toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bogaerts, A.; Snoeckx, R.; Berthelot, A.; Heijkers, S.; Wang, W.; Sun, S.; Van Laer, K.; Ramakers, M.; Michielsen, I.; Uytdenhouwen, Y.; Meynen, V.; Cool, P. pdf  openurl
  Title Plasma based co2 conversion: a combined modeling and experimental study Type P1 Proceeding
  Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords P1 Proceeding; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years there is increased interest in plasma-based CO2 conversion. Several plasma setups are being investigated for this purpose, but the most commonly used ones are a dielectric barrier discharge (DBD), a microwave (MW) plasma and a gliding arc (GA) reactor. In this proceedings paper, we will show results from our experiments in a (packed bed) DBD reactor and in a vortex-flow GA reactor, as well as from our model calculations for the detailed plasma chemistry in a DBD, MW and GA, for pure CO2 as well as mixtures of CO2 with N-2, CH4 and H2O.  
  Address  
  Corporate Author Thesis  
  Publisher Masarykova univ Place of Publication Brno Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-80-210-8318-9 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:141553 Serial 4526  
Permanent link to this record
 

 
Author van Oers, C.J.; Kurttepeli, M.; Mertens, M.; Bals, S.; Meynen, V.; Cool, P. pdf  url
doi  openurl
  Title Zeolite \beta nanoparticles based bimodal structures : mechanism and tuning of the porosity and zeolitic properties Type A1 Journal article
  Year 2014 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 185 Issue Pages (down) 204-212  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Despite great efforts in the research area of zeolite nanoparticles and their use in the synthesis of bimodal materials, still little is known about the impact of the synthesis conditions of the zeolite nanoparticles on its own characteristics, and on the properties and the formation mechanism of the final bimodal materials. A zeolite β nanoparticles solution is applied in a mesotemplate-free synthesis method, and the influence of the hydrothermal ageing temperature of the nanoparticles solution on both the zeolitic and porosity characteristics of the final bimodal material has been studied. Transmission electron microscopy in combination with 3-dimensional reconstructions obtained by electron tomography revealed that the zeolite β nanoparticles are connected by neck-like structures, thus creating a wormhole-like mesoporous material. Considering the zeolitic properties, a clear threshold is observed in the synthesis temperature series at 413 K. Below and at this threshold, the biporous materials show no apparent zeolitic characteristics, although these materials exhibit a more condensed and uniform SiOSi network in comparison to Al-MCF. Synthesis temperatures above the threshold lead to bimodal structures with defined zeolitic properties. Moreover, the dimensions of the nanoparticles are studied by TEM, revealing an increasing particle size with increasing temperature under the threshold of 413 K, which is in agreement with a sol-mechanism. This mechanism is disturbed after the threshold due to the start of the crystallisation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000330930400025 Publication Date 2013-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 10 Open Access OpenAccess  
  Notes 262348 Esmi Approved Most recent IF: 3.615; 2014 IF: 3.453  
  Call Number UA @ lucian @ c:irua:112501 Serial 3930  
Permanent link to this record
 

 
Author Vernimmen, J.; Meynen, V.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Cool, P. pdf  doi
openurl 
  Title Formation of a Ti-siliceous trimodal material with macroholes, mesopores and zeolitic features via a one-pot templating synthesis Type A1 Journal article
  Year 2012 Publication Journal of porous materials Abbreviated Journal J Porous Mat  
  Volume 19 Issue 2 Pages (down) 153-160  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Based on a facile one-pot templating synthesis, using a TS-1 zeolite recipe whereby part of the zeolite structure directing agent is replaced by a mesopore templating agent, a trimodal material is formed. The resulting meso-TSM material combines mesoporosity (Ti-MCM-41) with zeolitic features (TS-1) and a unique sheet-like morphology with uniform macroporous voids (macroholes). Moreover, the macrohole formation, mesoporosity and zeolitic properties of the meso-TSM material can be controlled in a straightforward way by adjusting the length of the hydrothermal treatment. This newly developed material may imply great potential for catalytic redox applications and diffusion limitated processes because of its highly tunable character in all three dimensions (micro-, meso- and macroporous scale).  
  Address  
  Corporate Author Thesis  
  Publisher Kluwer Academic Place of Publication Boston, Mass. Editor  
  Language Wos 000301187600002 Publication Date 2011-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1380-2224;1573-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.624 Times cited 2 Open Access  
  Notes Fwo; Goa Approved Most recent IF: 1.624; 2012 IF: 1.348  
  Call Number UA @ lucian @ c:irua:88367 Serial 1257  
Permanent link to this record
 

 
Author Liu, S.; Lebedev, O.I.; Mertens, M.; Meynen, V.; Cool, P.; Van Tendeloo, G.; Vansant, E.F. pdf  doi
openurl 
  Title The merging of silica-surfactant microspheres under hydrothermal conditions Type A1 Journal article
  Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 116 Issue Pages (down) 141-146  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Post-synthesis hydrothermal treatments have been used to improve the quality of MCM-41 materials. In our latest work, merging of surfactant-containing silica microspheres during the hydrothermal treatments was observed. Mechanistic insights and the different stages that are involved in the merging process can be summarized as follows. First, the surfaces of the starting microspheres open up due to the dissolution of silica. Then the dissolved silica species provide mass source for the formation of particle necks connecting two neighboring microspheres. Gradually, surfaces of the starting microspheres are flattened to meet the needs of further growth of the necks. Finally, some chain-like highly-ordered mesoporous structures up to several micrometers are formed. The observed merging of the surfactant-containing microspheres is a re-assembling process, which is under the control of electrostatic force between the dissolved silica species and the surfactant cations. The occluded surfactant cations in the precursor spheres play important roles in the merging process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000261133600021 Publication Date 2008-04-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 5 Open Access  
  Notes Fwo; Goa Approved Most recent IF: 3.615; 2008 IF: 2.555  
  Call Number UA @ lucian @ c:irua:72021 Serial 1997  
Permanent link to this record
 

 
Author de Witte, K.; Meynen, V.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F.; Vansant, E.F.; Cool, P. pdf  doi
openurl 
  Title Multi-step loading of titania on mesoporous silica: influence of the morphology and the porosity on the catalytic degradation of aqueous pollutants and VOC's Type A1 Journal article
  Year 2008 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 84 Issue 1/2 Pages (down) 125-132  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Titania nanoparticles have been deposited on inert porous silica supports with high specific surface area. These materials have potential applications in paint and textile industry as the titania particles selectively deposited on the inner surface of the silica supports act as a photocatalyst. The inert external surface is necessary to avoid photodegradation of the textile material or the paint components. The photocatalytic activity of the catalysts has been evaluated with two catalytic setups. One setup in aqueous phase, for the degradation of dyes such as rhodamine-6G, is commonly used. The second setup is a continuous flow gaseous phase setup which was used for the mineralization of ethanol as a representative volatile organic compound (VOC). The influence of the porosity and the morphology of the silica supports on the photocatalytic activity are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000260728300017 Publication Date 2008-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 24 Open Access  
  Notes Iwt 30916; Fwo Approved Most recent IF: 9.446; 2008 IF: 4.853  
  Call Number UA @ lucian @ c:irua:68279 Serial 2213  
Permanent link to this record
 

 
Author de Witte, K.; Busuioc, A.M.; Meynen, V.; Mertens, M.; Bilba, N.; Van Tendeloo, G.; Cool, P.; Vansant, E.F. doi  openurl
  Title Influence of the synthesis parameters of TiO2-SBA-15 materials on the adsorption and photodegradation of rhodamine-6G Type A1 Journal article
  Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 110 Issue 1 Pages (down) 100-110  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000254056200013 Publication Date 2007-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 54 Open Access  
  Notes Approved Most recent IF: 3.615; 2008 IF: 2.555  
  Call Number UA @ lucian @ c:irua:68280 Serial 1654  
Permanent link to this record
 

 
Author Stevens, W.J.J.; Meynen, V.; Bruijn, E.; Lebedev, O.I.; Van Tendeloo, G.; Cool, P.; Vansant, E.F. pdf  doi
openurl 
  Title Mesoporous material formed by acidic hydrothermal assembly of silicalite-1 precursor nanoparticles in the absence of meso-templates Type A1 Journal article
  Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 110 Issue 1 Pages (down) 77-85  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000254056200010 Publication Date 2007-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 21 Open Access  
  Notes Fwo; Crp; Inside-Pores Approved Most recent IF: 3.615; 2008 IF: 2.555  
  Call Number UA @ lucian @ c:irua:68229 Serial 1998  
Permanent link to this record
 

 
Author Ribbens, S.; Beyers, E.; Schellens, K.; Mertens, M.; Ke, X.; Bals, S.; Van Tendeloo, G.; Meynen, V.; Cool, P. pdf  doi
openurl 
  Title Systematic evaluation of thermal and mechanical stability of different commercial and synthetic photocatalysts in relation to their photocatalytic activity Type A1 Journal article
  Year 2012 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 156 Issue Pages (down) 62-72  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract The effect of thermal treatment and mechanical stress on the structural and photocatalytic properties of eight different (synthetic and commercial) photocatalysts has been thoroughly investigated. Different mesoporous Ti-based materials were prepared via surfactant based synthesis routes (e.g. Pluronic 123, CTMABr = Cetyltrimethylammonium bromide) or via template-free synthesis routes (e.g. trititanate nanotubes). Also, the stabilizing effect of the NaOH/NH4OH post-treatment on the templated mesoporous materials and their photocatalytic activity was investigated. Furthermore, the thermal and mechanical properties of commercially available titanium dioxides such as P25 Evonik® and Millenium PC500® were studied. The various photocatalysts were analyzed with N2-sorption, X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) to obtain information concerning the specific surface area, pore volume, crystal structure, morphology, phase transitions, etc. In general, results show that the NaOH post-treatment leads to an increased control of the crystallization process during calcination resulting in a higher thermal stability, but at the same time diminishes the photocatalytic activity. Mesoporous materials in which pre-synthesized nanoparticles are used as titania source have the best mechanical stability whereas the mechanical stability of the nanotubes is the most limited. At increased temperatures and pressures, the tested commercial titanium dioxides lose their superior photocatalytic activity caused by a decreased accessibility of the active sites. The observed changes in adsorption capacities and photocatalytic activities cannot be assigned to one single phenomenon. In this respect, it shows the need to define a general/standard method to compare different photocatalysts. Furthermore, it is shown that the photocatalytic properties do not necessarily deteriorate under thermal stress, but can be improved due to crystallization, even though the initial material is (partially) destroyed. It is shown that the usefulness of a specific type of photocatalyst strongly depends on the application and the temperature/pressure to which it needs to resist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000303625200010 Publication Date 2012-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 8 Open Access  
  Notes Fwo Approved Most recent IF: 3.615; 2012 IF: 3.365  
  Call Number UA @ lucian @ c:irua:96910 Serial 3466  
Permanent link to this record
 

 
Author Loreto, S.; Vanrompay, H.; Mertens, M.; Bals, S.; Meynen, V. pdf  url
doi  openurl
  Title The influence of acids on tuning the pore size of mesoporous TiO2 templated by non-ionic block copolymers Type A1 Journal article
  Year 2018 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume 2018 Issue 2018 Pages (down) 62-65  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract <script type='text/javascript'>document.write(unpmarked('We show the possibility to tune the pore size of mesoporous TiO2 templated by non-ionic block copolymers by adding different inorganic acids at well-chosen concentration. The effect of the inorganic anions on both the TiO2 cluster formation and the non-ionic block copolymers micelles is investigated to explain the experimental results.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000419706000008 Publication Date 2017-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 6 Open Access OpenAccess  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO) (grant G.0687.13) and the University of Antwerp (BOF project). Hans Vanrompay gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO grant 1S32617N). Sara Bals acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). ; ecas_Sara Approved Most recent IF: 2.444  
  Call Number UA @ lucian @ c:irua:147897UA @ admin @ c:irua:147897 Serial 4881  
Permanent link to this record
 

 
Author Michielsen, I.; Uytdenhouwen, Y.; Bogaerts, A.; Meynen, V. url  doi
openurl 
  Title Altering conversion and product selectivity of dry reforming of methane in a dielectric barrier discharge by changing the dielectric packing material Type A1 Journal article
  Year 2019 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 9 Issue 1 Pages (down) 51  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the influence of dense, spherical packing materials, with different chemical compositions, on the dry reforming of methane (DRM) in a dielectric barrier discharge (DBD) reactor. Although not catalytically activated, a vast effect on the conversion and product selectivity could already be observed, an influence which is often neglected when catalytically activated plasma packing materials are being studied. The alpha-Al2O3 packing material of 2.0-2.24 mm size yields the highest total conversion (28%), as well as CO2 (23%) and CH4 (33%) conversion and a high product fraction towards CO (similar to 70%) and ethane (similar to 14%), together with an enhanced CO/H-2 ratio of 9 in a 4.5 mm gap DBD at 60 W and 23 kHz. gamma-Al2O3 is only slightly less active in total conversion (22%) but is even more selective in products formed than alpha-Al2O3 BaTiO3 produces substantially more oxygenated products than the other packing materials but is the least selective in product fractions and has a clear negative impact on CO2 conversion upon addition of CH4. Interestingly, when comparing to pure CO2 splitting and when evaluating differences in products formed, significantly different trends are obtained for the packing materials, indicating a complex impact of the presence of CH4 and the specific nature of the packing materials on the DRM process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459732000051 Publication Date 2019-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.082  
  Call Number UA @ admin @ c:irua:158666 Serial 5268  
Permanent link to this record
 

 
Author Herregods, S.J.F.; Mertens, M.; Van Havenbergh, K.; Van Tendeloo, G.; Cool, P.; Buekenhoudt, A.; Meynen, V. pdf  doi
openurl 
  Title Controlling pore size and uniformity of mesoporous titania by early stage low temperature stabilization Type A1 Journal article
  Year 2013 Publication Journal of colloid and interface science Abbreviated Journal J Colloid Interf Sci  
  Volume 391 Issue Pages (down) 36-44  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract The control of the formation process during and after self-assembly is of utmost importance to achieve well structured, controlled template-assisted mesoporous titania materials with the desired properties for various applications via the evaporation induced self-assembly method (EISA). The present paper reports on the large influence of the thermal stabilization and successive template removal on the pore structure of a mesostructured TiO2 material using the diblock copolymer Brij 58 as surfactant. A controlled thermal stabilization (temperature and duration) allows one to tailor the final pore size and uniformity much more precise by influencing the self-assembly of the template. Moreover, also the successive thermal template removal needs to be controlled in order to avoid a structural collapse. N2-sorption, TGA, TEM, FT-Raman spectroscopy, and small angle wide angle XRD have been used to follow the crystal growth and mesostructure organization after thermal stabilization and after thermal template removal, revealing its effect on the final pore structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000312039000006 Publication Date 2012-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.233 Times cited 12 Open Access  
  Notes Approved Most recent IF: 4.233; 2013 IF: 3.552  
  Call Number UA @ lucian @ c:irua:101757 Serial 506  
Permanent link to this record
 

 
Author van Oers, C.J.; Stevens, W.J.J.; Bruijn, E.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Meynen, V.; Cool, P. pdf  doi
openurl 
  Title Formation of a combined micro- and mesoporous material using zeolite Beta nanoparticles Type A1 Journal article
  Year 2009 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 120 Issue 1/2 Pages (down) 29-34  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Composite micro- and mesoporous materials are synthesized using zeolite Beta nanoparticles without the need for a structure directing agent to form the mesopores. This leads to important ecological and economical advantages. The influence of the way of cooling the aged nanoparticles solution on the formation of the composite materials has been studied. The materials have been characterized towards porosity by N2-sorption, towards zeolitic properties by TGA, DRIFT, XRD and TEM, towards aluminium content by EPMA. All prepared structures possess zeolitic properties. However, the method of cooling down of the aged seeds leads to differences in the porosity and intensity of the zeolitic characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000264619200006 Publication Date 2008-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 42 Open Access  
  Notes Crp; Sfr Ua Approved Most recent IF: 3.615; 2009 IF: 2.652  
  Call Number UA @ lucian @ c:irua:74950 Serial 1254  
Permanent link to this record
 

 
Author Meynen, V.; Cool, P.; Vansant, E.F.; Kortunov, P.; Grinberg, F.; Kärger, J.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G. pdf  doi
openurl 
  Title Deposition of vanadium silicalite-1 nanoparticles on SBA-15 materials: structural and transport characteristics of SBA-VS-15 Type A1 Journal article
  Year 2007 Publication Microporous and mesoporous materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 99 Issue 1/2 Pages (down) 14-22  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000243845200003 Publication Date 2006-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 23 Open Access  
  Notes FWO; GOA; Inside-Pores NoE (FP-EU) Approved Most recent IF: 3.615; 2007 IF: 2.210  
  Call Number UA @ lucian @ c:irua:61567 Serial 647  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Kavak, S.; Bals, S.; Meynen, V. pdf  url
doi  openurl
  Title Modifying the Stöber Process: Is the Organic Solvent Indispensable? Type A1 Journal Article
  Year 2022 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J  
  Volume Issue Pages (down)  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The Stöber method is one of the most important and fundamental processes for the synthesis of inorganic (nano)materials but has the drawback of using a large amount of organic solvent. Herein, ethanol was used as an example to explore if the organic solvent in a typical Stöber method can be omitted. It was found that ethanol increases the particle size of the obtained silica spheres and aids the formation of uniform silica particles rather than forming a gel. Nevertheless, the results indicated that an organic solvent in the initial synthesis mixture is not indispensable. An initially immiscible synthesis method was discovered, which can replace the organic solvent-based Stöber method to successfully synthesize silica particles with the same size ranges as the original Stöber process without addition of organic solvents. Moreover, this process can be of further value for the extension to synthesis processes of other materials based on the Stöber process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000898283500001 Publication Date 2022-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.3 Times cited 3 Open Access OpenAccess  
  Notes The authors are grateful to Alexander Vansant and Dr. Steven Mullens of VITO for their contributions to the DLS measurements in this paper. J.W acknowledges the State Scholarship funded by the China Scholarship Council (201806060123). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). S.K acknowledges the Flemish Fund for Scientific Research (FWO Flanders) through a PhD research grant (1181122N). Approved Most recent IF: 4.3  
  Call Number EMAT @ emat @c:irua:191646 Serial 7233  
Permanent link to this record
 

 
Author Meynen, V.; Busuioc, A.M.; Beyers, E.; Cool, P.; Vansant, E.F.; Bilba, N.; Mertens, M.; Lebedev, O.; Van Tendeloo, G. openurl 
  Title Nanodesign of combined micro- and mesoporous materials for specific applications in adsorption and catalysis Type H3 Book chapter
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords H3 Book chapter; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Nova Place of Publication New York Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:63126 Serial 2251  
Permanent link to this record
 

 
Author Xu, W.; Van Alphen, S.; Galvita, V.V.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of Gas Composition on Temperature and CO2Conversion in a Gliding Arc Plasmatron reactor: Insights for Post‐Plasma Catalysis from Experiments and Computation Type A1 Journal Article
  Year 2024 Publication ChemSusChem Abbreviated Journal ChemSusChem  
  Volume Issue Pages (down)  
  Keywords A1 Journal Article; CO2 conversion · Plasma · Gliding arc plasmatron · Temperature profiles · Computational modelling; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma‐based CO<sub>2</sub>conversion has attracted increasing interest. However, to understand the impact of plasma operation on post‐plasma processes, we studied the effect of adding N<sub>2</sub>, N<sub>2</sub>/CH<sub>4</sub>and N<sub>2</sub>/CH<sub>4</sub>/H<sub>2</sub>O to a CO<sub>2</sub>gliding arc plasmatron (GAP) to obtain valuable insights into their impact on exhaust stream composition and temperature, which will serve as feed gas and heat for post‐plasma catalysis (PPC). Adding N<sub>2</sub>improves the CO<sub>2</sub>conversion from 4 % to 13 %, and CH<sub>4</sub>addition further promotes it to 44 %, and even to 61 % at lower gas flow rate (6 L/min), allowing a higher yield of CO and hydrogen for PPC. The addition of H<sub>2</sub>O, however, reduces the CO<sub>2</sub>conversion from 55 % to 22 %, but it also lowers the energy cost, from 5.8 to 3 kJ/L. Regarding the temperature at 4.9 cm post‐plasma, N<sub>2</sub>addition increases the temperature, while the CO<sub>2</sub>/CH<sub>4</sub>ratio has no significant effect on temperature. We also calculated the temperature distribution with computational fluid dynamics simulations. The obtained temperature profiles (both experimental and calculated) show a decreasing trend with distance to the exhaust and provide insights in where to position a PPC bed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001200297300001 Publication Date 2024-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access  
  Notes We acknowledge the VLAIO Catalisti Moonshot project D2M and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692) for financial support. We acknowledge Gilles Van Loon for his help to make the quartz and steel devices for the reactor. Vladimir V. Galvita also acknowledges a personal grant from the Research Fund of Ghent University (BOF; 01N16319). Approved Most recent IF: 8.4; 2024 IF: 7.226  
  Call Number PLASMANT @ plasmant @c:irua:205101 Serial 9128  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: