toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Parsons, T.G.; d' Hondt, H.; Hadermann, J.; Hayward, M.A. pdf  doi
openurl 
  Title Synthesis and structural characterization of La1-xAxMnO2.5 (A = Ba, Sr, Ca) phases: mapping the variants of the brownmillerite structure Type A1 Journal article
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue 22 Pages (up) 5527-5538  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Analysis of the structural parameters of phases that adopt brownmillerite-type structures suggests the distribution of the different complex ordering schemes adopted within this structure type can be rationalized by considering both the size of the separation between the tetrahedral layers and the tetrahedral chain distortion angle. A systematic study using structural data obtained from La1−xAxMnO2,5 (A = Ba, Sr, Ca,) phases, prepared by the topotactic reduction of the analogous La1−xAxMnO3 perovskite phases, was performed to investigate this relationship. By manipulating the A-cation composition, both the tetrahedral layer separation and tetrahedral chain distortion angle in the La1−xAxMnO2,5 phases were controlled and from the data obtained a ¡°structure map¡± of the different brownmillerite variants was plotted as a function of these structural parameters. This map has been extended to include a wide range of reported brownmillerite phases showing the structural ideas presented are widely applicable. The complete structural characterization of La1−xAxMnO2,5 0.1 ¡Ü x ¡Ü 0.33, A = Ba; 0.15 ¡Ü x ¡Ü 0.5 A = Sr, and 0.22 ¡Ü x ¡Ü 0.5 A = Ca is described and includes compositions which exhibit complex intralayer ordered structures and Mn2+/Mn3+ charge ordering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000271756400021 Publication Date 2009-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 60 Open Access  
  Notes Iap Vi Approved Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number UA @ lucian @ c:irua:79935 Serial 3435  
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Gillie, L.J.; Martin, C.; Hervieu, M. pdf  doi
openurl 
  Title Coupled cation and charge ordering in the CaMn306 tunnel structure Type A1 Journal article
  Year 2006 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 18 Issue 23 Pages (up) 5530-5536  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000241808600021 Publication Date 2006-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 33 Open Access  
  Notes Iap V-1 Approved Most recent IF: 9.466; 2006 IF: 5.104  
  Call Number UA @ lucian @ c:irua:61374 Serial 534  
Permanent link to this record
 

 
Author Schütte, K.; Doddi, A.; Kroll, C.; Meyer, H.; Wiktor, C.; Gemel, C.; Van Tendeloo, G.; Fischer, R.A.; Janiak, C. pdf  url
doi  openurl
  Title Colloidal nickel/gallium nanoalloys obtained from organometallic precursors in conventional organic solvents and in ionic liquids : noble-metal-free alkyne semihydrogenation catalysts Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue 10 Pages (up) 5532-5544  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Efforts to replace noble-metal catalysts by low-cost alternatives are of constant interest. The organometallic, non-aqueous wet-chemical synthesis of various hitherto unknown nanocrystalline Ni/Ga intermetallic materials and the use of NiGa for the selective semihydrogenation of alkynes to alkenes are reported. Thermal co-hydrogenolysis of the all-hydrocarbon precursors [Ni(COD)(2)] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in high-boiling organic solvents mesitylene and n-decane in molar ratios of 1 : 1, 2 : 3 and 3 : 1 yields the nano-crystalline powder materials of the over-all compositions NiGa, Ni2Ga3 and Ni3Ga, respectively. Microwave induced co-pyrolysis of the same precursors without additional hydrogen in the ionic liquid [BMIm][BF4] (BMIm = 1-butyl-3-methyl-imidazolium) selectively yields the intermetallic phases NiGa and Ni3Ga from the respective 1 : 1 and 3 : 1 molar ratios of the precursors. The obtained materials are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), IR, powder X-ray diffraction (PXRD) and atomic absorption spectroscopy (AAS). The single-source precursor [Ni(GaCp*)(PMe3)(3)] with a fixed Ni : Ga stoichiometry of 1 : 1 was employed as well. In comparison with the co-hydrogenolytic dual precursor source approach it turned out to be less practical due to inefficient nickel incorporation caused by the parasitic formation of stable [Ni(PMe3)(4)]. The use of ionic liquid [BMIm][BF4] as a non-conventional solvent to control the reaction and stabilize the nanoparticles proved to be particularly advantageous and stable colloids of the nanoalloys NiGa and Ni3Ga were obtained. A phase-selective Ni/Ga colloid synthesis in conventional solvents and in the presence of surfactants such as hexadecylamine (HDA) was not feasible due to the undesired reactivity of HDA with GaCp* leading to inefficient gallium incorporation. Recyclable NiGa nanoparticles selectively semihydrogenate 1-octyne and diphenylacetylene (tolan) to 1-octene and diphenylethylene, respectively, with a yield of about 90% and selectivities of up to 94 and 87%. Ni-NPs yield alkanes with a selectivity of 97 or 78%, respectively, under the same conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000335148800069 Publication Date 2014-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 40 Open Access  
  Notes Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:117251 Serial 390  
Permanent link to this record
 

 
Author Lin, F.; Meng; Kukueva, E.; Mertens, M.; Van Doorslaer, S.; Bals, S.; Cool, P. url  doi
openurl 
  Title New insights into the mesophase transformation of ethane-bridged PMOs by the influence of different counterions under basic conditions Type A1 Journal article
  Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 5 Issue 5 Pages (up) 5553-5562  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract The counterions are of crucial importance in determining the mesostructure and morphology of ethanebridged PMO materials synthesized under basic conditions. By using CTABr as the surfactant, the final PMO materials show a 2-D hexagonal (p6mm) mesophase, while PMO materials with cubic (Pm (3) over barn ) mesostructure are obtained when CTACl or CTA(SO4)(1)/(2) are used. With gradually replacing CTABr by CTACl or CTA(SO4) (1)/(2) while keeping the total surfactant concentration constant, a clear p6mm to Pm (3) over barn 3n mesophase evolution process is observed. For a given gel composition, the mesophase of ethanebridged PMO materials can also be adjusted by the addition of different sodium salts. In short, the effect of the counterions on the mesophase can be attributed to the binding strength of the ions on the surfactant micelles, which follows the Hofmeister series (SO42- < Cl- < Br-< NO3- < SCN-). Furthermore, it is found that the hydrolysis and condensation rate of the organosilica precursor also plays an important role in the formation of the final mesostructure  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347304900010 Publication Date 2014-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 6 Open Access Not_Open_Access  
  Notes ; The Erasmus Mundus CONNEC program is acknowledged for PhD funding of F. L. Furthermore, the authors acknowledge support by the GOA-BOF project 'Optimization of the structureactivity relation in nanoporous materials', funded by the University of Antwerp. ; Approved Most recent IF: 3.108; 2015 IF: 3.840  
  Call Number c:irua:123768 Serial 2317  
Permanent link to this record
 

 
Author de la Encarnación, C.; Jungwirth, F.; Vila-Liarte, D.; Renero-Lecuna, C.; Kavak, S.; Orue, I.; Wilhelm, C.; Bals, S.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Hybrid core–shell nanoparticles for cell-specific magnetic separation and photothermal heating Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry B : materials for biology and medicine Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hyperthermia, as the process of heating a malignant site above 42 °C to trigger cell death, has emerged as an effective and selective cancer therapy strategy. Various modalities of hyperthermia have been proposed, among which magnetic and photothermal hyperthermia are known to benefit from the use of nanomaterials. In this context, we introduce herein a hybrid colloidal nanostructure comprising plasmonic gold nanorods (AuNRs) covered by a silica shell, onto which iron oxide nanoparticles (IONPs) are subsequently grown. The resulting hybrid nanostructures are responsive to both external magnetic fields and near-infrared irradiation. As a result, they can be applied for the targeted magnetic separation of selected cell populations – upon targeting by antibody functionalization – as well as for photothermal heating. Through this combined functionality, the therapeutic effect of photothermal heating can be enhanced. We demonstrate both the fabrication of the hybrid system and its application for targeted photothermal hyperthermia of human glioblastoma cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000968908400001 Publication Date 2023-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-750X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited 1 Open Access OpenAccess  
  Notes Ministerio de Ciencia e Innovación, PID2019-108854RA-I00 ; H2020 European Research Council, ERC AdG 787510, 4DBIOSERS ERC CoG 815128, REALNANO ; Fonds Wetenschappelijk Onderzoek, PhD research grant 1181122N ; Approved Most recent IF: 7; 2023 IF: 4.543  
  Call Number EMAT @ emat @c:irua:195879 Serial 7261  
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Schroeder, F.; Fischer, R.A.; Van Tendeloo, G. pdf  doi
openurl 
  Title Direct imaging of loaded metal-organic framework materials (metal@MOF-5) Type A1 Journal article
  Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 20 Issue 17 Pages (up) 5622-5627  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We illustrate the potential of advanced transmission electron microscopy for the characterization of a new class of soft porous materials: metal@Zn4O(bdc)3 (metal@MOF-5; bdc = 1,4-benzenedicarboxylate). By combining several electron microscopy techniques (transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and electron tomography) and by carefully reducing the electron dose to avoid beam damage, it is possible to simultaneously characterize the MOF-5 framework material and the loaded metal nanoparticles. We also demonstrate that electron tomography can be used to accurately determine the position and distribution of the particles within the MOF-5 framework. To demonstrate the implementation of these microscopy techniques and what kind of results can be expected, measurements on gas-phase-loaded metal−organic framework materials Ru@MOF-5 and Pd@MOF-5 are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000258941400021 Publication Date 2008-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 112 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2008 IF: 5.046  
  Call Number UA @ lucian @ c:irua:76595 Serial 714  
Permanent link to this record
 

 
Author Savina, A.A.; Saiutina, V.V.; Morozov, A.V.; Boev, A.O.; Aksyonov, D.A.; Dejoie, C.; Batuk, M.; Bals, S.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Chemistry, local molybdenum clustering, and electrochemistry in the Li2+xMo1-xO3 solid solutions Type A1 Journal article
  Year 2022 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 61 Issue 14 Pages (up) 5637-5652  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A broad range of cationic nonstoichiometry has been demonstratedfor the Li-rich layered rock-salt-type oxide Li2MoO3, which has generally been considered as a phase with a well-defined chemical composition. Li2+xMo1-xO3(-0.037 <= x <= 0.124) solid solutions were synthesized via hydrogen reduction ofLi2MoO4in the temperature range of 650-1100 degrees C, withxdecreasing with theincrease of the reduction temperature. The solid solutions adopt a monoclinicallydistorted O3-type layered average structure and demonstrate a robust localordering of the Li cations and Mo3triangular clusters within the mixed Li/Mocationic layers. The local structure was scrutinized in detail by electron diffractionand aberration-corrected scanning transmission electron microcopy (STEM),resulting in an ordering model comprising a uniform distribution of the Mo3clusters compatible with local electroneutrality and chemical composition. The geometry of the triangular clusters with their oxygenenvironment (Mo3O13groups) has been directly visualized using differential phase contrast STEM imaging. The established localstructure was used as input for density functional theory (DFT)-based calculations; they support the proposed atomic arrangementand provide a plausible explanation for the staircase galvanostatic charge profiles upon electrochemical Li+extraction fromLi2+xMo1-xO3in Li cells. According to DFT, all electrochemical capacity in Li2+xMo1-xO3solely originates from the cationic Moredox process, which proceeds via oxidation of the Mo3triangular clusters into bent Mo3chains where the electronic capacity of the clusters depends on the initial chemical composition and Mo oxidation state defining the width of the first charge low-voltageplateau. Further oxidation at the high-voltage plateau proceeds through decomposition of the Mo3chains into Mo2dimers and further into individual Mo6+cations  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000789034200023 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 3 Open Access Not_Open_Access  
  Notes The authors acknowledge Russian Science Foundation (grant 20-43-01012) and Research Foundation Flanders (FWO Vlaanderen, project number G0F1320N) for financial support. The authors are grateful to AICF of Skoltech for providing access to electron microscopy equipment. The authors are grateful to Prof. G. Van Tendeloo for discussing the results. Approved Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:188631 Serial 7079  
Permanent link to this record
 

 
Author Al-Jamal, K.T.; Bai, J.; Wang, J.T.W.; Protti, A.; Southern, P.; Bogart, L.; Heidari, H.; Li, X.; Cakebread, A.; Asker, D.; Al-Jamal, W.T.; Shah, A.; Bals, S.; Sosabowski, J.; Pankhurst, Q.A.; url  doi
openurl 
  Title Magnetic drug targeting : preclinical in vivo studies, mathematical modeling, and extrapolation to humans Type A1 Journal article
  Year 2016 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 16 Issue 16 Pages (up) 5652-5660  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A sound theoretical rationale for the design of a magnetic nanocarrier capable of magnetic capture in vivo after intravenous administration could help elucidate the parameters necessary for in vivo magnetic tumor targeting. In this work, we utilized our long-circulating polymeric magnetic nano carriers, encapsulating increasing amounts of superparamagnetic iron oxide nanoparticles (SPIONs) in a biocompatible oil carrier, to study the effects of SPION loading and of applied magnetic field strength on magnetic tumor targeting in CT26 tumor-bearing mice. Under controlled conditions, the in vivo magnetic targeting was quantified and found to be directly proportional to SPION loading and magnetic field strength. Highest SPION loading, however, resulted in a reduced blood circulation time and a plateauing of the magnetic targeting. Mathematical modeling was undertaken to compute the in vivo magnetic, viscoelastic, convective, and diffusive forces acting on the nanocapsules (NCs) in accordance with the Nacev-Shapiro construct, and this was then used to extrapolate to the expected behavior in humans. The model predicted that in the latter case, the NCs and magnetic forces applied here would have been sufficient to achieve successful targeting in humans. Lastly, an in vivo murine tumor growth delay study was performed using docetaxel (DTX)-encapsulated NCs. Magnetic targeting was found to offer enhanced therapeutic efficacy, and improve mice survival compared to passive targeting at drug doses of ca. 5-8 mg, of DTX/kg. This is,, to our knowledge, the first study that truly bridges the gap between preclinical experiments and clinical translation in the field of magnetic drug targeting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000383412100050 Publication Date 2016-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 128 Open Access OpenAccess  
  Notes ; J.B. acknowledges funding from the King's-China Scholarship Council (CSC). Funding from the Biotechnology and Biological Sciences Research Council (BB/ J008656/1), Worldwide Cancer Research (12-1054), and EU FP7-ITN Marie-Curie Network programme RADDEL (290023) is acknowledged. Q.P. is grateful to A. Nacev (Weinberg Medical Physics, Rockville, MD) and to B. Shapiro (University of Maryland, College Park, MD) for their useful advice during the preparation of this manuscript. ; Approved Most recent IF: 12.712  
  Call Number UA @ lucian @ c:irua:137136 Serial 4391  
Permanent link to this record
 

 
Author Mueller, K.; Krause, F.F.; Béché, A.; Schowalter, M.; Galioit, V.; Loeffler, S.; Verbeeck, J.; Zweck, J.; Schattschneider, P.; Rosenauer, A. pdf  url
doi  openurl
  Title Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 5 Issue Pages (up) 5653  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field- induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright- field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347227700003 Publication Date 2014-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 197 Open Access  
  Notes 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; esteem2ta; ECASJO; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:122835UA @ admin @ c:irua:122835 Serial 166  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D. pdf  url
doi  openurl
  Title Advanced electron microscopy for advanced materials Type A1 Journal article
  Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 24 Issue 42 Pages (up) 5655-5675  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000310602200001 Publication Date 2012-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 107 Open Access  
  Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved Most recent IF: 19.791; 2012 IF: 14.829  
  Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70  
Permanent link to this record
 

 
Author Jishkariani, D.; Elbert, K.C.; Wu, Y.; Lee, J.D.; Hermes, M.; Wang, D.; van Blaaderen, A.; Murray, C.B. pdf  doi
openurl 
  Title Nanocrystal Core Size and Shape Substitutional Doping and Underlying Crystalline Order in Nanocrystal Superlattices Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue 5 Pages (up) 5712-5719  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Substitutional doping is a potentially powerful technique to control the properties of nanocrystal (NC) superlattices (SLs). However, not every NC can be substituted into any lattice, as the NCs have to be close in size and shape, limiting the application of substitutional doping. Here we show that this limitation can be overcome by employing ligands of various size. We show that small NCs with long ligands can be substituted into SLs of big NCs with short ligands. Furthermore, we show that shape differences can also be overcome and that cubes can substitute spheres when both are coated with long ligands. Finally, we use the NC effective ligand size, softness, and effective overall size ratio to explain observed doping behaviors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469886300078 Publication Date 2019-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 6 Open Access Not_Open_Access  
  Notes ; This work was supported by the University of Pennsylvania's NSF MRSEC under award no. DMR-112090 and the CNRS-UPENN-SOLVAY through the Complex Assemblies of Soft Matter Laboratory (COMPASS). K.C.E. acknowledges support from the NSF Graduate Research Fellowship Program under grant no. DGE-1321851. C.B.M. acknowledges the Richard Perry University Professorship at the University of Pennsylvania. D.W. and A.v.B. acknowledge partial funding from the European Research Council under the European Union's Seventh Framework Programme (FP -2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. M.H. was supported by The Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation programme funded by the Ministry of Education, Culture and Science of the government of The Netherlands. The authors thank EM square in Utrecht University for the access to the microscopes. ; Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:160344 Serial 5256  
Permanent link to this record
 

 
Author Kirsanova, M.A.; Reshetova, L.N.; Olenev, A.V.; Abakumov, A.M.; Shevelkov, A.V. doi  openurl
  Title Semiclathrates of the GePTe system : synthesis and crystal structures Type A1 Journal article
  Year 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 17 Issue 20 Pages (up) 5719-5726  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Novel compounds [Ge46−xPx]Tey (13.9≤x≤15.6, 5.92≤y≤7.75) with clathrate-like structures have been prepared and structurally characterized. They crystallize in the space group Fmequation image with the unit cell parameter changing from 20.544(2) to 20.698(2) Å (Z=8) on going from x=13.9 to x=15.6. Their crystal structure is composed of a covalently bonded Ge[BOND]P framework that hosts tellurium atoms in the guest positions and can be viewed as a peculiar variant of the type I clathrate superstructure. In contrast to the conventional type I clathrates, [Ge46−xPx]Tey contain tricoordinated (3b) atoms and no vacancies in the framework positions. As a consequence of the transformation of the framework, the majority of the guest tellurium atoms form a single covalent bond with the host framework and thus the title compounds are the first representative of semiclathrates with covalent bonding. A comparison is made with silicon clathrates and the evolution of the crystal structure upon changing the tellurium content is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000290216000028 Publication Date 2011-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 17 Open Access  
  Notes Approved Most recent IF: 5.317; 2011 IF: 5.925  
  Call Number UA @ lucian @ c:irua:89773 Serial 2981  
Permanent link to this record
 

 
Author Xia, C.; Winckelmans, N.; Prins, P.T.; Bals, S.; Gerritsen, H.C.; de Mello Donegá, C. url  doi
openurl 
  Title Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth Type A1 Journal article
  Year 2018 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 140 Issue 140 Pages (up) 5755-5763  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synthesis protocols for anisotropic CuInX2 (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX2 lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS2/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS2 NCs used as seeds are obtained by topotactic partial Cu+ for In3+ cation exchange in template Cu2–xS NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS2 seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS2 seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431600000016 Publication Date 2018-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 43 Open Access OpenAccess  
  Notes Chenghui Xia acknowledges China Scholarship Council (CSC) for financial support (NO. 201406330055). S.B and N.W. acknowledge funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant Number ECHO.712.014.001. The authors thank Xiaobin Xie and Da Wang for some TEM measurements, Donglong Fu for XRD measurements, Christina H. M. van Oversteeg for ICP-OES measurements, and Chun-Che Lin for suggestions regarding the synthesis. ECAS_Sara (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:150362UA @ admin @ c:irua:150362 Serial 4917  
Permanent link to this record
 

 
Author Heyer, S.; Janssen, W.; Turner, S.; Lu, Y.-G.; Yeap, W.S.; Verbeeck, J.; Haenen, K.; Krueger, A. pdf  doi
openurl 
  Title Toward deep blue nano hope diamonds : heavily boron-doped diamond nanoparticles Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 6 Pages (up) 5757-5764  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 1060 nm with a boron content of approximately 2.3 × 1021 cm3. Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000338089200039 Publication Date 2014-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 71 Open Access  
  Notes the Research Foundation Flanders (FWO-Vlaanderen) (G.0555.10N;G.0568.10N; G.0456.12; G0044.13N and a postdoctoral scholarship for S.T.); EU FP7 through Marie Curie ITN “MATCON” (PITNGA-127 2009-238201)the Collaborative Project “DINAMO” (No. 245122) Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2.; esteem2_jra3 Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:117599 Serial 3683  
Permanent link to this record
 

 
Author Damm, H.; Adriaensens, P.; De Dobbelaere, C.; Capon, B.; Elen, K.; Drijkoningen, J.; Conings, B.; Manca, J.V.; D’Haen, J.; Detavernier, C.; Magusin, P.C.M.M.; Hadermann, J.; Hardy, A.; Van Bael, M.K.; doi  openurl
  Title Factors Influencing the Conductivity of Aqueous Sol(ution)-Gel-Processed Al-Doped ZnO Films Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 20 Pages (up) 5839-5851  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343950300004 Publication Date 2014-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 24 Open Access  
  Notes Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:121211 Serial 1170  
Permanent link to this record
 

 
Author Spyrou, K.; Potsi, G.; Diamanti, E.K.; Ke, X.; Serestatidou, E.; Verginadis, I.I.; Velalopoulou, A.P.; Evangelou, A.M.; Deligiannakis, Y.; Van Tendeloo, G.; Gournis, D.; Rudolf, P.; doi  openurl
  Title Towards Novel Multifunctional Pillared Nanostructures: Effective Intercalation of Adamantylamine in Graphene Oxide and Smectite Clays Type A1 Journal article
  Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 24 Issue 37 Pages (up) 5841-5850  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Multifunctional pillared materials are synthesized by the intercalation of cage-shaped adamantylamine (ADMA) molecules into the interlayer space of graphite oxide (GO) and aluminosilicate clays. The physicochemical and structural properties of these hybrids, determined by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Raman and X-ray photoemission (XPS) spectroscopies and transmission electron microscopy (TEM) show that they can serve as tunable hydrophobic/hydrophilic and stereospecific nanotemplates. Thus, in ADMA-pillared clay hybrids, the phyllomorphous clay provides a hydrophilic nanoenvironment where the local hydrophobicity is modulated by the presence of ADMA moieties. On the other hand, in the ADMA-GO hybrid, both the aromatic rings of GO sheets and the ADMA molecules define a hydrophobic nanoenvironment where sp(3)-oxo moieties (epoxy, hydroxyl and carboxyl groups), present on GO, modulate hydrophilicity. As test applications, these pillared nanostructures are capable of selective/stereospecific trapping of small chlorophenols or can act as cytotoxic agents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000342794500008 Publication Date 2014-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 19 Open Access  
  Notes Approved Most recent IF: 12.124; 2014 IF: 11.805  
  Call Number UA @ lucian @ c:irua:121085 Serial 3686  
Permanent link to this record
 

 
Author Laffez, P.; Van Tendeloo, G.; Seshadri, R.; Hervieu, M.; Martin, C.; Maignan, A.; Raveau, B. doi  openurl
  Title Microstructural and physical properties of layered manganite oxides related to the magnetoresistive perovskites Type A1 Journal article
  Year 1996 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 80 Issue Pages (up) 5850-5856  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos A1996VU98700045 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.183 Times cited 36 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:17848 Serial 2039  
Permanent link to this record
 

 
Author Geboes, B.; Ustarroz, J.; Sentosun, K.; Vanrompay, H.; Hubin, A.; Bals, S.; Breugelmans, T. url  doi
openurl 
  Title Electrochemical behavior of electrodeposited nanoporous Pt catalysts for the oxygen reduction reaction Type A1 Journal article
  Year 2016 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 6 Issue 6 Pages (up) 5856-5864  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Nanoporous Pt based nanoparticles (NP's) are promising fuel cell catalysts due to their high surface area and increased electrocatalytic activity toward the ORR In this work a direct double-pulse electrodeposition procedure at room temperature is applied to obtain dendritic Pt structures (89 nm diameter) with a high level of porosity (ca. 25%) and nanopores of 2 nm protruding until the center of the NP's. The particle morphology is characterized using aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and electron tomography (ET) combined with field emission scanning electron microscopy (FESEM) and macroscopic electrochemical measurements to assess their activity and stability toward the ORR. Macroscopic determination of the active surface area through hydrogen UPD measurements in combination with FESEM and ET showed that a considerable amount of the active sites inside the pores of the low overpotential NP's were accessible to oxygen species. As a result of this accessibility, up to a 9-fold enhancement of the Pt mass corrected ORR activity at 0.85 V vs RHE was observed at the highly porous structures. After successive potential cycling upward to 1.5 V vs RHE in a deaerated HClO4 solution a negative shift of 71 mV in half-wave potential occurred. This decrease in ORR activity could be correlated to the partial collapse of the nanopores, visible in both the EASA values and 3D ET reconstructions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000382714000025 Publication Date 2016-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited 48 Open Access OpenAccess  
  Notes ; The Quanta 250 FEG microscope of the Electron Microscopy for Material Science group at the University of Antwerp was funded by the Hercules foundation of the Flemish Government. The authors acknowledge financial support from the Fonds Wetenschappelijk Onderzoek in Flanders (FWOAL708). S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). J.U. acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). ; ecas_Sara Approved Most recent IF: 10.614  
  Call Number UA @ lucian @ c:irua:135703 Serial 4302  
Permanent link to this record
 

 
Author Efimov, K.; Xu, Q.; Feldhoff, A. pdf  doi
openurl 
  Title Transmission electron microscopy study of BA0.5Sr0.5CO0.8Fe0.2O3-\delta Perovskite decomposition at intermediate temperatures Type A1 Journal article
  Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 22 Issue 21 Pages (up) 5866-5875  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The cubic perovskite Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-delta) (denoted BSCF) is the state-of-the-art ceramic membrane material used for oxygen separation technologies above 1150 K. BSCF is a mixed oxygen-ion and electron conductor (MIEC) and exhibits one of the highest oxygen permeabilities reported so far for dense oxides. Additionally, it has excellent phase stability above 1150 K. In the intermediate temperature range (750-1100 K), however, BSCF suffers from a slow decomposition of the cubic perovskite into variants with hexagonal stacking that are barriers to oxygen transport. To elucidate details of the decomposition process, both sintered BSCF ceramic and powder were annealed for 180-240 h in ambient air at temperatures below 1123 K and analyzed by different transmission electron microscopy techniques. Aside from hexagonal perovskite Ba(0.5)Sr(0.5)CoO(3-delta) , the formation of lamellar noncubic phases was observed in the quenched samples. The structure of the lamellae with the previously unknown composition Ba(1-x)Sr(x)Co(2-y)Fe(y)O(5-delta) was found to be related to the 15R hexagonal perovskite polytype. The valence and spin-state transition of cobalt leading to a considerable diminution of its ionic radius can be considered a reason for BSCF's inherent phase instability at intermediate temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000283623700010 Publication Date 2010-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 117 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400  
  Call Number UA @ lucian @ c:irua:95546 Serial 3720  
Permanent link to this record
 

 
Author Choudhary, K.; Bercx, M.; Jiang, J.; Pachter, R.; Lamoen, D.; Tavazza, F. pdf  url
doi  openurl
  Title Accelerated Discovery of Efficient Solar Cell Materials Using Quantum and Machine-Learning Methods Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 31 Issue 15 Pages (up) 5900-5908  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solar energy plays an important role in solving serious environmental

problems and meeting the high energy demand. However, the lack of suitable

materials hinders further progress of this technology. Here, we present the largest

inorganic solar cell material search till date using density functional theory (DFT) and

machine-learning approaches. We calculated the spectroscopic limited maximum

efficiency (SLME) using the Tran−Blaha-modified Becke−Johnson potential for 5097

nonmetallic materials and identified 1997 candidates with an SLME higher than 10%,

including 934 candidates with a suitable convex-hull stability and an effective carrier

mass. Screening for two-dimensional-layered cases, we found 58 potential materials

and performed G0W0 calculations on a subset to estimate the prediction uncertainty. As the above DFT methods are still computationally expensive, we developed a high accuracy machine-learning model to prescreen efficient materials and applied it to over a million materials. Our results provide a general framework and universal strategy for the design of high-efficiency solar

cell materials. The data and tools are publicly distributed at: https://www.ctcms.nist.gov/~knc6/JVASP.html, https://www.

ctcms.nist.gov/jarvisml/, https://jarvis.nist.gov/, and https://github.com/usnistgov/jarvis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480826900060 Publication Date 2019-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:161814 Serial 5291  
Permanent link to this record
 

 
Author Esken, D.; Noei, H.; Wang, Y.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title ZnO@ZIF-8 : stabilization of quantum confined ZnO nanoparticles by a zinc methylimidazolate framework and their surface structural characterization probed by CO2 adsorption Type A1 Journal article
  Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 21 Issue 16 Pages (up) 5907-5915  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The microporous and activated zeolitic imidazolate framework (Zn(MeIM)2; MeIM = imidazolate-2-methyl; ZIF-8) was loaded with the MOCVD precursor diethyl zinc [Zn(C2H5)2]. Exposure of ZIF-8 to the vapour of the volatile organometallic molecule resulted in the formation of the inclusion compound [Zn(C2H5)2]0.38@ZIF-8 revealing two precursor molecules per cavity. In a second step the obtained material was treated with oxygen (5 vol% in argon) at various temperatures (oxidative annealing) to achieve the composite material ZnO0.35@ZIF-8. The new material was characterized with powder XRD, FT-IR, UV-vis, solid state NMR, elemental analysis, N2 sorption measurements, and transmission electron microscopy. The data give evidence for the presence of nano-sized ZnO particles stabilized by ZIF-8 showing a blue-shift of the UV-vis absorption caused by quantum size effect (QSE). The surface structure and reactivity of embedded ZnO nanoparticles were characterized via carbon dioxide adsorption at different temperatures monitored by ultra-high vacuum FTIR techniques. It was found that the surface of ZnO nanoparticles is dominated by polar OZnO and ZnZnO facets as well as by defect sites, which all exhibit high reactivity towards CO2 activation forming various adsorbed carbonate and chemisorbed CO2δ− species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000289260000012 Publication Date 2011-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 76 Open Access  
  Notes Esteem 026019 Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:88641 Serial 3936  
Permanent link to this record
 

 
Author Dharanipragada, N.V.R.A.; Meledina, M.; Galvita, V.V.; Poelman, H.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B. url  doi
openurl 
  Title Deactivation study of Fe2O3-CeO2 during redox cycles for CO production from CO2 Type A1 Journal article
  Year 2016 Publication Industrial and engineering chemistry research Abbreviated Journal Ind Eng Chem Res  
  Volume 55 Issue 55 Pages (up) 5911-5922  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Deactivation was investigated in Fe2O3-CeO2 oxygen storage materials during repeated H-2-reduction and CO2-reoxidation. In situ XRD, XAS, and TEM were used to identify phases, crystallite sizes, and morphological changes upon cycling operation. The effect of redox cycling was investigated both in Fe-rich (80 wt % Fe2O3-CeO2) and Ce-rich (10 wt %Fe2O3-CeO2) materials. The former consisted of 100 nm Fe2O3 particles decorated with 5-10 nm Ce1-xFexO2-x. The latter presented CeO2 with incorporated Fe, i.e. a solid solution of Ce1-xFexO2-x, as the main oxygen carrier. By modeling the EXAFS Ce-K signal for as-prepared 10 wt %Fe2O3-CeO2, the amount of Fe in CeO2 was determined as 21 mol %, corresponding to 86% of the total iron content. Sintering and solid solid transformations, the latter including both new phase formation and element segregation, were identified as deactivation pathways upon redox cycling. In Ce-rich material, perovskite (CeFeO3) was identified by XRD. This phase remained inert during reduction and reoxidation, resulting in an overall lower oxygen storage capacity. Further, Fe segregated from the solid solution, thereby decreasing its reducibility. In addition, an increase in crystallite size occurred for all phases. In Fe-rich material, sintering is the main deactivation pathway, although Fe segregation from the solid solution and perovskite formation cannot be excluded.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000376825300013 Publication Date 2016-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 26 Open Access  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:134214 Serial 4158  
Permanent link to this record
 

 
Author Colla, M.-S.; Amin-Ahmadi, B.; Idrissi, H.; Malet, L.; Godet, S.; Raskin, J.-P.; Schryvers, D.; Pardoen, T. pdf  url
doi  openurl
  Title Dislocation-mediated relaxation in nanograined columnar ​palladium films revealed by on-chip time-resolved HRTEM testing Type A1 Journal article
  Year 2015 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 6 Issue 6 Pages (up) 5922  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The high-rate sensitivity of nanostructured metallic materials demonstrated in the recent literature is related to the predominance of thermally activated deformation mechanisms favoured by a large density of internal interfaces. Here we report time-resolved high-resolution electron transmission microscopy creep tests on thin nanograined films using on-chip nanomechanical testing. Tests are performed on ​palladium, which exhibited unexpectedly large creep rates at room temperature. Despite the small 30-nm grain size, relaxation is found to be mediated by dislocation mechanisms. The dislocations interact with the growth nanotwins present in the grains, leading to a loss of coherency of twin boundaries. The density of stored dislocations first increases with applied deformation, and then decreases with time to drive additional deformation while no grain boundary mechanism is observed. This fast relaxation constitutes a key issue in the development of various micro- and nanotechnologies such as ​palladium membranes for hydrogen applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000348742300002 Publication Date 2015-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 34 Open Access  
  Notes Iap7/21; Fwo G012012n Approved Most recent IF: 12.124; 2015 IF: 11.470  
  Call Number c:irua:122045 Serial 731  
Permanent link to this record
 

 
Author Sathiya, M.; Thomas, J.; Batuk, D.; Pimenta, V.; Gopalan, R.; Tarascon, J.-M. pdf  doi
openurl 
  Title Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-Ion cells based on P2-NaxMO2 electrodes Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 14 Pages (up) 5948-5956  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sodium ion battery technology is gradually advancing and can be viewed as a viable alternative to lithium ion batteries in niche applications. One of the promising positive electrode candidates is P2 type layered sodium transition metal oxide, which offers attractive sodium ion conductivity. However, the reversible capacity of P2 phases is limited by the inability to directly synthesize stoichiometric compounds with a sodium to transition metal ratio equal to 1. To alleviate this issue, we report herein the in situ synthesis of P2-NaxO2 (x <= 0.7, M = transition metal ions)-Na2CO3 composites. We find that sodium carbonate acts as a sacrificial salt, providing Na+ ion to increase the reversible capacity of the P2 phase in sodium ion full cells, and also as a useful additive that stabilizes the formation of P2 over competing P3 phases. We offer a new phase diagram for tuning the synthesis of the P2 phase under various experimental conditions and demonstrate, by in situ XRD analysis, the role of Na2CO3 as a sodium reservoir in full sodium ion cells. These results provide insights into the practical use of P2 layered materials and can be extended to a variety of other layered phases.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000406573200026 Publication Date 2017-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 26 Open Access Not_Open_Access  
  Notes ; M.S., J.T., and R.G. acknowledge the financial support received from the Department of Science and Technology (DST-SERC), Government of India under the funding from the TRC Grant Agreement No. AI/1/65/ARCI/2014. The authors are thankful to Dr. Sundararajan, Chairman, TRC and Dr. G. Padmanabham, Director, ARCI for helpful discussions. Initial microscopy analysis by Dr. M. B. Sahana, Dr. Prabu, and Mr. Ravi Gautham of ARCI are greatly acknowledged. The elemental analysis by Dr. Domitille Giaume, IRCP – ENSCP, Chimie Paris Tech, Paris is greatly acknowledged. ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:145759 Serial 4740  
Permanent link to this record
 

 
Author Turner, S.; Lu, Y.-G.; Janssens, S.D.; da Pieve, F.; Lamoen, D.; Verbeeck, J.; Haenen, K.; Wagner, P.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Local boron environment in B-doped nanocrystalline diamond films Type A1 Journal article
  Year 2012 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 4 Issue 19 Pages (up) 5960-5964  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Thin films of heavily B-doped nanocrystalline diamond (B:NCD) have been investigated by a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy performed on a state-of-the-art aberration corrected instrument to determine the B concentration, distribution and the local B environment. Concentrations of [similar]1 to 3 at.% of boron are found to be embedded within individual grains. Even though most NCD grains are surrounded by a thin amorphous shell, elemental mapping of the B and C signal shows no preferential embedding of B in these amorphous shells or in grain boundaries between the NCD grains, in contrast with earlier work on more macroscopic superconducting polycrystalline B-doped diamond films. Detailed inspection of the fine structure of the boron K-edge and comparison with density functional theory calculated fine structure energy-loss near-edge structure signatures confirms that the B atoms present in the diamond grains are substitutional atoms embedded tetrahedrally into the diamond lattice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000308705900026 Publication Date 2012-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 39 Open Access  
  Notes FWO G056810N; GOA XANES meets ELNES; 246791 COUNTATOMS; Hercules; 262348 ESMI; Methusalem Nano Approved Most recent IF: 7.367; 2012 IF: 6.233  
  Call Number UA @ lucian @ c:irua:101227UA @ admin @ c:irua:101227 Serial 1825  
Permanent link to this record
 

 
Author Theofanidis, S.A.; Galvita, V.V.; Poelman, H.; Dharanipragada, N.V.R.A.; Longo, A.; Meledina, M.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B. url  doi
openurl 
  Title Fe-containing magnesium aluminate support for stability and carbon control during methane reforming Type A1 Journal article
  Year 2018 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 8 Issue 7 Pages (up) 5983-5995  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report a MgFexAl2-xO4 synthetic spinel, where x varies from 0 to 0.26, as support for Ni-based catalysts, offering stability and carbon control under various conditions of methane reforming. By incorporation of Fe into a magnesium aluminate spine!, a support is created with redox functionality and high thermal stability, as concluded from temporal analysis of products (TAP) experiments and redox cycling, respectively. A diffusion coefficient of 3 x 10(-17) m(2) s(-1) was estimated for lattice oxygen at 993 K from TAP experiments. X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) modeling identified that the incorporation of iron occurs as Fe3+ in the octahedral sites of the spinel lattice, replacing aluminum. Simulation of the X-ray absorption near edge structure (XANES) spectrum of the reduced support showed that 60 +/- 10% of iron was reduced from 3+ to 2+ at 1073 K, while there was no formation of metallic iron. A series of Ni/MgFexAl2-xO4 catalysts, where x varies from 0 to 0.26, was synthesized and reduced, yielding a supported Ni-Fe alloy. The evolution of the catalyst structure during H-2 temperature-programmed reduction (TPR) and CO2 temperature-programmed oxidation (TPO) was examined using time-resolved in situ XRD and XANES. During reforming, iron in both the support and alloy keeps control of carbon accumulation, as confirmed by O-2-TPO on the spent catalysts. By fine tuning the amount of Fe in MgFexAl2-xO4, a supported alloy was obtained with a Ni/Fe molar ratio of similar to 10, which was active for reforming and stable. By comparison of the performance of Ni-based catalysts with Fe either incorporated into or deposited onto the support, the location of Fe within the support proved crucial for the stability and carbon mitigation under reforming conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000438475100034 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited 18 Open Access OpenAccess  
  Notes ; This work was supported by the FAST industrialization by Catalyst Research and Development (FASTCARD) project, which is a Large Scale Collaborative Project supported by the European Commission in the 7th Framework Programme (GA no 604277), the “Long Term Structural Methusalem Funding by the Flemish Government”, the Interuniversity Attraction Poles Programme, IAP7/5, Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) in supplying financing of travel costs and beam time at the DUBBLE beamline of the ESRF. The authors acknowledge the assistance from the DUBBLE (ESRF, XAS campaign 26-01-1048) and ROCK staff (SOLEIL, proposal 201502561). The authors equally acknowledge support from a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d'Avenir” program (reference: ANR-10-EQPX-45) for the ROCK beamline and from Lukas Buelens and Rakesh Batchu (Laboratory for Chemical Technology, Ghent University) for the STEM measurements and TAP experiments, respectively. ; Approved Most recent IF: 10.614  
  Call Number UA @ lucian @ c:irua:153178 Serial 5102  
Permanent link to this record
 

 
Author Filippousi, M.; Siafaka, P.I.; Amanatiadou, E.P.; Nanaki, S.G.; Nerantzaki, M.; Bikiaris, D.N.; Vizirianakis, I.S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Modified chitosan coated mesoporous strontium hydroxyapatite nanorods as drug carriers Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry B : materials for biology and medicine Abbreviated Journal J Mater Chem B  
  Volume 3 Issue 3 Pages (up) 5991-6000  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Mesoporous strontium hydroxyapatite (SrHAp) nanorods (NRs) have been successfully synthesized using a simple and efficient chemical route, i.e. the hydrothermal method. Structural and morphological characterization of the as-synthesized SrHAp NRs have been performed by transmission electron microscopy (TEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). TEM and HAADF-STEM measurements of the NRs reveal the coexistence of longer and shorter particles with the length ranging from 50 nm to 400 nm and a diameter of about 20-40 nm. Electron tomography measurements of the NRs allow us to better visualize the mesopores and their facets. Two model drugs, hydrophobic risperidone and hydrophilic pramipexole, were loaded into the SrHAp NRs. These nanorods were coated using a modified chitosan (CS) with poly(2-hydroxyethyl methacrylate) (PHEMA), in order to encapsulate the drug-loaded SrHAp nanoparticles and reduce the cytotoxicity of the loaded materials. The drug release from neat and encapsulated SrHAp NRs mainly depends on the drug hydrophilicity. Importantly, although neat SrHAp nanorods exhibit some cytotoxicity against Caco-2 cells, the Cs-g-PHEMA-SrHAp drug-loaded nanorods show an acceptable cytocompatibility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000358065100009 Publication Date 2015-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-750X;2050-7518; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.543 Times cited 24 Open Access  
  Notes Approved Most recent IF: 4.543; 2015 IF: 4.726  
  Call Number c:irua:127131 Serial 2161  
Permanent link to this record
 

 
Author Wang, D.; Hermes, M.; Najmr, S.; Tasios, N.; Grau-Carbonell, A.; Liu, Y.; Bals, S.; Dijkstra, M.; Murray, C.B.; van Blaaderen, A. url  doi
openurl 
  Title Structural diversity in three-dimensional self-assembly of nanoplatelets by spherical confinement Type A1 Journal article
  Year 2022 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 13 Issue 1 Pages (up) 6001-6012  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanoplatelets offer many possibilities to construct advanced materials due to new properties associated with their (semi)two-dimensional shapes. However, precise control of both positional and orientational order of the nanoplatelets in three dimensions, which is required to achieve emerging and collective properties, is challenging to realize. Here, we combine experiments, advanced electron tomography and computer simulations to explore the structure of supraparticles self-assembled from nanoplatelets in slowly drying emulsion droplets. We demonstrate that the rich phase behaviour of nanoplatelets, and its sensitivity to subtle changes in shape and interaction potential can be used to guide the self-assembly into a wide range of different structures, offering precise control over both orientation and position order of the nanoplatelets. Our research is expected to shed light on the design of hierarchically structured metamaterials with distinct shape- and orientation- dependent properties. Nanoplatelets can be used as anisotropic building blocks for constructing novel optoelectronic materials. Here, Wang et al. show a route of assembling nanoplatelets with controllable positional and orientational order in three dimensions facilitated by the surface tension of drying emulsion droplets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000867312100031 Publication Date 2022-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 7 Open Access OpenAccess  
  Notes We thank A. Kadu, M. Chiappini, F. Rabouw, S. Paliwal, X. Xie, C. Xia and Z. Wang for fruitful discussions. D.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union's Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. M.H. was supported by the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). Y.L. acknowledges the Sustainability project between the faculties of Science and Geosciences of Utrecht University. M.D. acknowledges financial support from European Research Council (Grant No. ERC-2019-ADV-H2020 884902 SoftML). S.B. acknowledges financial support from ERC Consolidator Grant No. 815128 REALNANO. C.B.M. acknowledges support for materials synthesis from the Office of Naval Research Multidisciplinary University Research Initiative Award ONR N00014-18-1-2497. The authors acknowledge the EM square center at Utrecht University for the access to the microscopes. Approved Most recent IF: 16.6  
  Call Number UA @ admin @ c:irua:191387 Serial 7214  
Permanent link to this record
 

 
Author Birkholzer, Y.A.; Sotthewes, K.; Gauquelin, N.; Riekehr, L.; Jannis, D.; van der Minne, E.; Bu, Y.; Verbeeck, J.; Zandvliet, H.J.W.; Koster, G.; Rijnders, G. url  doi
openurl 
  Title High-strain-induced local modification of the electronic properties of VO₂ thin films Type A1 Journal article
  Year 2022 Publication ACS applied electronic materials Abbreviated Journal  
  Volume 4 Issue 12 Pages (up) 6020-6028  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Vanadium dioxide (VO2) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains. In this work, we show that we can manipulate and monitor the reversible semiconductor-to-metal transition of VO2 while applying a controlled amount of mechanical pressure by a nanosized metallic probe using an atomic force microscope. At a critical pressure, we can reversibly actuate the phase transition with a large modulation of the conductivity. Direct tunneling through the VO2-metal contact is observed as the main charge carrier injection mechanism before and after the phase transition of VO2. The tunneling barrier is formed by a very thin but persistently insulating surface layer of the VO2. The necessary pressure to induce the transition decreases with temperature. In addition, we measured the phase coexistence line in a hitherto unexplored regime. Our study provides valuable information on pressure-induced electronic modifications of the VO2 properties, as well as on nanoscale metal-oxide contacts, which can help in the future design of oxide electronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000890974900001 Publication Date 2022-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes This work received financial support from the project Green ICT (grant number 400.17.607) of the research program NWA, which is financed by the Dutch Research Council (NWO), Research Foundation Flanders (FWO grant number G0F1320N), and the European Union’s Horizon 2020 research and innovation program within a contract for Integrating Activities for Advanced Communities (grant number 823717 − ESTEEM3). The K2 camera was funded through the Research Foundation Flanders (FWO-Hercules grant number G0H4316N – “Direct electron detector for soft matter TEM”).; esteem3reported; esteem3jra Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:192712 Serial 7309  
Permanent link to this record
 

 
Author Queralto, A.; Graf, D.; Frohnhoven, R.; Fischer, T.; Vanrompay, H.; Bals, S.; Bartasyte, A.; Mathur, S. url  doi
openurl 
  Title LaFeO3 nanofibers for high detection of sulfur-containing gases Type A1 Journal article
  Year 2019 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal Acs Sustain Chem Eng  
  Volume 7 Issue 7 Pages (up) 6023-6032  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Lanthanum ferrite nanofibers were electrospun from a chemical sol and calcined at 600 degrees C to obtain singlephase LaFeO3 (LFO) perovskite. High-resolution transmission electron microscopy in conjunction with 3D tomographic analysis confirmed an interwoven network of hollow and porous (surface) LFO nanofibers. Owing to their high surface area and p-type behavior, the nanofiber meshes showed high chemoselectivity toward reducing toxic gases (SO2, H2S) that could be reproducibly detected at very low concentrations (<1 ppm), well below the threshold values for occupational safety and health. An increased sensitivity was observed in the temperature range of 150-300 degrees C with maximum sensor response at 250 degrees C. The surface reaction at the heterogeneous solid (LFO)/gas (SO2) interface that confirmed the formation of La-2(SO4)(3) was investigated by X-ray photoelectron spectroscopy. Moreover, the LFO fibers showed a high selectivity in the detection of oxidizing and reducing gases. Whereas superior detection of NH3 and H2S was measured, little response was observed for CO and NO2. Finally, the integration of nanowire meshes in commercial sensor platforms was successfully demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461978200047 Publication Date 2019-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.951 Times cited 41 Open Access OpenAccess  
  Notes ; The authors kindly acknowledge the ERA.Net RUS Plus project FONSENS funded by the German Federal Ministry of Education and Research (BMBF) under the grant no. 01DJ16017. A.Q. highly appreciates the support of the Alexander von Humboldt Foundation (grant no. AVH 1184642) and the BMBF for his postdoctoral fellowship. A.Q., D.G., R.F., T.F., and S.M. also kindly acknowledge the financial support of the University of Cologne. H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). We also express our gratitude to Prof. Dr. J. Hadermann from the Electron Microscopy for Materials Science group at the University of Antwerp for her assistance. A.B. is grateful for the EUR EIPHI program (grant no. ANR-17-EURE-0002). ; Approved Most recent IF: 5.951  
  Call Number UA @ admin @ c:irua:158535 Serial 5263  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: