|   | 
Details
   web
Records
Author Martens, J.A.; Bogaerts, A.; De Kimpe, N.; Jacobs, P.A.; Marin, G.B.; Rabaey, K.; Saeys, M.; Verhelst, S.
Title The Chemical Route to a Carbon Dioxide Neutral World Type A1 Journal article
Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 10 Issue 10 Pages (up) 1039-1055
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy

supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2-neutral world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398182800002 Publication Date 2017-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 75 Open Access OpenAccess
Notes This paper is written by members of the Royal Flemish Academy of Belgium for Science and the Arts (KVAB) and external experts. KVAB is acknowledged for supporting the writing and publishing of this viewpoint. Valuable suggestions made by colleagues Jan Kretzschmar, Stan Ulens, and Luc Sterckx are highly appreciated. Special thanks go to Mr. Bert Seghers and Mrs. N. Boelens of KVAB for practical assistance. Mr. Tim Lacoere is acknowledged for graphic design and layout of the figures, and Steven Heylen and Elke Verheyen are acknowledged for data collection and editorial assistance. Approved Most recent IF: 7.226
Call Number PLASMANT @ plasmant @ c:irua:141916 Serial 4532
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Hybrid Monte-Carlo-fluid modeling network for an argon/hydrogen direct current glow discharge Type A1 Journal article
Year 2002 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 57 Issue Pages (up) 1071-1099
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000177673200006 Publication Date 2002-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 68 Open Access
Notes Approved Most recent IF: 3.241; 2002 IF: 2.695
Call Number UA @ lucian @ c:irua:40182 Serial 1527
Permanent link to this record
 

 
Author Bogaerts, A.; Okhrimovskyy, A.; Gijbels, R.
Title Calculation of the gas flow and its effect on the plasma characteristics for a modified Grimm-type glow discharge cell Type A1 Journal article
Year 2002 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 17 Issue Pages (up) 1076-1082
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000177766400012 Publication Date 2002-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 39 Open Access
Notes Approved Most recent IF: 3.379; 2002 IF: 4.250
Call Number UA @ lucian @ c:irua:40191 Serial 270
Permanent link to this record
 

 
Author Cordeiro, R.M.; Yusupov, M.; Razzokov, J.; Bogaerts, A.
Title Parametrization and Molecular Dynamics Simulations of Nitrogen Oxyanions and Oxyacids for Applications in Atmospheric and Biomolecular Sciences Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry B Abbreviated Journal J Phys Chem B
Volume 124 Issue 6 Pages (up) 1082-1089
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nitrogen oxyanions and oxyacids are important agents in atmospheric chemistry and medical biology. Although their chemical behavior in solution is relatively well understood, they may behave very differently at the water/air interface of atmospheric aerosols or at the membrane/water interface of cells. Here, we developed a fully classical model for molecular dynamics simulations of NO3−, NO2−, HNO3, and HNO2 in the framework of the GROMOS 53A6 and 54A7 force field versions. The model successfully accounted for the poorly structured solvation shell and ion pairing tendency of NO3−. Accurate pure-liquid properties and hydration free energies were obtained for the oxyacids. Simulations at the water/air interface showed a local enrichment of HNO3 and depletion of NO3−. The effect was discussed in light of earlier spectroscopic data and ab initio calculations, suggesting that HNO3 behaves as a weaker acid at the surface of water. Our model will hopefully allow for efficient and accurate simulations of nitrogen oxyanions and oxyacids in solution and at microheterogeneous interface environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000512222500015 Publication Date 2020-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-6106 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited Open Access
Notes We thank Universidade Federal do ABC for providing the computational resources needed for completion of this work. This study was financed in part by the Coordenaçaõ de Aperfeiçoamento de Pessoal de Nı ́vel Superior – Brasil (CAPES) – Finance Code 001. Approved Most recent IF: 3.3; 2020 IF: 3.177
Call Number PLASMANT @ plasmant @c:irua:166488 Serial 6340
Permanent link to this record
 

 
Author van Grieken, R.; Bogaerts, A.; Janssens, K.
Title Editorial Type Editorial
Year 2006 Publication Spectrochimica acta: part A: molecular spectroscopy Abbreviated Journal Spectrochim Acta A
Volume 64 Issue 5 Pages (up) 1089
Keywords Editorial; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000240093100001 Publication Date 2006-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-1425; ISBN Additional Links UA library record; WoS full record
Impact Factor 2.536 Times cited Open Access
Notes Approved Most recent IF: 2.536; 2006 IF: 1.270
Call Number UA @ lucian @ c:irua:58915 Serial 788
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Hammerschmid, D.; Privat-Maldonado, A.; Dewilde, S.; Bogaerts, A.
Title Synergistic Effects of Melittin and Plasma Treatment: A Promising Approach for Cancer Therapy Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal Cancers
Volume 11 Issue 8 Pages (up) 1109
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Melittin (MEL), a small peptide component of bee venom, has been reported to exhibit anti-cancer effects in vitro and in vivo. However, its clinical applicability is disputed because of its non-specific cytotoxicity and haemolytic activity in high treatment doses. Plasma-treated phosphate buffered saline solution (PT-PBS), a solution rich in reactive oxygen and nitrogen species (RONS) can disrupt the cell membrane integrity and induce cancer cell death through oxidative stress-mediated pathways. Thus, PT-PBS could be used in combination with MEL to facilitate its access into cancer cells and to reduce the required therapeutic dose. The aim of our study is to determine the reduction of the effective dose of MEL required to eliminate cancer cells by its combination with PT-PBS. For this purpose, we have optimised the MEL threshold concentration and tested the combined treatment of MEL and PT-PBS on A375 melanoma and MCF7 breast cancer cells, using in vitro, in ovo and in silico approaches. We investigated the cytotoxic effect of MEL and PT-PBS alone and in combination to reveal their synergistic cytological effects. To support the in vitro and in ovo experiments, we showed by computer simulations that plasma-induced oxidation of the phospholipid bilayer leads to a decrease of the free energy barrier for translocation of MEL in comparison with the non-oxidized bilayer, which also suggests a synergistic effect of MEL with plasma induced oxidation. Overall, our findings suggest that MEL in combination with PT-PBS can be a promising combinational therapy to circumvent the non-specific toxicity of MEL, which may help for clinical applicability in the future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000484438000069 Publication Date 2019-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes We gratefully acknowledge financial support from the Research Foundation—Flanders (FWO), grant number 12J5617N. We are thankful to Maksudbek Yusupov for his valuable discussions, and to the Center for Oncological Research (CORE), for providing the facilities for the experimental work. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the University Antwerp, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:161630 Serial 5286
Permanent link to this record
 

 
Author Marimuthu, P.; Razzokov, J.; Singaravelu, K.; Bogaerts, A.
Title Predicted Hotspot Residues Involved in Allosteric Signal Transmission in Pro-Apoptotic Peptide—Mcl1 Complexes Type A1 Journal article
Year 2020 Publication Biomolecules Abbreviated Journal Biomolecules
Volume 10 Issue 8 Pages (up) 1114
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Mcl1 is a primary member of the Bcl–2 family—anti–apoptotic proteins (AAP)—that is overexpressed in several cancer pathologies. The apoptotic regulation is mediated through the binding of pro-apoptotic peptides (PAPs) (e.g., Bak and Bid) at the canonical hydrophobic binding groove (CBG) of Mcl1. Although all PAPs form amphipathic α-helices, their amino acid sequences vary to different degree. This sequence variation exhibits a central role in the binding partner selectivity towards different AAPs. Thus, constructing a novel peptide or small organic molecule with the ability to mimic the natural regulatory process of PAP is essential to inhibit various AAPs. Previously reported experimental binding free energies (BFEs) were utilized in the current investigation aimed to understand the mechanistic basis of different PAPs targeted to mMcl1. Molecular dynamics (MD) simulations used to estimate BFEs between mMcl1—PAP complexes using Molecular Mechanics-Generalized Born Solvent Accessible (MMGBSA) approach with multiple parameters. Predicted BFE values showed an excellent agreement with the experiment (R2 = 0.92). The van–der Waals (ΔGvdw) and electrostatic (ΔGele) energy terms found to be the main energy components that drive heterodimerization of mMcl1—PAP complexes. Finally, the dynamic network analysis predicted the allosteric signal transmission pathway involves more favorable energy contributing residues. In total, the results obtained from the current investigation may provide valuable insights for the synthesis of a novel peptide or small organic inhibitor targeting Mcl1.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000578895600001 Publication Date 2020-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes P.M. gratefully acknowledges the use of the bioinformatics infrastructure facility supported by Biocenter Finland and the CSC-IT Center for Science (Project: 2000461) for the computational facility; Jukka Lehtonen for the IT support; Mark Johnson (SBL) Åbo Akademi University for providing the lab support and Outi Salo-Ahen (Pharmacy) Åbo Akademi University and Olli T. Pentikäinen (Institute of Biomedicine) University of Turku, for their valuable support and discussion. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:170486 Serial 6396
Permanent link to this record
 

 
Author Laroussi, M.; Bogaerts, A.; Barekzi, N.
Title Plasma processes and polymers third special issue on plasma and cancer Type Editorial
Year 2016 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 13 Issue 13 Pages (up) 1142-1143
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393131600001 Publication Date 2016-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 1 Open Access
Notes Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:141546 Serial 4474
Permanent link to this record
 

 
Author Bogaerts, A.; Yusupov, M.; Van der Paal, J.; Verlackt, C.C.W.; Neyts, E.C.
Title Reactive molecular dynamics simulations for a better insight in plasma medicine Type A1 Journal article
Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 11 Issue 12 Pages (up) 1156-1168
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this review paper, we present several examples of reactive molecular dynamics simulations, which contribute to a better understanding of the underlying mechanisms in plasma medicine on the atomic scale. This includes the interaction of important reactive oxygen plasma species with the outer cell wall of both gram-positive and gram-negative bacteria, and with lipids present in human skin. Moreover, as most biomolecules are surrounded by a liquid biofilm, the behavior of these plasma species in a liquid (water) layer is presented as well. Finally, a perspective for future atomic scale modeling studies is given, in the field of plasma medicine in general, and for cancer treatment in particular.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000346034700007 Publication Date 2014-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 22 Open Access
Notes Approved Most recent IF: 2.846; 2014 IF: 2.453
Call Number UA @ lucian @ c:irua:121269 Serial 2822
Permanent link to this record
 

 
Author Bleiner, D.; Bogaerts, A.
Title Computer simulations of laser ablation sample introduction for plasma-source elemental microanalysis Type A1 Journal article
Year 2006 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 21 Issue 11 Pages (up) 1161-1174
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000241568200005 Publication Date 2006-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 22 Open Access
Notes Approved Most recent IF: 3.379; 2006 IF: 3.630
Call Number UA @ lucian @ c:irua:60157 Serial 471
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Wang, W.Z.; Thille, C.; Bogaerts, A.
Title H2S Decomposition into H2 and S2 by Plasma Technology: Comparison of Gliding Arc and Microwave Plasma Type A1 Journal article
Year 2020 Publication Plasma Chemistry And Plasma Processing Abbreviated Journal Plasma Chem Plasma P
Volume 40 Issue 5 Pages (up) 1163-1187
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We studied hydrogen sulfide (H2S) decomposition into hydrogen (H2) and sulfur (S2) in a gliding arc plasmatron (GAP) and microwave (MW) plasma by a combination of 0D and 2D models. The conversion, energy efficiency, and plasma distribution are examined for different discharge conditions, and validated with available experiments from literature. Furthermore, a comparison is made between GAP and MW plasma. The GAP operates at atmospheric pressure, while the MW plasma experiments to which comparison is made were performed at reduced pressure. Indeed, the MW discharge region becomes very much contracted near atmospheric pressure, at the conditions under study, as revealed by our 2D model. The models predict that thermal reactions play the most important role in H2S decomposition in both plasma types. The GAP has a higher energy efficiency but lower conversion than the MW plasma at their typical conditions. When compared at the same conversion, the GAP exhibits a higher energy efficiency and lower energy cost than the MW plasma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000543012200001 Publication Date 2020-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.6 Times cited Open Access
Notes This work was supported by the Scientific Research Foundation from Dalian University of Technology, DUT19RC(3)045. We gratefully acknowledge T. Godfroid (Materia Nova) for sharing the experimental data about the MW plasma. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.6; 2020 IF: 2.355
Call Number PLASMANT @ plasmant @c:irua:172490 Serial 6409
Permanent link to this record
 

 
Author Bogaerts, A.; Chen, Z.
Title Nanosecond laser ablation of Cu: modeling of the expansion in He background gas, and comparison with expansion in vacuum Type A1 Journal article
Year 2004 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 19 Issue Pages (up) 1169-1176
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000223738000015 Publication Date 2004-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 39 Open Access
Notes Approved Most recent IF: 3.379; 2004 IF: 3.926
Call Number UA @ lucian @ c:irua:47649 Serial 2275
Permanent link to this record
 

 
Author Van Loenhout, J.; Peeters, M.; Bogaerts, A.; Smits, E.; Deben, C.
Title Oxidative Stress-Inducing Anticancer Therapies: Taking a Closer Look at Their Immunomodulating Effects Type A1 Journal article
Year 2020 Publication Antioxidants Abbreviated Journal Antioxidants
Volume 9 Issue 12 Pages (up) 1188
Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Cancer cells are characterized by higher levels of reactive oxygen species (ROS) compared to normal cells as a result of an imbalance between oxidants and antioxidants. However, cancer cells maintain their redox balance due to their high antioxidant capacity. Recently, a high level of oxidative stress is considered a novel target for anticancer therapy. This can be induced by increasing exogenous ROS and/or inhibiting the endogenous protective antioxidant system. Additionally, the immune system has been shown to be a significant ally in the fight against cancer. Since ROS levels are important to modulate the antitumor immune response, it is essential to consider the effects of oxidative stress-inducing treatments on this response. In this review, we provide an overview of the mechanistic cellular responses of cancer cells towards exogenous and endogenous ROS-inducing treatments, as well as the indirect and direct antitumoral immune effects, which can be both immunostimulatory and/or immunosuppressive. For future perspectives, there is a clear need for comprehensive investigations of different oxidative stress-inducing treatment strategies and their specific immunomodulating effects, since the effects cannot be generalized over different treatment modalities. It is essential to elucidate all these underlying immune effects to make oxidative stress-inducing treatments effective anticancer therapy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000602288600001 Publication Date 2020-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3921 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7 Times cited Open Access
Notes This research was funded by the Olivia Hendrickx Research Fund (21OCL06) and the University of Antwerp (FFB160231). Approved Most recent IF: 7; 2020 IF: NA
Call Number PLASMANT @ plasmant @c:irua:173865 Serial 6441
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Similarities and differences between direct current and radio-frequency glow discharges: a mathematical simulation Type A1 Journal article
Year 2000 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 15 Issue Pages (up) 1191-1201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000089141900019 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 25 Open Access
Notes Approved Most recent IF: 3.379; 2000 IF: 3.488
Call Number UA @ lucian @ c:irua:34076 Serial 3001
Permanent link to this record
 

 
Author Vermeylen, S.; De Waele, J.; Vanuytsel, S.; De Backer, J.; Van der Paal, J.; Ramakers, M.; Leyssens, K.; Marcq, E.; Van Audenaerde, J.; L. J. Smits, E.; Dewilde, S.; Bogaerts, A.
Title Cold atmospheric plasma treatment of melanoma and glioblastoma cancer cells Type A1 Journal article
Year 2016 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 13 Issue 13 Pages (up) 1195-1205
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, two types of melanoma and glioblastoma cancer cell lines are treated with cold atmospheric plasma to assess the effect of several parameters on the cell viability. The cell viability decreases with treatment duration and time until analysis in all cell lines with varying sensitivity. The majority of dead cells stains both AnnexinV (AnnV) and propidium iodide, indicating that the plasma-treated non-viable cells are mostly late apoptotic or necrotic. Genetic mutations might be involved in the response to plasma. Comparing the effects of two gas mixtures, as well as indirect plasma-activated medium versus direct treatment, gives different results per cell line. In conclusion, this study confirms the potential of plasma for cancer therapy and emphasizes the influence of experimental parameters on therapeutic outcome.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393131600007 Publication Date 2016-10-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 26 Open Access
Notes The authors acknowledge the University of Antwerp for providing research funds. The authors are very grateful to V. Schulz-von der Gathen and J. Benedikt (Bochum University) for providing the COST RF plasma jet. The authors would also like to thank Eva Santermans (University of Hasselt) for statistical advice. J. De Waele, J. Van Audenaerde and J. Van der Paal are research fellows of the Research Foundation Flanders (fellowship numbers: 1121016N, 1S32316N and 11U5416N), E. Marcq of Flanders Innovation & Entrepreneurship (fellowship number: 141433). Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:138722 Serial 4328
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Calculation of cathode heating in analytical glow discharges Type A1 Journal article
Year 2004 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 19 Issue Pages (up) 1206-1212
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000223738000020 Publication Date 2004-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 21 Open Access
Notes Approved Most recent IF: 3.379; 2004 IF: 3.926
Call Number UA @ lucian @ c:irua:47647 Serial 264
Permanent link to this record
 

 
Author Gorbanev, Y.; Engelmann, Y.; van’t Veer, K.; Vlasov, E.; Ndayirinde, C.; Yi, Y.; Bals, S.; Bogaerts, A.
Title Al2O3-Supported Transition Metals for Plasma-Catalytic NH3 Synthesis in a DBD Plasma: Metal Activity and Insights into Mechanisms Type A1 Journal article
Year 2021 Publication Catalysts Abbreviated Journal Catalysts
Volume 11 Issue 10 Pages (up) 1230
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract N2 fixation into NH3 is one of the main processes in the chemical industry. Plasma catalysis is among the environmentally friendly alternatives to the industrial energy-intensive Haber-Bosch process. However, many questions remain open, such as the applicability of the conventional catalytic knowledge to plasma. In this work, we studied the performance of Al2O3-supported Fe, Ru, Co and Cu catalysts in plasma-catalytic NH3 synthesis in a DBD reactor. We investigated the effects of different active metals, and different ratios of the feed gas components, on the concentration and production rate of NH3, and the energy consumption of the plasma system. The results show that the trend of the metal activity (common for thermal catalysis) does not appear in the case of plasma catalysis: here, all metals exhibited similar performance. These findings are in good agreement with our recently published microkinetic model. This highlights the virtual independence of NH3 production on the metal catalyst material, thus validating the model and indicating the potential contribution of radical adsorption and Eley-Rideal reactions to the plasma-catalytic mechanism of NH3 synthesis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000715656300001 Publication Date 2021-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited 19 Open Access OpenAccess
Notes Catalisti, Moonshot P2C ; Research Foundation – Flanders, GoF9618n ; European Research Council, 810182 SCOPE 815128 REALNANO ; sygmaSB Approved Most recent IF: 3.082
Call Number EMAT @ emat @c:irua:183279 Serial 6815
Permanent link to this record
 

 
Author Bekeschus, S.; Freund, E.; Spadola, C.; Privat-Maldonado, A.; Hackbarth, C.; Bogaerts, A.; Schmidt, A.; Wende, K.; Weltmann, K.-D.; von Woedtke, T.; Heidecke, C.-D.; Partecke, L.-I.; Käding, A.
Title Risk Assessment of kINPen Plasma Treatment of Four Human Pancreatic Cancer Cell Lines with Respect to Metastasis Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal Cancers
Volume 11 Issue 9 Pages (up) 1237
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold physical plasma has limited tumor growth in many preclinical models and is, therefore, suggested as a putative therapeutic option against cancer. Yet, studies investigating the cells’ metastatic behavior following plasma treatment are scarce, although being of prime importance to evaluate the safety of this technology. Therefore, we investigated four human pancreatic cancer cell lines for their metastatic behavior in vitro and in chicken embryos (in ovo). Pancreatic cancer was chosen as it is particularly metastatic to the peritoneum and systemically, which is most predictive for outcome. In vitro, treatment with the kINPen plasma jet reduced pancreatic cancer cell activity and viability, along with unchanged or decreased motility. Additionally, the expression of adhesion markers relevant for metastasis was down-regulated, except for increased CD49d. Analysis of 3D tumor spheroid outgrowth showed a lack of plasma-spurred metastatic behavior. Finally, analysis of tumor tissue grown on chicken embryos validated the absence of an increase of metabolically active cells physically or chemically detached with plasma treatment. We conclude that plasma treatment is a safe and promising therapeutic option and that it does not promote metastatic behavior in pancreatic cancer cells in vitro and in ovo.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000489719000022 Publication Date 2019-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access
Notes The authors acknowledge that this work was supported by grants funded by the German Federal Ministry of Education and Research (BMBF), grant number 03Z22DN11. We want to thank the Research Foundation – Flanders (FWO) for providing funding to APM under the “long stay abroad” scheme (grant code V415618N). APM and AB acknowledge financial support from the Methusalem project. Technical support by Felix Niessner and Antje Janetzko is gratefully acknowledged. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:162106 Serial 5357
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Bal, Km.; Michielsen, I.; Neyts, Ec.; Meynen, V.; Cool, P.; Bogaerts, A.
Title How process parameters and packing materials tune chemical equilibrium and kinetics in plasma-based CO2 conversion Type A1 Journal article
Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 372 Issue Pages (up) 1253-1264
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma (catalysis) reactors are increasingly being used for gas-based chemical conversions, providing an alternative method of energy delivery to the molecules. In this work we explore whether classical concepts such as

equilibrium constants, (overall) rate coefficients, and catalysis exist under plasma conditions. We specifically

investigate the existence of a so-called partial chemical equilibrium (PCE), and how process parameters and

packing properties influence this equilibrium, as well as the overall apparent rate coefficient, for CO2 splitting in

a DBD plasma reactor. The results show that a PCE can be reached, and that the position of the equilibrium, in

combination with the rate coefficient, greatly depends on the reactor parameters and operating conditions (i.e.,

power, pressure, and gap size). A higher power, higher pressure, or smaller gap size enhance both the equilibrium constant and the rate coefficient, although they cannot be independently tuned. Inserting a packing

material (non-porous SiO2 and ZrO2 spheres) in the reactor reveals interesting gap/material effects, where the

type of material dictates the position of the equilibrium and the rate (inhibition) independently. As a result, no

apparent synergistic effect or plasma-catalytic behaviour was observed for the non-porous packing materials

studied in this reaction. Within the investigated parameters, equilibrium conversions were obtained between 23

and 71%, while the rate coefficient varied between 0.027 s−1 and 0.17 s−1. This method of analysis can provide

a more fundamental insight in the overall reaction kinetics of (catalytic) plasma-based gas conversion, in order

to be able to distinguish plasma effects from true catalytic enhancement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000471670400116 Publication Date 2019-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 3 Open Access Not_Open_Access: Available from 05.05.2021
Notes European Fund for Regional Development; FWOFWO, G.0254.14N ; University of Antwerp; FWO-FlandersFWO-Flanders, 11V8915N ; The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; Grant Number: G.0254.14N), a TOP-BOF project and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. K. M. B. was funded as a PhD fellow (aspirant) of the FWOFlanders (Fund for Scientific Research-Flanders), Grant 11V8915N. Approved Most recent IF: 6.216
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159979 Serial 5171
Permanent link to this record
 

 
Author Neyts, E.C.; van Duin, A.C.T.; Bogaerts, A.
Title Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations : effect of electric field Type A1 Journal article
Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 134 Issue 2 Pages (up) 1256-1260
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Carbon nanotubes (CNTs) are nowadays routinely grown in a thermal CVD setup. State-of-the-art plasma-enhanced CVD (PECVD) growth, however, offers advantages over thermal CVD. A lower growth temperature and the growth of aligned freestanding single-walled CNTs (SWNTs) makes the technique very attractive. The atomic scale growth mechanisms of PECVD CNT growth, however, remain currently entirely unexplored. In this contribution, we employed molecular dynamics simulations to focus on the effect of applying an electric field on the SWNT growth process, as one of the effects coming into play in PECVD. Using sufficiently strong fields results in (a) alignment of the growing SWNTs, (b) a better ordering of the carbon network, and (c) a higher growth rate relative to thermal growth rate. We suggest that these effects are due to the small charge transfer occurring in the Ni/C system. These simulations constitute the first study of PECVD growth of SWNTs on the atomic level.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000301084300086 Publication Date 2011-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 56 Open Access
Notes Approved Most recent IF: 13.858; 2012 IF: 10.677
Call Number UA @ lucian @ c:irua:97163 Serial 1673
Permanent link to this record
 

 
Author Bogaerts, A.
Title Effects of oxygen addition to argon glow discharges: a hybrid Monte Carlo-fluid modeling investigation Type A1 Journal article
Year 2009 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 64 Issue 11/12 Pages (up) 1266-1279
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A hybrid model is developed for describing the effects of oxygen addition to argon glow discharges. The species taken into account in the model include Ar atoms in the ground state and the metastable level, O2 gas molecules in the ground state and two metastable levels, O atoms in the ground state and one metastable level, O3 molecules, Ar+, O+, O2+ and O− ions, as well as the electrons. The hybrid model consists of a Monte Carlo model for electrons and fluid models for the other plasma species. In total, 87 different reactions between the various plasma species are taken into account. Calculation results include the species densities and the importance of their production and loss processes, as well as the dissociation degree of oxygen. The effect of different O2 additions on these calculation results, as well as on the sputtering rates, is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000272910300016 Publication Date 2009-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 39 Open Access
Notes Approved Most recent IF: 3.241; 2009 IF: 2.719
Call Number UA @ lucian @ c:irua:79271 Serial 869
Permanent link to this record
 

 
Author Martín, A.; Bordel, N.; Pereiro, R.; Bogaerts, A.
Title Monte Carlo analysis of the electron thermalization process in the afterglow of a microsecond dc pulsed glow discharge Type A1 Journal article
Year 2008 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 63 Issue 11 Pages (up) 1274-1282
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A Monte Carlo model is utilized for studying the behavior of electrons in the afterglow of an analytical microsecond dc pulsed glow discharge. This model uses several quantities as input data, such as electric field and potential, ion flux at the cathode, the fast argon ion and atom impact ionization rates, slow electron density, the electrical characterization of the pulse (voltage and current profiles) and temperature profile. These quantities were obtained by earlier Monte Carlo fluid calculations for a pulsed discharge. Our goal is to study the behavior of the so-called Monte Carlo electrons (i.e., those electrons created at the cathode or by ionization collisions in the plasma which are followed by using the Monte Carlo model) from their origin to the moment when they are absorbed at the cell walls or when they have lost their energy by collisions (being transferred to the group of slow electrons) in the afterglow of the pulsed discharge. The thermalization of the electrons is a phenomenon where the electron-electron Coulomb collisions acquire a special importance. Indeed, in the afterglow the cross sections of the other electron reactions taken into account in the model are very low, because of the very low electron energy. We study the electron energy distributions at several times during and after the pulse and at several positions in the plasma cell, focusing on the thermalization and on the behavior of the electrons in the afterglow. Also, the time evolution of the rates of the various collision processes, the average electron energy, the densities of Monte Carlo and slow electrons and the ionization degree are investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000261905500008 Publication Date 2008-10-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 9 Open Access
Notes Approved Most recent IF: 3.241; 2008 IF: 2.853
Call Number UA @ lucian @ c:irua:71271 Serial 2195
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Role of sputtered Cu atoms and ions in a direct current glow discharge: combined fluid and Monte Carlo model Type A1 Journal article
Year 1996 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 79 Issue 3 Pages (up) 1279-1286
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1996TT92200011 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.183 Times cited 81 Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #
Call Number UA @ lucian @ c:irua:16239 Serial 2920
Permanent link to this record
 

 
Author Bogaerts, A.; Chen, Z.
Title Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modeling investigation Type A1 Journal article
Year 2005 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 60 Issue 9/10 Pages (up) 1280-1307
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000233074100003 Publication Date 2005-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 165 Open Access
Notes Approved Most recent IF: 3.241; 2005 IF: 2.332
Call Number UA @ lucian @ c:irua:54189 Serial 820
Permanent link to this record
 

 
Author Bogaerts, A.
Title Special Issue on “Dielectric Barrier Discharges and their Applications” in Commemoration of the 20th Anniversary of Dr. Ulrich Kogelschatz’s Work Type A1 Journal Article
Year 2023 Publication Plasma Chemistry and Plasma Processing Abbreviated Journal Plasma Chem Plasma Process
Volume 43 Issue 6 Pages (up) 1281-1285
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract n/a
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001110371000001 Publication Date 2023-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.6 Times cited Open Access Not_Open_Access
Notes n/a Approved Most recent IF: 3.6; 2023 IF: 2.355
Call Number PLASMANT @ plasmant @c:irua:201387 Serial 8969
Permanent link to this record
 

 
Author Bogaerts, A.; De Bie, C.; Eckert, M.; Georgieva, V.; Martens, T.; Neyts, E.; Tinck, S.
Title Modeling of the plasma chemistry and plasmasurface interactions in reactive plasmas Type A1 Journal article
Year 2010 Publication Pure and applied chemistry Abbreviated Journal Pure Appl Chem
Volume 82 Issue 6 Pages (up) 1283-1299
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, an overview is given of modeling activities going on in our research group, for describing the plasma chemistry and plasmasurface interactions in reactive plasmas. The plasma chemistry is calculated by a fluid approach or by hybrid Monte Carlo (MC)fluid modeling. An example of both is illustrated in the first part of the paper. The example of fluid modeling is given for a dielectric barrier discharge (DBD) in CH4/O2, to describe the partial oxidation of CH4 into value-added chemicals. The example of hybrid MCfluid modeling concerns an inductively coupled plasma (ICP) etch reactor in Ar/Cl2/O2, including also the description of the etch process. The second part of the paper deals with the treatment of plasmasurface interactions on the atomic level, with molecular dynamics (MD) simulations or a combination of MD and MC simulations.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000279063900010 Publication Date 2010-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1365-3075;0033-4545; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.626 Times cited 13 Open Access
Notes Approved Most recent IF: 2.626; 2010 IF: 2.134
Call Number UA @ lucian @ c:irua:82108 Serial 2134
Permanent link to this record
 

 
Author Biscop,; Lin,; Boxem,; Loenhout,; Backer,; Deben,; Dewilde,; Smits,; Bogaerts,
Title Influence of Cell Type and Culture Medium on Determining Cancer Selectivity of Cold Atmospheric Plasma Treatment Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal Cancers
Volume 11 Issue 9 Pages (up) 1287
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Increasing the selectivity of cancer treatments is attractive, as it has the potential to reduce side-effects of therapy. Cold atmospheric plasma (CAP) is a novel cancer treatment that disrupts the intracellular oxidative balance. Several reports claim CAP treatment to be selective, but retrospective analysis of these studies revealed discrepancies in several biological factors and culturing methods. Before CAP can be conclusively stated as a selective cancer treatment, the importance of these factors must be investigated. In this study, we evaluated the influence of the cell type, cancer type, and cell culture medium on direct and indirect CAP treatment. Comparison of cancerous cells with their non-cancerous counterparts was performed under standardized conditions to determine selectivity of treatment. Analysis of seven human cell lines (cancerous: A549, U87, A375, and Malme-3M; non-cancerous: BEAS-2B, HA, and HEMa) and five different cell culture media (DMEM, RPMI1640, AM, BEGM, and DCBM) revealed that the tested parameters strongly influence indirect CAP treatment, while direct treatment was less affected. Taken together, the results of our study demonstrate that cell type, cancer type, and culturing medium must be taken into account before selectivity of CAP treatment can be claimed and overlooking these parameters can easily result in inaccurate conclusions of selectivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000489719000072 Publication Date 2019-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access
Notes the Research Foundation Flanders, 12S9218N – ; Universiteit Antwerpen, – ; Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:162097 Serial 5360
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
Title Combining molecular dynamics with Monte Carlo simulations : implementations and applications Type A1 Journal article
Year 2013 Publication Theoretical chemistry accounts : theory, computation, and modeling Abbreviated Journal Theor Chem Acc
Volume 132 Issue 2 Pages (up) 1320-12
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this contribution, we present an overview of the various techniques for combining atomistic molecular dynamics with Monte Carlo simulations, mainly in the context of condensed matter systems, as well as a brief summary of the main accelerated dynamics techniques. Special attention is given to the force bias Monte Carlo technique and its combination with molecular dynamics, in view of promising recent developments, including a definable timescale. Various examples of the application of combined molecular dynamics / Monte Carlo simulations are given, in order to demonstrate the enhanced simulation efficiency with respect to either pure molecular dynamics or Monte Carlo.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000318294700010 Publication Date 2012-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1432-881X;1432-2234; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.89 Times cited 27 Open Access
Notes Approved Most recent IF: 1.89; 2013 IF: 2.143
Call Number UA @ lucian @ c:irua:104725 Serial 404
Permanent link to this record
 

 
Author Chirumamilla, C.S.; Palagani, A.; Kamaraj, B.; Declerck, K.; Verbeek, M.W.C.; Ryabtsova, O.; De Bosscher, K.; Bougarne, N.; Ruttens, B.; Gevaert, K.; Houtman, R.; De Vos, W.H.; Joossens, J.; van der Veken, P.; Augustyns, K.; van Ostade, X.; Bogaerts, A.; De Winter, H.; Vanden Berghe, W.
Title Selective glucocorticoid receptor properties of GSK866 analogs with cysteine reactive warheads Type Administrative Services
Year 2017 Publication Frontiers in immunology Abbreviated Journal Front Immunol
Volume 8 Issue Pages (up) 1324
Keywords Administrative Services; A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Medicinal Chemistry (UAMC)
Abstract Synthetic glucocorticoids (GC) are the mainstay therapy for treatment of acute and chronic inflammatory disorders. Due to the high adverse effects associated with long-term use, GC pharmacology has focused since the nineties on more selective GC ligand-binding strategies, classified as selective glucocorticoid receptor (GR) agonists (SEGRAs) or selective glucocorticoid receptor modulators (SEGRMs). In the current study, GSK866 analogs with electrophilic covalent-binding warheads were developed with potential SEGRA properties to improve their clinical safety profile for long-lasting topical skin disease applications. Since the off-rate of a covalently binding drug is negligible compared to that of a non-covalent drug, its therapeutic effects can be prolonged and typically, smaller doses of the drug are necessary to reach the same level of therapeutic efficacy, thereby potentially reducing systemic side effects. Different analogs of SEGRA GSK866 coupled to cysteine reactive warheads were characterized for GR potency and selectivity in various biochemical and cellular assays. GR- and NFκB-dependent reporter gene studies show favorable anti-inflammatory properties with reduced GR transactivation of two non-steroidal GSK866 analogs UAMC-1217 and UAMC-1218, whereas UAMC-1158 and UAMC-1159 compounds failed to modulate cellular GR activity. These results were further supported by GR immuno-localization and S211 phospho-GR western analysis, illustrating significant GR phosphoactivation and nuclear translocation upon treatment of GSK866, UAMC-1217, or UAMC-1218, but not in case of UAMC-1158 or UAMC-1159. Furthermore, mass spectrometry analysis of tryptic peptides of recombinant GR ligand-binding domain (LBD) bound to UAMC-1217 or UAMC-1218 confirmed covalent cysteine-dependent GR binding. Finally, molecular dynamics simulations, as well as glucocorticoid receptor ligand-binding domain (GR-LBD) coregulator interaction profiling of the GR-LBD bound to GSK866 or its covalently binding analogs UAMC-1217 or UAMC-1218 revealed subtle conformational differences that might underlie their SEGRA properties. Altogether, GSK866 analogs UAMC-1217 and UAMC-1218 hold promise as a novel class of covalent-binding SEGRA ligands for the treatment of topical inflammatory skin disorders.
Address
Corporate Author Thesis
Publisher Place of Publication Place of publication unknown Editor
Language Wos 000414136300001 Publication Date 2017-11-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-3224 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.429 Times cited 2 Open Access OpenAccess
Notes Approved Most recent IF: 6.429
Call Number UA @ lucian @ c:irua:146485 Serial 4750
Permanent link to this record
 

 
Author Cui, Z.; Meng, S.; Yi, Y.; Jafarzadeh, A.; Li, S.; Neyts, E.C.; Hao, Y.; Li, L.; Zhang, X.; Wang, X.; Bogaerts, A.
Title Plasma-catalytic methanol synthesis from CO₂ hydrogenation over a supported Cu cluster catalyst : insights into the reaction mechanism Type A1 Journal article
Year 2022 Publication Acs Catalysis Abbreviated Journal Acs Catal
Volume 12 Issue 2 Pages (up) 1326-1337
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-catalytic CO, hydrogenation for methanol production is gaining increasing interest, but our understanding of its reaction mechanism remains primitive. We present a combined experimental/computational study on plasma-catalytic CO, hydrogenation to CH3OH over a size-selected Cu/gamma-Al2O3 catalyst. Our experiments demonstrate a synergistic effect between the Cu/gamma-Al2O3 catalyst and the CO2/H-2 plasma, achieving a CO2 conversion of 10% at 4 wt % Cu loading and a CH3OH selectivity near 50% further rising to 65% with H2O addition (for a H2O/CO2 ratio of 1). Furthermore, the energy consumption for CH3OH production was more than 20 times lower than with plasma only. We carried out density functional theory calculations over a Cu-13/gamma-Al2O3 model, which reveal that the interfacial sites of the Cu-13 cluster and gamma-Al2O3 support show a bifunctional effect: they not only activate the CO2 molecules but also strongly adsorb key intermediates to promote their hydrogenation further. Reactive plasma species can regulate the catalyst surface reactions via the Eley-Rideal (E-R) mechanism, which accelerates the hydrogenation process and promotes the generation of the key intermediates. H2O can promote the CH3OH desorption by competitive adsorption over the Cu-13/gamma-Al2O3 surface. This study provides new insights into CO2 hydrogenation through plasma catalysis, and it provides inspiration for the conversion of some other small molecules (CH4, N-2, CO, etc.) by plasma catalysis using supported-metal clusters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000742735600001 Publication Date 2022-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 12.9
Call Number UA @ admin @ c:irua:186416 Serial 7192
Permanent link to this record