|   | 
Details
   web
Records
Author Martin, J.M.L.; François, J.P.; Gijbels, R.; Almlöf, J.
Title Structure and infrared spectroscopy of the C11 molecule Type MA3 Book as author
Year 1991 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords MA3 Book as author; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher University of Minnesota Place of Publication Minneapolis, Minn. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:717 Serial 3280
Permanent link to this record
 

 
Author Verlinden, G.; Gijbels, R.; Brox, O.; Benninghoven, A.; Geuens, I.; de Keyzer, R.
Title Surface analysis of silver halide microcrystals by imaging time-of-flight SIMS (TOF-SIMS) Type P1 Proceeding
Year 1997 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos A1997BJ88J00018 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:20475 Serial 3392
Permanent link to this record
 

 
Author Gijbels, R.; van Grieken, R.
Title Trace element geochemistry in thermal waters from the Eastern Pyrenees Type MA3 Book as author
Year 1985 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords MA3 Book as author; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:117473 Serial 3692
Permanent link to this record
 

 
Author Somers, W.
Title Atomic scale simulations of the interactions of plasma species on nickel catalyst surfaces Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:127915 Serial 4142
Permanent link to this record
 

 
Author Bogaerts, A.
Title Glow discharge optical spectroscopy and mass spectrometry Type A1 Journal article
Year 2016 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords A1 Journal article; PLASMANT
Abstract Atomic Spectroscopy Optical (atomic absorption spectroscopy, AAS; atomic emission spectroscopy, AES; atomic fluorescence spectroscopy, AFS; and optogalvanic spectroscopy) and mass spectrometric (magnetic sector, quadrupole mass analyzer, QMA; quadrupole ion trap, QIT; Fourier transform ion cyclotron resonance, FTICR; and time-of-flight, TOF) instrumentation are well suited for coupling to the glow discharge (GD). The GD is a relatively simple device. A potential gradient (500–1500 V) is applied between an anode and a cathode. In most cases, the sample is also the cathode. A noble gas (mostly Ar) is introduced into the discharge region before power initiation. When a potential is applied, electrons are accelerated toward the anode. As these electrons accelerate, they collide with gas atoms. A fraction of these collisions are of sufficient energy to remove an electron from a support gas atom, forming an ion. These ions are, in turn, accelerated toward the cathode. These ions impinge on the surface of the cathode, sputtering sample atoms from the surface. Sputtered atoms that do not redeposit on the surface diffuse into the excitation/ionization regions of the plasma where they can undergo excitation and/or ionization via a number of collisional processes, and the photons or ions created in this way can be detected with optical emission spectroscopy or mass spectrometry. GD sources offer a number of distinct advantages that make them well suited for specific types of analyses. These sources afford direct analysis of solid samples, thus minimizing the sample preparation required for analysis. The nature of the plasma also provides mutually exclusive atomization and excitation processes that help to minimize the matrix effects that plague so many other elemental techniques. In recent years, there is also increasing interest for using GD sources for liquid and gas analyses. In this article, first, the principles of operation of the GD plasma are reviewed, with an emphasis on how those principles relate to optical spectroscopy and mass spectrometry. Basic applications of the GD techniques are considered next. These include bulk analysis, surface analysis, and the analysis of solution and gaseous samples. The requirements necessary to obtain optical information are addressed following the analytical applications. This article focuses on the instrumentation needed to make optical measurements using the GD as an atomization/excitation source. Finally, mass spectrometric instrumentation and interfaces are addressed as they pertain to the use of a GD plasma as an ion source. GD sources provide analytically useful gas-phase species from solid samples. These sources can be interfaced with a variety of spectroscopic and spectrometric instruments for both quantitative and qualitative analyses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2006-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @ Serial 4282
Permanent link to this record
 

 
Author De Bie, C.
Title Fluid modeling of the plasma-assisted conversion of greenhouse gases to value-added chemicals in a dielectric barrier discharge Type Doctoral thesis
Year 2016 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:138591 Serial 4466
Permanent link to this record
 

 
Author Ozkan, A.
Title CO2 splitting in a dielectric barrier discharge plasma : understanding of physical and chemical aspects Type Doctoral thesis
Year 2016 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Université Libre de Bruxelles/Universiteit Antwerpen Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:136265 Serial 4470
Permanent link to this record
 

 
Author Tambuyzer, B.R.; Bergwerf, I.; de Vocht, N.; Reekmans, K.; Daans, J.; Jorens, P.G.; Goossens, H.; Ysebaert, D.K.; Chatterjee, S.; Van Marck, E.; Berneman, Z.N.; Ponsaerts, P.
Title Allogeneic stromal cell implantation in brain tissue leads to robust microglial activation Type A1 Journal article
Year 2009 Publication Immunology and cell biology Abbreviated Journal Immunol Cell Biol
Volume Issue Pages (up)
Keywords A1 Journal article; Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP); Bio-Imaging lab; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Although adult and embryonic stem cell-based therapy for central nervous system (CNS) injury is being developed worldwide, less attention is given to the immunological aspects of allogeneic cell implantation in the CNS. The latter is of major importance because, from a practical point of view, future stem cell-based therapy for CNS injury will likely be performed using well-characterised allogeneic stem cell populations. In this study, we aimed to further describe the immunological mechanism leading to rejection of allogeneic bone marrow-derived stromal cells (BM-SC) after implantation in murine CNS. For this, we first investigated the impact of autologous and allogeneic BM-SC on microglia activation in vitro. Although the results indicate that both autologous and allogeneic BM-SC do not activate microglia themselves in vitro, they also do not inhibit activation of microglia after exogenous stimuli in vitro. Next, we investigated the impact of allogeneic BM-SC on microglia activation in vivo. In contrast to the in vitro observations, microglia become highly activated in vivo after implantation of allogeneic BM-SC in the CNS of immune-competent mice. Moreover, our results suggest that microglia, rather than T-cells, are the major contributors to allograft rejection in the CNS.
Address
Corporate Author Thesis
Publisher Place of Publication Adelaide Editor
Language Wos 000266208800003 Publication Date 2009-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0818-9641 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.557 Times cited 31 Open Access
Notes Approved Most recent IF: 4.557; 2009 IF: 4.200
Call Number UA @ lucian @ c:irua:74903 Serial 4515
Permanent link to this record
 

 
Author Mueller, G.; Stahnke, F.; Bleiner, D.
Title Fast steel-cleanness characterization by means of laser-assisted plasma spectrometric methods Type A1 Journal article
Year 2006 Publication Talanta : the international journal of pure and applied analytical chemistry T2 – 34th Colloquium Spectroscopicum Internationale, SEP 04-09, 2005, Univ Antwerp, Antwerp, BELGIUM Abbreviated Journal Talanta
Volume Issue Pages (up)
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Laser-assisted plasma spectrometry is a palette of analytical techniques (L-OES, LA-ICP-MS) capable of fast spatially-resolved elemental analysis in the micrometer range. For fast estimation of the occurrence in steel samples of non-metallic inclusions, which degrade the material's technical properties, simultaneous OES detection and sequential ICP-MS detection were compared. Histograms were obtained for the intensity distribution of the acquired signals (laser pulse statistics). The skewness coefficient of the histograms for Al (indicator of non-metallic inclusions) was found to be clearly dependent on the fraction of non-metallic inclusions in the case of scanning L-OES. For LA-ICP-MS less clear dependence was observed, which was influenced by the acquisition characteristics. In fact, less measurement throughput limited for LA-ICP-MS the counting statistics to an extent that overrides the benefit of higher detection power as compared to L-OES. (c) 2006 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Pergamon Place of Publication Oxford Editor
Language Wos 000242871900015 Publication Date 2006-07-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.162 Times cited 12 Open Access
Notes Approved Most recent IF: 4.162; 2006 IF: 2.810
Call Number UA @ lucian @ c:irua:103122 Serial 4518
Permanent link to this record
 

 
Author Bleiner, D.; Macri, M.; Gasser, P.; Sautter, V.; Maras, A.
Title FIB, TEM and LA-ICPMS investigations on melt inclusions in Martian meteorites – Analytical capabilities and geochemical insights Type A1 Journal article
Year 2006 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal Talanta
Volume Issue Pages (up)
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In order to obtain full information coverage on melt inclusions in Martian meteorites (subgroup nakhlites) complementary micro-analytical techniques were used, i.e. focused ion beam, transmission electron microscopy and laser ablation. Using focused ion beam several lamellae for transmission electron microscopy were prepared and secondary electron images of cross-sections could be acquired. Laser ablation-inductively coupled plasma mass spectrometry analyses were performed on selected inclusions to obtain mass-oriented bulk composition of inclusions at depth. The differences in composition between melt inclusions in olivine and augite crystals would suggest a xenocrystic origin for olivine. Furthermore, electron diffraction patterns clearly indicated that the SiO2-rich phase in inclusions from augite in meteorites from Northwest Africa site is re-crystallized, whereas it is still vitreous in the inclusions from Nakhla sampling site. Therefore, different post-entrapment evolutions were active for the two nakhlite meteorite sets, the Nakhla and the NWA817 set. Melt inclusions in Nakhla olivine presented alteration veins, which were presumably produced before their landing on Earth. If this is the case, this would indicate a alteration stage already on Mars with all the consequence in terms of climate history. Melt inclusions in Nakhla augite resulted unaffected by any alteration or modification following the entrapment, and therefore represent the best candidate to indicate the pristine magma composition. (c) 2005 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Pergamon Place of Publication Oxford Editor
Language Wos 000235509900028 Publication Date 2005-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.162 Times cited 9 Open Access
Notes Approved Most recent IF: 4.162; 2006 IF: 2.810
Call Number UA @ lucian @ c:irua:95092 Serial 4519
Permanent link to this record
 

 
Author Mees, M.J.; Pourtois, G.; Rosciano, F.; Put, B.; Vereecken, P.M.; Stesmans, A.
Title First-principles material modeling of solid-state electrolytes with the spinel structure Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume Issue Pages (up)
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ionic diffusion through the novel (AlxMg1-2xLix)Al2O4 spinel electrolyte is investigated using first-principles calculations, combined with the Kinetic Monte Carlo algorithm. We observe that the ionic diffusion increases with the lithium content x. Furthermore, the structural parameters, formation enthalpies and electronic structures of (AlxMg1-2xLix)Al2O4 are calculated for various stoichiometries. The overall results indicate the (AlxMg1-2xLix)Al2O4 stoichiometries x = 0.2...0.3 as most promising. The (AlxMg1-2xLix)Al2O4 electrolyte is a potential candidate for the all-spinel solid-state battery stack, with the material epitaxially grown between well-known spinel electrodes, such as LiyMn2O4 and Li4+3yTi5O12 (y = 0...1). Due to their identical crystal structure, a good electrolyte-electrode interface is expected.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000332395700048 Publication Date 2014-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 8 Open Access
Notes Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:128893 Serial 4520
Permanent link to this record
 

 
Author Armelao, L.; Bertagnolli, H.; Bleiner, D.; Groenewolt, M.; Gross, S.; Krishnan, V.; Sada, C.; Schubert, U.; Tondello, E.; Zattin, A.
Title Highly dispersed mixed zirconia and hafnia nanoparticles in a silica matrix: First example of a ZrO2-HfO2-SiO2 ternary oxide system Type A1 Journal article
Year 2007 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume Issue Pages (up)
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract ZrO2 and HfO2 nanoparticles are homogeneously dispersed in SiO2 matrices (supported film and bulk powders) by copolymerization of two oxozirconium and oxohafnium clusters (M4O(2)(OMc)(12), M= Zr, Hf; OMc = OC(O)-C(CH3)=CH2) with (methacryloxypropyl)trimethoxysilane (MAPTMS, (CH2=C(CH3)C(O)O)-(CH2)(3)Si(OCH3)(3)). After calcination (at a temperature >= 800 degrees C), a silica matrix with homogeneously distributed MO2 nanocrystallites is obtained. This route yields a spatially homogeneous dispersion of the metal precursors inside the silica matrix, which is maintained during calcination. The composition of the films and the powders is studied before and after calcination by using Fourier transform infrared (FTIR) analysis, X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The local environment of the metal atoms in one of the calcined samples is investigated by using X-ray Absorption Fine Structure (XAFS) spectroscopy. Through X-ray diffraction (XRD) the crystallization of Hf and Zr oxides is seen at temperatures higher than those expected for the pure oxides, and transmission electron microscopy (TEM) shows the presence of well-distributed and isolated crystalline oxide nanoparticles (540 nm).
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000248062100011 Publication Date 2007-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 34 Open Access
Notes Approved Most recent IF: 12.124; 2007 IF: 7.496
Call Number UA @ lucian @ c:irua:95083 Serial 4521
Permanent link to this record
 

 
Author Bleiner, D.; Altorfer, H.
Title A novel gas inlet system for improved aerosol entrainment in laser ablation inductively coupled plasma mass spectrometry Type A1 Journal article
Year 2005 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume Issue Pages (up)
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In order to minimize the dead volume in large cells for laser ablation inductively coupled plasma mass spectrometry, and improve the aerosol entrainment characteristics, the gas inlet nozzle has been set in rotation. This allowed a wider volume to be swept than with the traditional static inlet nozzle approach. Therefore, sensitivity combined with site-to-site repeatability was improved by a factor of two, together with minimization of aerosol loss within the cell and signal dispersion.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000231246900013 Publication Date 2005-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 21 Open Access
Notes Approved Most recent IF: 3.379; 2005 IF: 3.640
Call Number UA @ lucian @ c:irua:99309 Serial 4524
Permanent link to this record
 

 
Author Bleiner, D.; Belloni, F.; Doria, D.; Lorusso, A.; Nassisi, V.
Title Overcoming pulse mixing and signal tailing in laser ablation inductively coupled plasma mass spectrometry depth profiling Type A1 Journal article
Year 2005 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume Issue Pages (up)
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The laser ablation-induced plasma was used as a composition-con trolled source for ion implantation in Si crystals. Then, laser ablation in combination with inductively coupled plasma mass spectrometry was used for the elemental depth profiling of the implanted samples. Monte Carlo simulations permitted us to conclude that a depth resolution of tens of nm would be necessary to define the shape of the implantation profiles, as is obtained using XPS and RBS, whereas a hundred nm depth resolution is sufficient to determine the total implanted dose. The detection power of LA-ICP-MS would routinely allow rapid analytical control on the trace level implanted dose. Nevertheless, this technique is limited in terms of depth profiling resolution due to pulse mixing and signal tailing induced during the aerosol transport. Raw signal processing procedures were developed for the minimization of shapeline dispersion, deconvolution of pulse mixing and more appropriate assessment of the implanted profiles. Shapeline dispersion could be corrected for by determining the signal waning constant and implementing this information for a non-affine alibi transformation of the LA-ICP-MS signal traces. Pulse mixing deconvolution was attained with an algorithm that considered accumulated signal intensity due to pulse-on-pulse stacking, i.e., the latest pulse on top of all antecedent individual pulses' exponential tails proportionally.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000233958900018 Publication Date 2005-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 26 Open Access
Notes Approved Most recent IF: 3.379; 2005 IF: 3.640
Call Number UA @ lucian @ c:irua:99278 Serial 4525
Permanent link to this record
 

 
Author Bergwerf, I.; de Vocht, N.; Tambuyzer, B.; Verschueren, J.; Reekmans, K.; Daans, J.; Ibrahimi, A.; Van Tendeloo, V.; Chatterjee, S.; Goossens, H.; Jorens, P.G.; Baekelandt, V.; Ysebaert, D.; Van Marck, E.; Berneman, Z.N.; Van Der Linden, A.; Ponsaerts, P.
Title Reporter gene-expressing bone marrow-derived stromal cells are immune-tolerated following implantation in the central nervous system of syngeneic immunocompetent mice Type A1 Journal article
Year 2009 Publication BMC biotechnology Abbreviated Journal Bmc Biotechnol
Volume Issue Pages (up)
Keywords A1 Journal article; Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP); Bio-Imaging lab; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Background Cell transplantation is likely to become an important therapeutic tool for the treatment of various traumatic and ischemic injuries to the central nervous system (CNS). However, in many pre-clinical cell therapy studies, reporter gene-assisted imaging of cellular implants in the CNS and potential reporter gene and/or cell-based immunogenicity, still remain challenging research topics. Results In this study, we performed cell implantation experiments in the CNS of immunocompetent mice using autologous (syngeneic) luciferase-expressing bone marrow-derived stromal cells (BMSC-Luc) cultured from ROSA26-L-S-L-Luciferase transgenic mice, and BMSC-Luc genetically modified using a lentivirus encoding the enhanced green fluorescence protein (eGFP) and the puromycin resistance gene (Pac) (BMSC-Luc/eGFP/Pac). Both reporter gene-modified BMSC populations displayed high engraftment capacity in the CNS of immunocompetent mice, despite potential immunogenicity of introduced reporter proteins, as demonstrated by real-time bioluminescence imaging (BLI) and histological analysis at different time-points post-implantation. In contrast, both BMSC-Luc and BMSC-Luc/eGFP/Pac did not survive upon intramuscular cell implantation, as demonstrated by real-time BLI at different time-points post-implantation. In addition, ELISPOT analysis demonstrated the induction of IFN-ã-producing CD8+ T-cells upon intramuscular cell implantation, but not upon intracerebral cell implantation, indicating that BMSC-Luc and BMSC-Luc/eGFP/Pac are immune-tolerated in the CNS. However, in our experimental transplantation model, results also indicated that reporter gene-specific immune-reactive T-cell responses were not the main contributors to the immunological rejection of BMSC-Luc or BMSC-Luc/eGFP/Pac upon intramuscular cell implantation. Conclusion We here demonstrate that reporter gene-modified BMSC derived from ROSA26-L-S-L-Luciferase transgenic mice are immune-tolerated upon implantation in the CNS of syngeneic immunocompetent mice, providing a research model for studying survival and localisation of autologous BMSC implants in the CNS by real-time BLI and/or histological analysis in the absence of immunosuppressive therapy.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000262698500001 Publication Date 2009-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1472-6750 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.415 Times cited 33 Open Access
Notes Approved Most recent IF: 2.415; 2009 IF: 2.723
Call Number UA @ lucian @ c:irua:72911 Serial 4527
Permanent link to this record
 

 
Author Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title Theoretical study of silicene and germanene Type P1 Proceeding
Year 2013 Publication Graphene, Ge/iii-v, And Emerging Materials For Post Cmos Applications 5 Abbreviated Journal
Volume Issue Pages (up)
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The structural and electronic properties of silicene and germanene on metallic and non-metallic substrates are investigated theoretically, using first-principles simulations. We first study the interaction of silicene with Ag(111) surfaces, focusing on the (4x4) silicene/Ag structure. Due to symmetry breaking in the silicene layer (nonequivalent number of top and bottom Si atoms), silicene is predicted to be semiconducting, with a computed energy gap of about 0.3 eV. However, the charge transfer occurring at the silicene/Ag(111) interface leads to an overall metallic system. We next investigate the interaction of silicene and germanene with hexagonal non-metallic substrates, namely ZnS and ZnSe. On reconstructed (semiconducting) (0001) ZnS or ZnSe surfaces, silicene and germanene are found to be semiconducting. Remarkably, the nature (indirect or direct) and magnitude of their energy band gap can be controlled by an out-of-plane electric field.
Address
Corporate Author Thesis
Publisher Electrochemical soc inc Place of Publication Pennington Editor
Language Wos 000354468000006 Publication Date 2013-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-60768-374-2; 978-1-62332-023-2 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 6 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:134451 Serial 4529
Permanent link to this record
 

 
Author Van Laer, K.
Title Numerical and experimental study of a packed bed plasma reactor for environmental applications Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:144061 Serial 4675
Permanent link to this record
 

 
Author Snoeckx, R.
Title Plasma technology : a novel solution for CO2 conversion? Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:143110 Serial 4680
Permanent link to this record
 

 
Author Huygh, S.
Title Towards a fundamental understanding of plasma : TiO2 catalyst interaction for greenhouse gas conversion Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Universiteit Antwerpen Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:143954 Serial 4698
Permanent link to this record
 

 
Author Dabaghmanesh, S.
Title Atomistic modeling of the structural and electronic properties of Cr-based oxides and their potential application as TCO materials Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:146070 Serial 4738
Permanent link to this record
 

 
Author Berthelot, A.
Title Modeling of microwave plasmas for carbon dioxide conversion Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher University of Antwerp Place of Publication Antwerp Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:150338 Serial 4944
Permanent link to this record
 

 
Author Sun, S.
Title Study of carbon dioxide dissociation mechanisms in a gliding arc discharge Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Beihang University, School of Astronautics Place of Publication Beijing Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:149824 Serial 4950
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Bogaerts, A.
Title Possible Mechanism of Glucose Uptake Enhanced by Cold Atmospheric Plasma: Atomic Scale Simulations Type A1 Journal article
Year 2018 Publication Plasma Abbreviated Journal
Volume 1 Issue 1 Pages (up)
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma (CAP) has shown its potential in biomedical applications, such as wound healing, cancer treatment and bacterial disinfection. Recent experiments have provided evidence that CAP can also enhance the intracellular uptake of glucose molecules which is important in diabetes therapy. In this respect, it is essential to understand the underlying mechanisms of intracellular glucose uptake induced by CAP, which is still unclear. Hence, in this study we try to elucidate the possible mechanism of glucose uptake by cells by performing computer simulations. Specifically, we study the transport of glucose molecules through native and oxidized membranes. Our simulation results show that the free energy barrier for the permeation of glucose molecules across the membrane decreases upon increasing the degree of oxidized lipids in the membrane. This indicates that the glucose permeation rate into cells increases when the CAP oxidation level in the cell membrane is increased.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2018-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2571-6182 ISBN Additional Links UA library record
Impact Factor Times cited Open Access OpenAccess
Notes The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the Universiteit Antwerpen. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @ plasma1010011c:irua:152176 Serial 4990
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Trenchev, G.; Wang, W.
Title Modeling for a Better Understanding of Plasma-Based CO2 Conversion Type H1 Book Chapter
Year 2018 Publication Plasma Chemistry and Gas Conversion Abbreviated Journal
Volume Issue Pages (up)
Keywords H1 Book Chapter; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract This chapter discusses modeling efforts for plasma-based CO2 conversion, which are needed to obtain better insight in the underlying mechanisms, in order to improve this application. We will discuss two types of (complementary) modeling efforts that are most relevant, that is, (i) modeling of the detailed plasma chemistry by zero-dimensional (0D) chemical kinetic models and (ii) modeling of reactor design, by 2D or 3D fluid dynamics models. By showing some characteristic calculation results of both models, for CO2 splitting and in combination with a H-source, and for packed bed DBD and gliding arc plasma, we can illustrate the type of information they can provide.
Address
Corporate Author Thesis
Publisher IntechOpen Place of Publication Rijeka Editor Britun, N.; Silva, T.
Language Wos Publication Date 2018-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @ Bogaerts18c:irua:155915 Serial 5142
Permanent link to this record
 

 
Author Bal, K.
Title New ways to bridge the gap between microscopic simulations and macroscopic chemistry Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:154836 Serial 5118
Permanent link to this record
 

 
Author Verlackt, C.
Title The behavior of plasma-generated reactive species in plasma medicine Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:155115 Serial 5079
Permanent link to this record
 

 
Author Bogaerts, A.; Yusupov, M.; Razzokov, J.; Van der Paal, J.
Title Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling Type A1 Journal article
Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
Volume Issue Pages (up)
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma is gaining increasing interest for cancer

treatment, but the underlying mechanisms are not yet fully

understood. Using computer simulations at the molecular

level, we try to gain better insight in how plasma-generated

reactive oxygen and nitrogen species (RONS) can

penetrate through the cell membrane. Specifically, we

compare the permeability of various (hydrophilic and

hydrophobic) RONS across both oxidized and nonoxidized cell membranes. We also study pore formation,

and how it is hampered by higher concentrations of

cholesterol in the cell membrane, and we illustrate the

much higher permeability of H2O2 through aquaporin

channels. Both mechanisms may explain the selective

cytotoxic effect of plasma towards cancer cells. Finally, we

also discuss the synergistic effect of plasma-induced

oxidation and electric fields towards pore formation.

Keywords plasma medicine, cancer treatment, computer

modelling, cell membrane, reactive oxygen and nitrogen

species
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000468848400004 Publication Date 2019-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.712 Times cited 5 Open Access Not_Open_Access: Available from 23.05.2020
Notes We acknowledge financial support from the Research Foundation–Flanders (FWO; Grant Nos. 1200216N and 11U5416N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We are also very thankful to R. Cordeiro for the very interesting discussions. Approved Most recent IF: 1.712
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159977 Serial 5172
Permanent link to this record
 

 
Author Paunska, T.; Trenchev, G.; Bogaerts, A.; Kolev, S.
Title A 2D model of a gliding arc discharge for CO2conversion Type P1 Proceeding
Year 2019 Publication AIP conference proceedings T2 – 10th Jubilee Conference of the Balkan-Physical-Union (BPU), AUG 26-30, 2018, Sofia, BULGARIA Abbreviated Journal
Volume Issue Pages (up)
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The study presents a 2D fluid plasma model of a gliding arc discharge for dissociation of CO2 which allows its subsequent conversion into value-added chemicals. The model is based on the balance equations of charged and neutral particles, the electron energy balance equation, the gas thermal balance equation and the current continuity equation. By choosing the modeling domain to be the plane perpendicular to the arc current, the numerical calculations are significantly simplified. Thus, the model allows us to explore the influence of the gas instabilities (turbulences) on the energy efficiency of CO2 conversion. This paper presents results for plasma parameters at different values of the effective turbulent thermal conductivity leading to enhanced energy transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472653800069 Publication Date 2019-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume 2075 Series Issue Edition
ISSN 978-0-7354-1803-5; 978-0-7354-1803-5; 0094-243x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:161422 Serial 6281
Permanent link to this record
 

 
Author Duan, J.; Ma, M.; Yusupov, M.; Cordeiro, R.M.; Lu, X.; Bogaerts, A.
Title The penetration of reactive oxygen and nitrogen species across the stratum corneum Type A1 Journal article
Year 2020 Publication Plasma Processes And Polymers Abbreviated Journal Plasma Process Polym
Volume Issue Pages (up)
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The penetration of reactive oxygen and nitrogen species (RONS) across the stratum corneum (SC) is a necessary and crucial process in many skin‐related plasma medical applications. To gain more insights into this penetration behavior, we combined experimental measurements of the permeability of dry and moist SC layers with computer simulations of model lipid membranes. We measured the permeation of relatively stable molecules, which are typically generated by plasma, namely H2O2, NO3−, and NO2−. Furthermore, we calculated the permeation free energy profiles of the major plasma‐generated RONS and their derivatives (i.e., H2O2, OH, HO2, O2, O3, NO, NO2, N2O4, HNO2, HNO3, NO2−, and NO3−) across native and oxidized SC lipid bilayers, to understand the mechanisms of RONS permeation across the SC. Our results indicate that hydrophobic RONS (i.e., NO, NO2, O2, O3, and N2O4) can translocate more easily across the SC lipid bilayer than hydrophilic RONS (i.e., H2O2, OH, HO2, HNO2, and HNO3) and ions (i.e., NO2− and NO3−) that experience much higher permeation barriers. The permeability of RONS through the SC skin lipids is enhanced when the skin is moist and the lipids are oxidized. These findings may help to understand the underlying mechanisms of plasma interaction with a biomaterial and to optimize the environmental parameters in practice in plasma medical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000536892900001 Publication Date 2020-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.5 Times cited Open Access
Notes National Natural Science Foundation of China, 51625701 51977096 ; Fonds Wetenschappelijk Onderzoek, 1200219N ; China Scholarship Council, 201806160128 ; M. Y. acknowledges the Research Foundation Flanders (FWO) for financial support (Grant No. 1200219N). This study was partially supported by the National Natural Science Foundation of China (Grant No: 51625701 and 51977096) and the China Scholarship Council (Grant No: 201806160128). All computational work was performed using the Turing HPC infrastructure at the CalcUA Core Facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA. Approved Most recent IF: 3.5; 2020 IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:169709 Serial 6372
Permanent link to this record
 

 
Author Bogaerts, A.; Centi, G.
Title Plasma Technology for CO2 Conversion: A Personal Perspective on Prospects and Gaps Type A1 Journal article
Year 2020 Publication Frontiers in energy research Abbreviated Journal Front. Energy Res.
Volume 8 Issue Pages (up)
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract There is increasing interest in plasma technology for CO2 conversion because it can operate at mild conditions and it can store fluctuating renewable electricity into

value-added compounds and renewable fuels. This perspective paper aims to provide a view on the future for non-specialists who want to understand the role of plasma

technology in the new scenario for sustainable and low-carbon energy and chemistry. Thus, it is prepared to give a personal view on future opportunities and challenges. First, we introduce the current state-of-the-art and the potential of plasma-based CO2 conversion. Subsequently, we discuss the challenges to overcome the current limitations and to apply plasma technology on a large scale. The final section discusses the general context and the potential benefits of plasma-based CO2 conversion for our life and the impact on climate change. It also includes a brief analysis on the future scenario for energy and chemical production, and how plasma technology may realize new paths for CO2 utilization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000553392300001 Publication Date 2020-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-598X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes We acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 810182 – SCOPE ERC Synergy project). We thank A. Berthelot, M. Ramakers, R. Snoeckx, G. Trenchev, and V. Vermeiren for providing the figures used in this article. Approved Most recent IF: 3.4; 2020 IF: NA
Call Number PLASMANT @ plasmant @c:irua:170136 Serial 6390
Permanent link to this record