, D. doi  openurl
  Title Particulate ba-barite and acantharians in the Southern Ocean during the European iron fertilization experiment (EIFEX) Type A1 Journal article
  Year 2007 Publication Journal of geophysical research: G: biogeosciences Abbreviated Journal  
  Volume 112 Issue 4 Pages (down) 04006,1-11  
  Keywords A1 Journal article; Laboratory Experimental Medicine and Pediatrics (LEMP); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000250522300001 Publication Date 2007-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:66683 Serial 8359  
Permanent link to this record
 

 
Author Boschker, H.T.S.; Cook, P.L.M.; Polerecky, L.; Eachambadi, R.T.; Lozano, H.; Hidalgo-Martinez, S.; Khalenkow, D.; Spampinato, V.; Claes, N.; Kundu, P.; Wang, D.; Bals, S.; Sand, K.K.; Cavezza, F.; Hauffman, T.; Bjerg, J.T.; Skirtach, A.G.; Kochan, K.; McKee, M.; Wood, B.; Bedolla, D.; Gianoncelli, A.; Geerlings, N.M.J.; Van Gerven, N.; Remaut, H.; Geelhoed, J.S.; Millan-Solsona, R.; Fumagalli, L.; Nielsen, L.P.; Franquet, A.; Manca, J.V.; Gomila, G.; Meysman, F.J.R. url  doi
openurl 
  Title Efficient long-range conduction in cable bacteria through nickel protein wires Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages (down) 3996  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000669944900006 Publication Date 2021-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 23 Open Access OpenAccess  
  Notes The authors thank Marlies Neiemeisland for assistance with Raman microscopy, Michiel Kienhuis for assistance with NanoSIMS analysis, Peter Hildebrandt and Diego Millo for helping with the interpretation of the Raman spectra, IONTOF for the Orbitrap Hybrid- SIMS analysis, and Rene Fabregas for helping with finite-element numerical modeling for SDM. H.T.S.B. and F.J.R.M. were financially supported by the Netherlands Organization for Scientific Research (VICI grant 016.VICI.170.072). Research Foundation Flanders supported F.J.R.M., J.V.M., and R.T.E. through FWO grant G031416N, and F.J.R.M. and J.S.G. through FWO grant G038819N. N.M.J.G. is the recipient of a Ph.D. scholarship for teachers from NWO in the Netherlands (grant 023.005.049). The NanoSIMS facility at Utrecht University was financed through a large infrastructure grant by the Netherlands Organization for Scientific Research (NWO, grant no. 175.010.2009.011) and through a Research Infrastructure Fund by the Utrecht University Board. A.G.S. is supported by the Special Research Fund (BOF) of Ghent University (BOF14/IOP/003, BAS094-18, 01IO3618) and FWO (G043219). The ToF-SIMS was funded by FWO Hercules grant (ZW/13/07) to J.V.M. and A.F. H.L., R.M.S., and G.G. were funded by the European Union H2020 Framework Programme (MSCA-ITN-2016) under grant agreement n 721874.EU, the Spanish Agencia Estatal de Investigación and EU FEDER under grant agreements TEC2016-79156-P and TEC2015-72751-EXP, the Generalitat de Catalunya through 2017-SGR1079 grant and CERCA Program. G.G. was recipient of an ICREA Academia Award, and H.L. of a FPI fellowship (BES-2015-074799) from the Agencia Estatal de Investigación/Fondo Social Europeo. L.F. received funding from the European Research Council (grant agreement No. 819417) under the European Union’s Horizon 2020 research and innovation programme. Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @c:irua:179813 Serial 6803  
Permanent link to this record
 

 
Author Spaeth, P.; Adhikari, S.; Heyvaert, W.; Zhuo, X.; Garcia, I.; Liz-Marzan, L.M.; Bals, S.; Orrit, M.; Albrecht, W. url  doi
openurl 
  Title Photothermal circular dichroism measurements of single chiral gold nanoparticles correlated with electron tomography Type A1 Journal article
  Year 2022 Publication ACS Photonics Abbreviated Journal Acs Photonics  
  Volume 9 Issue 12 Pages (down) 3995-4004  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Chemically synthesized metal nanoparticles with morphological chiral features are known to exhibit strong circular dichroism. However, we still lack understanding of the correlation between morphological and chiroptical features of plasmonic nanoparticles. To shed light on that question, single nanoparticle experiments are required. We performed photothermal circular dichroism measurements of single chiral and achiral gold nanoparticles and correlated the chiroptical response to the 3D morphology of the same nanoparticles retrieved by electron tomography. In contrast to an ensemble measurement, we show that individual particles within the ensemble display a broad distribution of strength and handedness of circular dichroism signals. Whereas obvious structural chiral features, such as helical wrinkles, translate into chiroptical ones, nanoparticles with less obvious chiral morphological features can also display strong circular dichroism signals. Interestingly, we find that even seemingly achiral nanoparticles can display large g-factors. The origin of this circular dichroism signal is discussed in terms of plasmonics and other potentially relevant factors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000884432100001 Publication Date 2022-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2330-4022 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited 5 Open Access OpenAccess  
  Notes This work was supported by The Netherlands Organisation for Scientific Research (NWO) as part of the Open Technology Program (OTP, Project No. 16008) and by a Spinoza prize (M.O.) . W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 Program (Grant No. 797153, SOPMEN) . L.M.L.M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (Grants PID2020-117779RB-I00 and MDM-2017-0720) . We thank Dr. Wolfgang L?fer for providing optical equipment. We also acknowledge the European Soft Matter Infrastructure (EUSMI: E201200468) . Approved Most recent IF: 7  
  Call Number UA @ admin @ c:irua:192098 Serial 7331  
Permanent link to this record
 

 
Author Partoens, B.; Schweigert, V.A.; Peeters, F.M. url  openurl
  Title Classical double-layer atoms: artificial molecules Type A1 Journal article
  Year 1997 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 79 Issue Pages (down) 3990-3993  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1997YF78600048 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 49 Open Access  
  Notes Approved Most recent IF: 8.462; 1997 IF: 6.140  
  Call Number UA @ lucian @ c:irua:19280 Serial 364  
Permanent link to this record
 

 
Author Iyikanat, F.; Senger, R.T.; Peeters, F.M.; Sahin, H. pdf  url
doi  openurl
  Title Quantum-Transport Characteristics of a p-n Junction on Single-Layer TiS3 Type A1 Journal article
  Year 2016 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem  
  Volume 17 Issue 17 Pages (down) 3985-3991  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By using density functional theory and non-equilibrium Green's function-based methods, we investigated the electronic and transport properties of a TiS3 monolayer p-n junction. We constructed a lateral p-n junction on a TiS3 monolayer using Li and F adatoms. An applied bias voltage caused significant variability in the electronic and transport properties of the TiS3 p-n junction. In addition, the spin-dependent current-volt-age characteristics of the constructed TiS3 p-n junction were analyzed. Important device characteristics were found, such as negative differential resistance and rectifying diode behaviors for spin-polarized currents in the TiS3 p-n junction. These prominent conduction properties of the TiS3 p-n junction offer remarkable opportunities for the design of nanoelectronic devices based on a recently synthesized single-layered material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000389534800018 Publication Date 2016-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.075 Times cited 12 Open Access  
  Notes ; This work was supported by the bilateral project between TUBITAK (through Grant No. 113T050) and the Flemish Science Foundation (FWO-Vl). The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). FI, HS, and RTS acknowledge the support from TUBITAK Project No 114F397. H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 3.075  
  Call Number UA @ lucian @ c:irua:140245 Serial 4458  
Permanent link to this record
 

 
Author Wang, D.; van der Wee, E.B.; Zanaga, D.; Altantzis, T.; Wu, Y.; Dasgupta, T.; Dijkstra, M.; Murray, C.B.; Bals, S.; van Blaaderen, A. url  doi
openurl 
  Title Quantitative 3D real-space analysis of Laves phase supraparticles Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages (down) 3980  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract 3D real-space analysis of thick nanoparticle crystals is non-trivial. Here, the authors demonstrate the structural analysis of a bulk-like Laves phase by imaging an off-stoichiometric binary mixture of hard-sphere-like nanoparticles in spherical confinement by electron tomography, enabling defect analysis on the single-particle level. Assembling binary mixtures of nanoparticles into crystals, gives rise to collective properties depending on the crystal structure and the individual properties of both species. However, quantitative 3D real-space analysis of binary colloidal crystals with a thickness of more than 10 layers of particles has rarely been performed. Here we demonstrate that an excess of one species in the binary nanoparticle mixture suppresses the formation of icosahedral order in the self-assembly in droplets, allowing the study of bulk-like binary crystal structures with a spherical morphology also called supraparticles. As example of the approach, we show single-particle level analysis of over 50 layers of Laves phase binary crystals of hard-sphere-like nanoparticles using electron tomography. We observe a crystalline lattice composed of a random mixture of the Laves phases. The number ratio of the binary species in the crystal lattice matches that of a perfect Laves crystal. Our methodology can be applied to study the structure of a broad range of binary crystals, giving insights into the structure formation mechanisms and structure-property relations of nanomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000687320200032 Publication Date 2021-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 10 Open Access OpenAccess  
  Notes M. Hermes is sincerely thanked for providing interactive views of the structures in this work. The authors thank I. Lobato, S. Dussi, L. Filion, E. Boattini, S. Paliwal, B. van der Meer and X. Xie for fruitful discussions. D.W., E.B.v.d.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union’s Seventh Framework Program (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. T.D. and M.D. acknowledge financial support from the Industrial Partnership Program, “Computational Sciences for Energy Research” (Grant no. 13CSER025), of the Netherlands Organization for Scientific Research (NWO), which was co-financed by Shell Global Solutions International B.V. S.B. acknowledges financial support from ERC Consolidator Grant No. 815128 REALNANO. T.A. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). C.B.M and Y.W. acknowledge support for materials synthesis from the Office of Naval Research Multidisciplinary University Research Initiative Award ONR N00014-18-1-2497. The authors acknowledge EM Square center at Utrecht University for the access to the microscopes.; sygmaSB Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:181662 Serial 6845  
Permanent link to this record
 

 
Author Hamelet, S.; Gibot, P.; Casas-Cabanas, M.; Bonnin, D.; Grey, C.P.; Cabana, J.; Leriche, J.B.; Rodriguez-Carvajal, J.; Courty, M.; Levasseur, S.; Carlach, P.; Van Thournout, M.; Tarascon, J.M.; Masquelier, C.; pdf  doi
openurl 
  Title The effects of moderate thermal treatments under air on LiFePO4-based nano powders Type A1 Journal article
  Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 19 Issue 23 Pages (down) 3979-3991  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The thermal behavior under air of LiFePO(4)-based powders was investigated through the combination of several techniques such as temperature-controlled X-ray diffraction, thermogravimetric analysis and Mossbauer and NMR spectroscopies. The reactivity with air at moderate temperatures depends on the particle size and leads to progressive displacement of Fe from the core structure yielding nano-size Fe(2)O(3) and highly defective, oxidized Li(x)Fe(y)PO(4) compositions whose unit-cell volume decreases dramatically when the temperature is raised between 400 and 600 K. The novel LiFePO(4)-like compositions display new electrochemical reactivity when used as positive electrodes in Li batteries. Several redox phenomena between 3.4 V and 2.7 V vs. Li were discovered and followed by in-situ X-ray diffraction, which revealed two distinct solid solution domains associated with highly anisotropic variations of the unit-cell constants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000266615800024 Publication Date 2009-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 93 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:94582 Serial 867  
Permanent link to this record
 

 
Author Toso, S.; Imran, M.; Mugnaioli, E.; Moliterni, A.; Caliandro, R.; Schrenker, N.J.; Pianetti, A.; Zito, J.; Zaccaria, F.; Wu, Y.; Gemmi, M.; Giannini, C.; Brovelli, S.; Infante, I.; Bals, S.; Manna, L. url  doi
openurl 
  Title Halide perovskites as disposable epitaxial templates for the phase-selective synthesis of lead sulfochloride nanocrystals Type A1 Journal article
  Year 2022 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 13 Issue 1 Pages (down) 3976-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal chemistry grants access to a wealth of materials through simple and mild reactions. However, even few elements can combine in a variety of stoichiometries and structures, potentially resulting in impurities or even wrong products. Similar issues have been long addressed in organic chemistry by using reaction-directing groups, that are added to a substrate to promote a specific product and are later removed. Inspired by such approach, we demonstrate the use of CsPbCl3 perovskite nanocrystals to drive the phase-selective synthesis of two yet unexplored lead sulfochlorides: Pb3S2Cl2 and Pb4S3Cl2. When homogeneously nucleated in solution, lead sulfochlorides form Pb3S2Cl2 nanocrystals. Conversely, the presence of CsPbCl3 triggers the formation of Pb4S3Cl2/CsPbCl3 epitaxial heterostructures. The phase selectivity is guaranteed by the continuity of the cationic subnetwork across the interface, a condition not met in a hypothetical Pb3S2Cl2/CsPbCl3 heterostructure. The perovskite domain is then etched, delivering phase-pure Pb4S3Cl2 nanocrystals that could not be synthesized directly. Phase-selective approaches, such using reaction-directing groups, are often seen in traditional organic chemistry and catalysis. Here authors use perovskite nanocrystals as disposable templates to drive the phase-selective synthesis of two colloidal nanomaterials, the lead sulfohalides Pb3S2Cl2 and Pb4S3Cl2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000825867200003 Publication Date 2022-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 15 Open Access OpenAccess  
  Notes The authors would like to acknowledge Dr. Joka Buha for the help with preliminary tests preceding this project, and Dr. B. M. Aresta and Dr. L. Cassano for their administrative support. The authors acknowledge financial support from the Research Foundation Flanders (FWO) through a postdoctoral fellowship to N.J.S. (FWO Grant No. 1238622N, N.J.S). S.B. acknowledges financial support from the European Commission by ERC Consolidator grant REALNANO (No. 815128, S.B.). L.M. acknowledges financial support from the Italian Ministry of University and Research (MIUR) through the Flag-Era JTC2019 project “Solution-Processed Perovskite/Graphene Nanocomposites for SelfPowered Gas Sensors” (PeroGaS, L.M.). The access to the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC0298CH10886 (NSLS-II Proposal Number 307441). Approved Most recent IF: 16.6  
  Call Number UA @ admin @ c:irua:189684 Serial 7085  
Permanent link to this record
 

 
Author Bretos, I.; Schneller, T.; Falter, M.; Baecker, M.; Hollmann, E.; Woerdenweber, R.; Molina-Luna, L.; Van Tendeloo, G.; Eibl, O. doi  openurl
  Title Solution-derived YBa2Cu3O7-\delta (YBCO) superconducting films with BaZrO3 (BZO) nanodots based on reverse micelle stabilized nanoparticles Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 3 Issue 3 Pages (down) 3971-3979  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Superconducting YBa2Cu3O7-delta (YBCO) films with artificial BaZrO3 (BZO) nanodots were prepared using a chemical solution deposition method involving hybrid solutions composed of trifluoroacetate-based YBCO precursors and reverse micelle stabilized BZO nanoparticle dispersions. Microemulsion-mediated synthesis was used to obtain nano-sized (similar to 12 nm) and mono-dispersed BZO nanoparticles that preserve their features once introduced into the YBCO solution, as revealed by dynamic light scattering. Phase pure, epitaxial YBCO films with randomly oriented BZO nanodots distributed over their whole microstructure were grown from the hybrid solutions on (100) LaAlO3 substrates. The morphology of the YBCO-BZO nanocomposite films was strongly influenced by the amount of nanoparticles incorporated into the system, with contents ranging from 5 to 40 mol%. Scanning electron microscopy showed a high density of isolated second-phase defects consisting of BZO nanodots in the nanocomposite film with 10 mol% of BZO. Furthermore, a direct observation and quantitative analysis of lattice defects in the form of interfacial edge dislocations directly induced by the BZO nanodots was evidenced by transmission electron microscopy. The superconducting properties (77 K) of the YBCO films improved considerably by the presence of such nanodots, which seem to enhance the morphology of the sample and therefore the intergranular critical properties. The incorporation of preformed second-phase defects (here, BZO) during the growth of the superconducting phase is the main innovation of this novel approach for the all-solution based low-cost fabrication of long-length coated conductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352870400018 Publication Date 2015-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 19 Open Access  
  Notes This work was supported by the German Federal Ministry of Economics and Technology (BMWi) contract no. 0327433A (project ELSA). L. Molina-Luna and G. Van Tendeloo acknowledge funding from the European Research Council (ERC grant no. 24691-COUNTATOMS). The authors gratefully acknowledge J. Dornseiffer for the support with preparation of the microemulsions for the BZO nanoparticles; G. Wasse for the SEM images; and T. Po¨ssinger for the preparation of the artwork. Eurotape Approved Most recent IF: 5.256; 2015 IF: 4.696  
  Call Number UA @ lucian @ c:irua:132575 Serial 4245  
Permanent link to this record
 

 
Author Kundu, P.; Heidari, H.; Bals, S.; Ravishankar, N.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Formation and thermal stability of gold-silica nanohybrids : insight into the mechanism and morphology by electron tomography Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 53 Issue 15 Pages (down) 3970-3974  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gold-silica hybrids are appealing in different fields of applications like catalysis, sensorics, drug delivery, and biotechnology. In most cases, the morphology and distribution of the heterounits play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the heterounits, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au-decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the heterounits by scanning transmission electron microscopy (STEM) tomography is presentedat the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self-assembled structure of Au nanoparticles. The hybrid shows good thermal stability up to 400 degrees C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000333634800036 Publication Date 2014-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 10 Open Access OpenAccess  
  Notes This research has received funding from the European Community’s Seventh Framework Program (ERC; grant number 246791)— COUNTATOMS, COLOURATOMS, as well as from the IAP 7/05 Programme initiated by the Belgian Science Policy Office. Funding from the Department of Science and Technology (DST) is also acknowledged.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261  
  Call Number UA @ lucian @ c:irua:117186 Serial 1251  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: