toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gensterblum, G.; Hevesi, K.; Han, B.Y.; Yu, L.M.; Pireaux, J.J.; Thiry, P.A.; Caudano, R.; Lucas, A.A.; Bernaerts, D.; Amelinckx, S.; Van Tendeloo, G.; Bendele, G.; Buslaps, T.; Johnson, R.L.; Foss, M.; Feidenhans’l, R.; Le Lay, G.; url  doi
openurl 
  Title Growth mode and electronic-structure of the epitaxial C60(111)/GeS(001) interface Type A1 Journal article
  Year 1994 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 50 Issue 16 Pages (down) 11981-11995  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1994PR43400080 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 81 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:99825 Serial 1393  
Permanent link to this record
 

 
Author Bartholomeeusen, E.; De Cremer, G.; Kennes, K.; Hammond, C.; Hermans, I.; Lu, J.-B.; Schryvers, D.; Jacobs, P.A.; Roeffaers, M.B.J.; Hofkens, J.; Sels, B.F.; Coutino-Gonzalez, E. doi  openurl
  Title Optical encoding of luminescent carbon nanodots in confined spaces Type A1 Journal article
  Year 2021 Publication Chemical Communications Abbreviated Journal Chem Commun  
  Volume 57 Issue 90 Pages (down) 11952-11955  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Stable emissive carbon nanodots were generated in zeolite crystals using near infrared photon irradiation gradually converting the occluded organic template, originally used to synthesize the zeolite crystals, into discrete luminescent species consisting of nano-sized carbogenic fluorophores, as ascertained using Raman microscopy, and steady-state and time-resolved spectroscopic techniques. Photoactivation in a confocal laser fluorescence microscope allows 3D resolved writing of luminescent carbon nanodot patterns inside zeolites providing a cost-effective and non-toxic alternative to previously reported metal-based nanoclusters confined in zeolites, and opens up opportunities in bio-labelling and sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711122000001 Publication Date 2021-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.319  
  Call Number UA @ admin @ c:irua:184147 Serial 6876  
Permanent link to this record
 

 
Author Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S.K.; Bladt, E.; Kshirsagar, A.S.; Wang, Z.; Yin, J.; Wang, Y.; Quan, L.N.; Yan, F.; Gao, M.; Li, X.; Shamsi, J.; Debnath, T.; Cao, M.; Scheel, M.A.; Kumar, S.; Steele, J.A.; Gerhard, M.; Chouhan, L.; Xu, K.; Wu, X.-gang; Li, Y.; Zhang, Y.; Dutta, A.; Han, C.; Vincon, I.; Rogach, A.L.; Nag, A.; Samanta, A.; Korgel, B.A.; Shih, C.-J.; Gamelin, D.R.; Son, D.H.; Zeng, H.; Zhong, H.; Sun, H.; Demir, H.V.; Scheblykin, I.G.; Mora-Sero, I.; Stolarczyk, J.K.; Zhang, J.Z.; Feldmann, J.; Hofkens, J.; Luther, J.M.; Perez-Prieto, J.; Li, L.; Manna, L.; Bodnarchuk, M., I; Kovalenko, M., V; Roeffaers, M.B.J.; Pradhan, N.; Mohammed, O.F.; Bakr, O.M.; Yang, P.; Muller-Buschbaum, P.; Kamat, P., V; Bao, Q.; Zhang, Q.; Krahne, R.; Galian, R.E.; Stranks, S.D.; Bals, S.; Biju, V.; Tisdale, W.A.; Yan, Y.; Hoye, R.L.Z.; Polavarapu, L. pdf  url
doi  openurl
  Title State of the art and prospects for Halide Perovskite Nanocrystals Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 15 Issue 7 Pages (down) 10775-10981  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000679406500006 Publication Date 2021-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 538 Open Access OpenAccess  
  Notes E.D. and J.H. acknowledge financial support from the Research FoundationFlanders (FWO Grant Nos. S002019N, G.0B39.15, G.0B49.15, G.0962.13, G098319N, and ZW15_09-GOH6316), the Research Foundation Flanders postdoctoral fellowships to J.A.S. and E.D. (FWO Grant Nos. 12Y7218N and 12O3719N, respectively), Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:180553 Serial 6846  
Permanent link to this record
 

 
Author Conings, B.; Babayigit, A.; Klug, M. T.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J. T.-W.; Verbeeck, J.; Boyen, H.-G. url  doi
openurl 
  Title A Universal Deposition Protocol for Planar Heterojunction Solar Cells with High Efficiency Based on Hybrid Lead Halide Perovskite Families Type A1 Journal article
  Year 2016 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 28 Issue 28 Pages (down) 10701-10709  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A robust and expedient gas quenching method is developed for the solution deposition of hybrid perovskite thin films. The method offers a reliable standard practice for the fabrication of a non-exhaustive variety of perovskites exhibiting excellent film morphology and commensurate high performance in both regular and inverted structured solar cell architectures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000392728200014 Publication Date 2016-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1521-4095 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 95 Open Access  
  Notes This work was financially supported by BOF (Hasselt University) and the Research Fund Flanders (FWO). B.C. is a postdoctoral research fellow of the FWO. A.B. is financially supported by Imec and FWO. M.T.K. acknowledges funding from the EPSRC project EP/M024881/1 “Organic-inorganic Perovskite Hybrid Tandem Solar Cells”. S.B. is a VINNMER Fellow and Marie Skłodowska-Curie Fellow. J.V. and N.G. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G.0044.13N “Charge ordering”. The Qu-Ant-EM microscope used for this study was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors thank Johnny Baccus and Jan Mertens for technical support.; ECASJO_; Approved Most recent IF: 19.791; 2016 IF: NA  
  Call Number EMAT @ emat @ c:irua:138597 Serial 4318  
Permanent link to this record
 

 
Author Wang, C.; Ke, X.; Wang, J.; Liang, R.; Luo, Z.; Tian, Y.; Yi, D.; Zhang, Q.; Wang, J.; Han, X.-F.; Van Tendeloo, G.; Chen, L.-Q.; Nan, C.-W.; Ramesh, R.; Zhang, J. url  doi
openurl 
  Title Ferroelastic switching in a layered-perovskite thin film Type A1 Journal article
  Year 2016 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 7 Issue 7 Pages (down) 10636  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi2WO6 thin films, where the ferroelectric polarization rotates by 90 degrees within four in-plane preferred orientations. Phase-field simulation indicates that the energy barrier of ferroelastic switching in orthorhombic Bi2WO6 film is ten times lower than the one in PbTiO3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications.  
  Address Department of Physics, Beijing Normal University, 100875 Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000371020600002 Publication Date 2016-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 40 Open Access  
  Notes The work in Beijing Normal University is supported by the NSFC under contract numbers 51322207, 51332001 and 11274045. J.Z. also acknowledges the support from National Basic Research Program of China, under contract No. 2014CB920902. G.V.T. acknowledges the funding from the European Research Council under the Seventh Framework Program (FP7), ERC Advanced Grant No. 246791-COUNTATOMS. X.K. acknowledges the funding from NSFC (Grant No.11404016) and Beijing University of Technology (2015-RD-QB-19). J.W. acknowledges the funding from NSFC (Grant number 51472140). L.-Q.C. acknowledges the supporting by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award FG02-07ER46417. R.L. acknowledges Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation. Z.L. acknowledges the support from the NSFC (No.11374010 and No.11434009). Q.Z. and X.-F.H. acknowledge the funding support from NSFC (Grant No. 11434014). R.R. acknowledges support from the National Science Foundation (Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems) under grant number EEC-1160504. Approved Most recent IF: 12.124  
  Call Number c:irua:130978 Serial 4007  
Permanent link to this record
 

 
Author Zeng, Y.-J.; Schouteden, K.; Amini, M.N.; Ruan, S.-C.; Lu, Y.-F.; Ye, Z.-Z.; Partoens, B.; Lamoen, D.; Van Haesendonck, C. pdf  url
doi  openurl
  Title Electronic band structures and native point defects of ultrafine ZnO nanocrystals Type A1 Journal article
  Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 7 Issue 7 Pages (down) 10617-10622  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Ultrafine ZnO nanocrystals with a thickness down to 0.25 nm are grown by a metalorganic chemical vapor deposition method. Electronic band structures and native point defects of ZnO nanocrystals are studied by a combination of scanning tunneling microscopy/spectroscopy and first-principles density functional theory calculations. Below a critical thickness of nm ZnO adopts a graphitic-like structure and exhibits a wide band gap similar to its wurtzite counterpart. The hexagonal wurtzite structure, with a well-developed band gap evident from scanning tunneling spectroscopy, is established for a thickness starting from similar to 1.4 nm. With further increase of the thickness to 2 nm, V-O-V-Zn defect pairs are easily produced in ZnO nanocrystals due to the self-compensation effect in highly doped semiconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355055000063 Publication Date 2015-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 15 Open Access  
  Notes Hercules; EWI Approved Most recent IF: 7.504; 2015 IF: 6.723  
  Call Number c:irua:126408 Serial 999  
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Bercx, M.; Karakulina, O.M.; Kirsanova, M.A.; Lamoen, D.; Hadermann, J.; Abakumov, A.M.; Van Bael, M.K.; Hardy, A. url  doi
openurl 
  Title An in-depth study of Sn substitution in Li-rich/Mn-rich NMC as a cathode material for Li-ion batteries Type A1 Journal article
  Year 2020 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal  
  Volume 49 Issue 30 Pages (down) 10486-10497  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Layered Li-rich/Mn-rich NMC (LMR-NMC) is characterized by high initial specific capacities of more than 250 mA h g(-1), lower cost due to a lower Co content and higher thermal stability than LiCoO2. However, its commercialisation is currently still hampered by significant voltage fade, which is caused by irreversible transition metal ion migration to emptied Li positionsviatetrahedral interstices upon electrochemical cycling. This structural change is strongly correlated with anionic redox chemistry of the oxygen sublattice and has a detrimental effect on electrochemical performance. In a fully charged state, up to 4.8 Vvs.Li/Li+, Mn4+ is prone to migrate to the Li layer. The replacement of Mn4+ for an isovalent cation such as Sn4+ which does not tend to adopt tetrahedral coordination and shows a higher metal-oxygen bond strength is considered to be a viable strategy to stabilize the layered structure upon extended electrochemical cycling, hereby decreasing voltage fade. The influence of Sn4+ on the voltage fade in partially charged LMR-NMC is not yet reported in the literature, and therefore, we have investigated the structure and the corresponding electrochemical properties of LMR-NMC with different Sn concentrations. We determined the substitution limit of Sn4+ in Li1.2Ni0.13Co0.13Mn0.54-xSnxO2 by powder X-ray diffraction and transmission electron microscopy to be x approximate to 0.045. The limited solubility of Sn is subsequently confirmed by density functional theory calculations. Voltage fade for x= 0 andx= 0.027 has been comparatively assessed within the 3.00 V-4.55 V (vs.Li/Li+) potential window, from which it is concluded that replacing Mn4+ by Sn4+ cannot be considered as a viable strategy to inhibit voltage fade within this window, at least with the given restricted doping level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000555330900018 Publication Date 2020-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes ; The authors acknowledge Research Foundation Flanders (FWO) project number G040116N for funding. The authors are grateful to Dr Ken Elen and Greet Cuyvers (imo-imomec, UHasselt and imec) for respectively preliminary PXRD measurements and performing ICP-AES on the monometal precursors. Dr Dmitry Rupasov (Skolkovo Institute of Science and Technology) is acknowledged for performing TGA measurements on the metal sulfate precursors. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. ; Approved Most recent IF: 4; 2020 IF: 4.029  
  Call Number UA @ admin @ c:irua:171149 Serial 6450  
Permanent link to this record
 

 
Author Lugli, L.F.; Fuchslueger, L.; Vallicrosa, H.; Van Langenhove, L.; Ranits, C.; Garberi, P.R.F.; Verryckt, L.; Grau, O.; Brechet, L.; Peguero, G.; Llusia, J.; Ogaya, R.; Marquez, L.; Portillo-Estrada, M.; Ramirez-Rojas, I.; Courtois, E.; Stahl, C.; Sardans, J.; Penuelas, J.; Verbruggen, E.; Janssens, I. url  doi
openurl 
  Title Contrasting responses of fine root biomass and traits to large-scale nitrogen and phosphorus addition in tropical forests in the Guiana shield Type A1 Journal article
  Year 2024 Publication Oikos: a journal of ecology Abbreviated Journal  
  Volume 2024 Issue 4 Pages (down) e10412-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract Fine roots mediate plant nutrient acquisition and growth. Depending on soil nutrient availability, plants can regulate fine root biomass and morphological traits to optimise nutrient acquisition. Little is known, however, about the importance of these parameters influencing forest functioning. In this study, we measured root responses to nutrient additions to gain a mechanistic understanding of plant adaptations to nutrient limitation in two tropical forests in French Guiana, differing twofold in their soil nutrient statuses. We analysed the responses of root biomass, mean root diameter (RD), specific root length (SRL), specific root area (SRA), root tissue density (RTD) and carbon (C), nitrogen (N) and phosphorus (P) concentrations in roots down to 15 cm soil depth after three years of N and P additions. At the lower-fertility site Paracou, no changes in root biomass or morphological traits were detected with either N or P addition, although P concentrations in roots increased with P addition. In the higher fertility site, Nouragues, root biomass and P concentrations in roots increased with P addition, with no changes in morphological traits. In contrast, N addition shifted root traits from acquisitive to more conservative by increasing RTD. A significant interaction between N and P in Nouragues pointed to stronger responses to P addition in the absence of N. Our results suggest that the magnitude and direction of root biomass and trait expression were regulated by soil fertility, corroborated by the response to N or P additions. At low fertility sites, we found lower plasticity in root trait expression compared to more fertile conditions, where N and P additions caused stronger and antagonistic responses. Identifying the exact role of mechanisms affecting root nutrient uptake in Amazon forests growing in different soils will be crucial to foresee if and how rapid global changes can affect their carbon allocation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001142552200001 Publication Date 2024-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0030-1299 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: 4.03  
  Call Number UA @ admin @ c:irua:202834 Serial 9195  
Permanent link to this record
 

 
Author Baelus, B.J.; Peeters, F.M.; Schweigert, V.A. url  doi
openurl 
  Title Vortex states in superconducting rings Type A1 Journal article
  Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 61 Issue 14 Pages (down) 9734-9747  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The superconducting state. of a thin superconducting disk with a hole is studied within the, nonlinear Ginzburg-Landau theory in which the demagnetization effect is accurately taken into account. We find that the flux through the hole is not quantized, the superconducting state is stabilized with increasing size of the hole for fixed radius of the disk, and a transition to a multivortex state is found if the disk is sufficiently large. Breaking the circular symmetry through a non-central-location of the hole in the disk favors the multivortex state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000086441800074 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 78 Open Access  
  Notes Approved Most recent IF: 3.836; 2000 IF: NA  
  Call Number UA @ lucian @ c:irua:28514 Serial 3892  
Permanent link to this record
 

 
Author Savina, A.A.; Morozov, V.A.; Buzlukov, A.L.; Arapova, I.Y.; Stefanovich, S.Y.; Baklanova, Y.V.; Denisova, T.A.; Medvedeva, N.I.; Bardet, M.; Hadermann, J.; Lazoryak, B.I.; Khaikina, E.G. url  doi
openurl 
  Title New solid electrolyte Na9Al(MoO4)6 : structure and Na+ ion conductivity Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 20 Pages (down) 8901-8913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)(6). The monoclinic Na9Al(MoO4)(6) consists of isolated polyhedral, [Al(MoO4)(6)](9-) clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one NalO(6) octahedron and two Na2O(6) octahedra. Na3-Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)(3). High-temperature conductivity measurements revealed that the conductivity (sigma) of Na9Al(MoO4)(6) at 803 K equals 1.63 X 10(-2) S cm(-1). The temperature behavior of the Na-23 and Al-27 nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the Na-23 nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T\u003C490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3-Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3-Na5 sublattice) only at higher temperatures.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000413884900037 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 13 Open Access OpenAccess  
  Notes ; The research was performed within the state assignment of FASO of Russia (Themes 01201463330, A16-116122810214-9, and 0339-2016-0007), supported in part by the Russian Foundation for Basic Research (Projects 16-03-00510, 16-03-00164, and 17-03-00333). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:147432 Serial 4886  
Permanent link to this record
 

 
Author Schrittwieser, S.; Pelaz, B.; Parak, W.J.; Lentijo-Mozo, S.; Soulantica, K.; Dieckhoff, J.; Ludwig, F.; Altantzis, T.; Bals, S.; Schotter, J. pdf  url
doi  openurl
  Title Homogeneous Protein Analysis by Magnetic Core-Shell Nanorod Probes Type A1 Journal article
  Year 2016 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 8 Issue 8 Pages (down) 8893-8899  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins. By adjusting the excitation frequency, we are able to optimize the measurement signal for each analyte protein size. In addition, due to the locking of the optical signal to the magnetic excitation frequency, background signals are suppressed, thus allowing exclusive studies of processes at the nanoprobe surface only. We study target proteins (soluble domain of the human epidermal growth factor receptor 2 – sHER2) specifically binding to antibodies (trastuzumab) immobilized on the surface of our nanoprobes and demonstrate direct deduction of their respective sizes. Additionally, we examine the dependence of our measurement signal on the concentration of the analyte protein, and deduce a minimally detectable sHER2 concentration of 440 pM. For our homogeneous measurement platform, good dispersion stability of the applied nanoprobes under physiological conditions is of vital importance. To that end, we support our measurement data by theoretical modeling of the total particle-particle interaction energies. The successful implementation of our platform offers scope for applications in biomarker-based diagnostics as well as for answering basic biology questions.  
  Address Molecular Diagnostics, AIT Austrian Institute of Technology , Vienna, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000374274900007 Publication Date 2016-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 16 Open Access OpenAccess  
  Notes The authors thank Frauke Alves, Julia Bode and Fernanda Ramos Gomes from the Max-Planck-Institute of Experimental Medicine in Göttingen for providing the trastuzumab antibody in form of the Herceptin therapeutic drug. The figure showing the measurement principle has been created by Darragh Crotty (www.darraghcrotty.com). Parts of this research were supported by the European Commission FP7 NAMDIATREAM project (EU NMP4-LA-2010−246479), by the German research foundation (DFG grant GRK 1782 to W.J.P.), and by the European Research Council (ERC Starting Grant #335078 Colouratom). B.P. acknowledges a PostDoctoral fellowship from the Alexander von Humboldt foundation. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ; ECAS_Sara; Approved Most recent IF: 7.504  
  Call Number c:irua:132889 Serial 4059  
Permanent link to this record
 

 
Author De Henau, S.; Tilleman, L.; Vangheel, M.; Luyckx, E.; Trashin, S.; Pauwels, M.; Germani, F.; Vlaeminck, C.; Vanfleteren, J.R.; Bert, W.; Pesce, A.; Nardini, M.; Bolognesi, M.; De Wael, K.; Moens, L.; Dewilde, S.; Braeckman, B.P. url  doi
openurl 
  Title A redox signalling globin is essential for reproduction in Caenorhabditis elegans Type A1 Journal article
  Year 2015 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 6 Issue Pages (down) 8782  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Moderate levels of reactive oxygen species (ROS) are now recognized as redox signalling molecules. However, thus far, only mitochondria and NADPH oxidases have been identified as cellular sources of ROS in signalling. Here we identify a globin (GLB-12) that produces superoxide, a type of ROS, which serves as an essential signal for reproduction in C. elegans. We find that GLB-12 has an important role in the regulation of multiple aspects in germline development, including germ cell apoptosis. We further describe how GLB-12 displays specific molecular, biochemical and structural properties that allow this globin to act as a superoxide generator. In addition, both an intra- and extracellular superoxide dismutase act as key partners of GLB-12 to create a transmembrane redox signal. Our results show that a globin can function as a driving factor in redox signalling, and how this signal is regulated at the subcellular level by multiple control layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367577100002 Publication Date 2015-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 20 Open Access  
  Notes ; We thank Dr K. Matsumoto and Dr T. Mizuno for kindly providing the mek-1(ks54) sek-1(km4) double mutant, the antibody anti-PMK-1 and technical advice on antibody use; Dr D. Kim for kindly providing the pDK177 RNAi strain; Dr M. Ubbink and Dr Q. Bashir for providing CCP; Dr K. Oegema and the OD lab for sharing technical expertise; M. Couvreur for assistance in generating transgenic lines; and Dr T. Dansen for the final support. Some strains were provided by the CGC, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440). S.D.H. and F.G. are PhD fellows of the Fund for Scientific Research (FWO). Financial support to S.D. and L.M. was provided by the University of Antwerp (BOF UA TOP 2006), to K.D.W., S.D. and S.T. by the University of Antwerp (BOF-GOA) and to S.D., L.M., B.P.B., by FWO project G.0247.09. ; Approved Most recent IF: 12.124; 2015 IF: 11.470  
  Call Number UA @ admin @ c:irua:129310 Serial 5809  
Permanent link to this record
 

 
Author Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; Okotrub, A.V. pdf  doi
openurl 
  Title Single-walled carbon nanotube reactor for redox transformation of mercury dichloride Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue 9 Pages (down) 8643-8649  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411918200012 Publication Date 2017-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 11 Open Access Not_Open_Access  
  Notes ; Collaboration between partner institutions was partially supported by European FP7 IRSES project 295180. We are grateful to the bilateral Program “Russian-German Laboratory at BESSY II” for the assistance in XPS and NEXAFS measurements. We acknowledge C. Tollan for proofreading the manuscript. We are grateful to Dr. Y.V. Shubin for XRD measurements of graphite with HgCl<INF>2</ INF>. ; Approved Most recent IF: 13.942  
  Call Number UA @ lucian @ c:irua:146770 Serial 4895  
Permanent link to this record
 

 
Author Cai, Y.; Michiels, R.; De Luca, F.; Neyts, E.; Tu, X.; Bogaerts, A.; Gerrits, N. url  doi
openurl 
  Title Improving Molecule–Metal Surface Reaction Networks Using the Meta-Generalized Gradient Approximation: CO2Hydrogenation Type A1 Journal Article
  Year 2024 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C  
  Volume 128 Issue 21 Pages (down) 8611-8620  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Density functional theory is widely used to gain insights into molecule−metal surface reaction networks, which is important for a better understanding of catalysis. However, it is well-known that generalized gradient approximation (GGA)

density functionals (DFs), most often used for the study of reaction networks, struggle to correctly describe both gas-phase molecules and metal surfaces. Also, GGA DFs typically underestimate reaction barriers due to an underestimation of the selfinteraction energy. Screened hybrid GGA DFs have been shown to reduce this problem but are currently intractable for wide usage. In this work, we use a more affordable meta-GGA (mGGA) DF in combination with a nonlocal correlation DF for the first time to study and gain new insights into a catalytically important surface

reaction network, namely, CO2 hydrogenation on Cu. We show that the mGGA DF used, namely, rMS-RPBEl-rVV10, outperforms typical GGA DFs by providing similar or better predictions for metals and molecules, as well as molecule−metal surface adsorption

and activation energies. Hence, it is a better choice for constructing molecule−metal surface reaction networks.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links  
  Impact Factor 3.7 Times cited Open Access  
  Notes H2020 Marie Sklodowska-Curie Actions, 813393 ; Fonds Wetenschappelijk Onderzoek, 1114921N ; H2020 European Research Council, 810182 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 019.202EN.012 ; Approved Most recent IF: 3.7; 2024 IF: 4.536  
  Call Number PLASMANT @ plasmant @ Serial 9248  
Permanent link to this record
 

 
Author Lu, Y.; Liu, Y.-X.; He, L.; Wang, L.-Y.; Liu, X.-L.; Liu, J.-W.; Li, Y.-Z.; Tian, G.; Zhao, H.; Yang, X.-H.; Liu, J.; Janiak, C.; Lenaerts, S.; Yang, X.-Y.; Su, B.-L. doi  openurl
  Title Interfacial co-existence of oxygen and titanium vacancies in nanostructured TiO₂ for enhancement of carrier transport Type A1 Journal article
  Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 12 Issue 15 Pages (down) 8364-8370  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The interfacial co-existence of oxygen and metal vacancies in metal oxide semiconductors and their highly efficient carrier transport have rarely been reported. This work reports on the co-existence of oxygen and titanium vacancies at the interface between TiO2 and rGO via a simple two-step calcination treatment. Experimental measurements show that the oxygen and titanium vacancies are formed under 550 degrees C/Ar and 350 degrees C/air calcination conditions, respectively. These oxygen and titanium vacancies significantly enhance the transport of interfacial carriers, and thus greatly improve the photocurrent performances, the apparent quantum yield, and photocatalysis such as photocatalytic H-2 production from water-splitting, photocatalytic CO2 reduction and photo-electrochemical anticorrosion of metals. A new “interfacial co-existence of oxygen and titanium vacancies” phenomenon, and its characteristics and mechanism are proposed at the atomic-/nanoscale to clarify the generation of oxygen and titanium vacancies as well as the interfacial carrier transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000529201500029 Publication Date 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 4 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (51861135313, U1663225, U1662134, and 51472190), the International Science & Technology Cooperation Program of China (2015DFE52870), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), the Fundamental Research Funds for the Central Universities (19lgpy113 and 19lgzd16), the Jilin Province Science and Technology Development Plan (20180101208JC) and the Hubei Provincial Natural Science Foundation of China (2016CFA033). ; Approved Most recent IF: 6.7; 2020 IF: 7.367  
  Call Number UA @ admin @ c:irua:169578 Serial 6550  
Permanent link to this record
 

 
Author Lu, A.K.A.; Houssa, M.; Radu, I.P.; Pourtois, G. pdf  doi
openurl 
  Title Toward an understanding of the electric field-induced electrostatic doping in van der Waals heterostructures : a first-principles study Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 8 Pages (down) 7725-7734  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Since the discovery of graphene, a broad range of two-dimensional (2D) materials has captured the attention of the scientific communities. Materials, such as hexagonal boron nitride (hBN) and the transition metal dichalcogenides (TMDs) family, have shown promising semiconducting and insulating properties that are very appealing for the semiconductor industry. Recently, the possibility of taking advantage of the properties of 2D-based heterostructures has been investigated for low-power nanoelectronic applications. In this work, we aim at evaluating the relation between the nature of the materials used in such heterostructures and the amplitude of the layer-to-layer charge transfer induced by an external electric field, as is typically present in nanoelectronic gated devices. A broad range of combinations of TMDs, graphene, and hBN has been investigated using density functional theory. Our results show that the electric field induced charge transfer strongly depends on the nature of the 2D materials used in the van der Waals heterostructures and to a lesser extent on the relative orientation of the materials in the structure. Our findings contribute to the building of the fundamental understanding required to engineer electrostatically the doping of 2D materials and to establish the factors that drive the charge transfer mechanisms in electron tunneling-based devices. These are key ingredients for the development of 2D -based nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395494200119 Publication Date 2017-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 10 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 7.504  
  Call Number UA @ lucian @ c:irua:142483 Serial 4696  
Permanent link to this record
 

 
Author Hamidi-Asl, E.; Dardenne, F.; Blust, R.; De Wael, K. url  doi
openurl 
  Title An improved electrochemical aptasensor for chloramphenicol detection based on aptamer incorporated gelatine Type A1 Journal article
  Year 2015 Publication Sensors Abbreviated Journal Sensors-Basel  
  Volume 15 Issue 4 Pages (down) 7605-7618  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Because of the biocompatible properties of gelatine and the good affinity of aptamers for their targets, the combination of aptamer and gelatine type B is reported as promising for the development of biosensing devices. Here, an aptamer for chloramphenicol (CAP) is mixed with different types of gelatine and dropped on the surface of disposable gold screen printed electrodes. The signal of the CAP reduction is investigated using differential pulse voltammetry. The diagnostic performance of the sensor is described and a detection limit of 1.83 x 10(-10) M is found. The selectivity and the stability of the aptasensor are studied and compared to those of other CAP sensors described in literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000354236100025 Publication Date 2015-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.677 Times cited 21 Open Access  
  Notes ; Ezat Hamidi-Asl was financially supported by IOF-POC (University of Antwerp). ; Approved Most recent IF: 2.677; 2015 IF: 2.245  
  Call Number UA @ admin @ c:irua:126071 Serial 5464  
Permanent link to this record
 

 
Author Nicholas, R.J.; Sasaki, S.; Miura, N.; Peeters, F.M.; Shi, J.M.; Hai, G.Q.; Devreese, J.T.; Lawless, M.J.; Ashenford, D.E.; Lunn, B. pdf  doi
openurl 
  Title Interband magnetooptical studies of resonant polaron coupling in CdTe/Cd1-xMnxTe quantum-wells Type A1 Journal article
  Year 1994 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 50 Issue 11 Pages (down) 7596-7601  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract Magnetoreflectivity measurements of the 1s and 2s exciton energies in a CdTe/Cd1-xMnxTe superlattice have been made in magnetic fields up to 45 T, showing the resonant polaron coupling of electrons to LO phonons. Strong reflectivity features are seen for both the 1s and 2s excitons, which show a strong field-dependent spin splitting due to the dilute magnetic barriers. At B-z=0, the 2s exciton feature is observed lying 18 meV above the Is state, and is shifted upward in energy by the magnetic fields. No resonant behavior occurs when the 2s state passes through the LO-phonon energy of 21 meV, but at higher fields of around 20 T, the resonances for both spin states (sigma(+/-)) of the 2s exciton broaden and show a strong anticrossing behavior. These experiments are shown to be in excellent agreement with a theoretical treatment which includes the resonant polaron coupling of the electrons alone. Both experiment and theory demonstrate an extremely strong resonant splitting of the 2s exciton states of approximately 11 meV, which is over 50% of the LO-phonon energy. The dominance of single-particle polaron coupling is attributed to the relative sizes of the polaron (35 Angstrom A) and the exciton (50 Angstrom A) radius.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1994PJ43700045 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 10 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:99837 Serial 1687  
Permanent link to this record
 

 
Author Korkmaz, Y.A.; Bulutay, C.; Sevik, C. pdf  url
doi  openurl
  Title k · p parametrization and linear and circular dichroism in strained monolayer (Janus) transition metal dichalcogenides from first-principles Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 13 Pages (down) 7439-7450  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Semiconductor monolayer transition metal dichalcogenides (TMDs) have brought a new paradigm by introducing optically addressable valley degree of freedom. Concomitantly, their high flexibility constitutes a unique platform that links optics to mechanics via valleytronics. With the intention to expedite the research in this direction, we investigated ten TMDs, namely MoS2, MoSe2, MoTe2, WS2, WSe2, WTe2, MoSSe, MoSeTe, WSSe, and WSeTe, which particularly includes their so-called janus types (JTMDs). First, we obtained their electronic band structures using regular and hybrid density functional theory (DFT) calculations in the presence of the spin-orbit coupling and biaxial or uniaxial strain. Our DFT results indicated that against the expectations based on their reported piezoelectric behavior, JTMDs typically interpolated between the standard band properties of the constituent TMDs without producing a novel feature. Next, by fitting to our DFT data we generated both spinless and spinful k center dot p parameter sets which are quite accurate over the K valley where the optical activity occurs. As an important application of this parametrization, we considered the circular and linear dichroism under strain. Among the studied (J)TMDs, WTe2 stood out with its largest linear dichroism under uniaxial strain because of its narrower band gap and large K valley uniaxial deformation potential. This led us to suggest WTe2 monolayer membranes for optical polarization-based strain measurements, or conversely, as strain tunable optical polarizers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000639044400045 Publication Date 2021-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:178264 Serial 8136  
Permanent link to this record
 

 
Author Demirkol, Ö.; Sevik, C.; Demiroğlu, I. url  doi
openurl 
  Title First principles assessment of the phase stability and transition mechanisms of designated crystal structures of pristine and Janus transition metal dichalcogenides Type A1 Journal article
  Year 2022 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 24 Issue 12 Pages (down) 7430-7441  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional Transition Metal Dichalcogenides (TMDs) possessing extraordinary physical properties at reduced dimensionality have attracted interest due to their promise in electronic and optical device applications. However, TMD monolayers can show a broad range of different properties depending on their crystal phase; for example, H phases are usually semiconductors, while the T phases are metallic. Thus, controlling phase transitions has become critical for device applications. In this study, the energetically low-lying crystal structures of pristine and Janus TMDs are investigated by using ab initio Nudged Elastic Band and molecular dynamics simulations to provide a general explanation for their phase stability and transition properties. Across all materials investigated, the T phase is found to be the least stable and the H phase is the most stable except for WTe2, while the T' and T '' phases change places according to the TMD material. The transition energy barriers are found to be large enough to hint that even the higher energy phases are unlikely to undergo a phase transition to a more stable phase if they can be achieved except for the least stable T phase, which has zero barrier towards the T ' phase. Indeed, in molecular dynamics simulations the thermodynamically least stable T phase transformed into the T ' phase spontaneously while in general no other phase transition was observed up to 2100 K for the other three phases. Thus, the examined T ', T '' and H phases were shown to be mostly stable and do not readily transform into another phase. Furthermore, so-called mixed phase calculations considered in our study explain the experimentally observed lateral hybrid structures and point out that the coexistence of different phases is strongly stable against phase transitions. Indeed, stable complex structures such as metal-semiconductor-metal architectures, which have immense potential to be used in future device applications, are also possible based on our investigation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000766791000001 Publication Date 2022-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.3  
  Call Number UA @ admin @ c:irua:187184 Serial 7164  
Permanent link to this record
 

 
Author Ulu Okudur, F.; D'Haen, J.; Vranken, T.; De Sloovere, D.; Verheijen, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Van Bael, M.K.; Hardy, A. pdf  url
doi  openurl
  Title Ti surface doping of LiNi0.5Mn1.5O4−δpositive electrodes for lithium ion batteries Type A1 Journal article
  Year 2018 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 8 Issue 13 Pages (down) 7287-7300  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The particle surface of LiNi0.5Mn1.5O4−δ (LNMO), a Li-ion battery cathode material, has been modified by Ti cation doping through a hydrolysis–condensation reaction followed by annealing in oxygen. The effect of different annealing temperatures (500–850 °C) on the Ti distribution and electrochemical performance of the surface modified LNMO was investigated. Ti cations diffuse from the preformed amorphous ‘TiOx’ layer into the LNMO surface during annealing at 500 °C. This results in a 2–4 nm thick Ti-rich spinel surface having lower Mn and Ni content compared to the core of the LNMO particles, which was observed with scanning transmission electron microscopy coupled with compositional EDX mapping. An increase in the annealing temperature promotes the formation of a Ti bulk doped LiNi(0.5−w)Mn(1.5+w)−tTitO4 phase and Ti-rich LiNi0.5Mn1.5−yTiyO4 segregates above 750 °C. Fourier-transform infrared spectrometry indicates increasing Ni–Mn ordering with annealing temperature, for both bare and surface modified LNMO. Ti surface modified LNMO annealed at 500 °C shows a superior cyclic stability, coulombic efficiency and rate performance compared to bare LNMO annealed at 500 °C when cycled at 3.4–4.9 V vs. Li/Li+. The improvements are probably due to suppressed Ni and Mn dissolution with Ti surface doping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425508900064 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 9 Open Access OpenAccess  
  Notes This research is supported by the Research Foundation Flanders (FWO Vlaanderen, grant number G040116N). This project receives the support of the European Union, the European Regional Development Fund ERDF, Flanders Innovation & Entrepreneurship and the Province of Limburg (project 936). Greet Cuyvers and Gilles Bonneux (UHasselt) are acknowledged for the ICP-AES sample preparation and measurements. Vera Meynen and Karen Leyssens (Antwerp University, Belgium) are acknowledged for the BET measurements. Special thanks to Bart Ruttens (UHasselt) for XRD measurements and discussions on the refinements. Approved Most recent IF: 3.108  
  Call Number EMAT @ emat @c:irua:149513 Serial 4905  
Permanent link to this record
 

 
Author Mazzola, F.; Hassani, H.; Amoroso, D.; Chaluvadi, S.K.; Fujii, J.; Polewczyk, V.; Rajak, P.; Koegler, M.; Ciancio, R.; Partoens, B.; Rossi, G.; Vobornik, I.; Ghosez, P.; Orgiani, P. url  doi
openurl 
  Title Unveiling the electronic structure of pseudotetragonal WO₃ thin films Type A1 Journal article
  Year 2023 Publication The journal of physical chemistry letters Abbreviated Journal  
  Volume 14 Issue 32 Pages (down) 7208-7214  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract WO3 isa 5d compound that undergoes severalstructuraltransitions in its bulk form. Its versatility is well-documented,with a wide range of applications, such as flexopiezoelectricity,electrochromism, gating-induced phase transitions, and its abilityto improve the performance of Li-based batteries. The synthesis ofWO(3) thin films holds promise in stabilizing electronicphases for practical applications. However, despite its potential,the electronic structure of this material remains experimentally unexplored.Furthermore, its thermal instability limits its use in certain technologicaldevices. Here, we employ tensile strain to stabilize WO3 thin films, which we call the pseudotetragonal phase, and investigateits electronic structure using a combination of photoelectron spectroscopyand density functional theory calculations. This study reveals theFermiology of the system, notably identifying significant energy splittingsbetween different orbital manifolds arising from atomic distortions.These splittings, along with the system's thermal stability,offer a potential avenue for controlling inter- and intraband scatteringfor electronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001044522400001 Publication Date 2023-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.7; 2023 IF: 9.353  
  Call Number UA @ admin @ c:irua:198391 Serial 8951  
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Mayda, S.; Batuk, M.; Reekmans, G.; von Holst, M.; Elen, K.; Abakumov, A.M.; Adriaensens, P.; Lamoen, D.; Partoens, B.; Hadermann, J.; Van Bael, M.K.; Hardy, A. pdf  url
doi  openurl
  Title Understanding the Activation of Anionic Redox Chemistry in Ti4+-Substituted Li2MnO3as a Cathode Material for Li-Ion Batteries Type A1 Journal article
  Year 2023 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.  
  Volume 6 Issue 13 Pages (down) 6956-6971  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Layered Li-rich oxides, demonstrating both cationic and anionic redox chemistry being used as positive electrodes for Li-ion batteries,have raised interest due to their high specific discharge capacities exceeding 250 mAh/g. However, irreversible structural transformations triggered by anionic redox chemistry result in pronounced voltagefade (i.e., lowering the specific energy by a gradual decay of discharge potential) upon extended galvanostatic cycling. Activating or suppressing oxygen anionic redox through structural stabilization induced by redox-inactivecation substitution is a well-known strategy. However, less emphasishas been put on the correlation between substitution degree and theactivation/suppression of the anionic redox. In this work, Ti4+-substituted Li2MnO3 was synthesizedvia a facile solution-gel method. Ti4+ is selected as adopant as it contains no partially filled d-orbitals. Our study revealedthat the layered “honeycomb-ordered” C2/m structure is preserved when increasing the Ticontent to x = 0.2 in the Li2Mn1-x Ti (x) O-3 solidsolution, as shown by electron diffraction and aberration-correctedscanning transmission electron microscopy. Galvanostatic cycling hintsat a delayed oxygen release, due to an improved reversibility of theanionic redox, during the first 10 charge-discharge cyclesfor the x = 0.2 composition compared to the parentmaterial (x = 0), followed by pronounced oxygen redoxactivity afterward. The latter originates from a low activation energybarrier toward O-O dimer formation and Mn migration in Li2Mn0.8Ti0.2O3, as deducedfrom first-principles molecular dynamics (MD) simulations for the“charged” state. Upon lowering the Ti substitution to x = 0.05, the structural stability was drastically improvedbased on our MD analysis, stressing the importance of carefully optimizingthe substitution degree to achieve the best electrochemical performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001018266700001 Publication Date 2023-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.4 Times cited Open Access Not_Open_Access: Available from 24.12.2023  
  Notes Universiteit Hasselt, AUHL/15/2 – GOH3816N ; Russian Science Foundation, 20-43-01012 ; Fonds Wetenschappelijk Onderzoek, AUHL/15/2 – GOH3816N G040116N ; The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 6.4; 2023 IF: NA  
  Call Number EMAT @ emat @c:irua:198160 Serial 8809  
Permanent link to this record
 

 
Author Lak, A.; Cassani, M.; Mai, B.T.; Winckelmans, N.; Cabrera, D.; Sadrollahi, E.; Marras, S.; Remmer, H.; Fiorito, S.; Cremades-Jimeno, L.; Litterst, F.J.; Ludwig, F.; Manna, L.; Teran, F.J.; Bals, S.; Pellegrino, T. pdf  url
doi  openurl
  Title Fe2+Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment Type A1 Journal article
  Year 2018 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 18 Issue 18 Pages (down) 6856-6866  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Herein, by studying a stepwise phase transformation of 23 nm FeO-Fe3O4 core-shell nanocubes into Fe3O4, we identify a composition at which the magnetic heating performance of the nanocubes is not affected by the medium viscosity and aggregation. Structural and magnetic characterizations reveal the transformation of the FeO-Fe3O4 nanocubes from having stoichiometric phase compositions into Fe2+ deficient Fe3O4 phases. The resultant nanocubes contain tiny compressed and randomly distributed FeO sub-domains as well as structural defects. This phase transformation causes a tenfold increase in the magnetic losses of the nanocubes, which remains exceptionally insensitive to the medium viscosity as well as aggregation unlike similarly sized single-phase magnetite nanocubes. We observe that the dominant relaxation mechanism switches from Néel in fresh core-shell nanocubes to Brownian in partially oxidized nanocubes and once again to Néel in completely treated nanocubes. The Fe2+ deficiencies and structural defects appear to reduce the magnetic energy barrier and anisotropy field, thereby driving the overall relaxation into Néel process. The magnetic losses of the particles remain unchanged through a progressive internalization/association to ovarian cancer cells. Moreover, the particles induce a significant cell death after being exposed to hyperthermia treatment. Here, we present the largest heating performance that has been reported to date for 23 nm iron oxide nanoparticles under cellular and intracellular conditions. Our findings clearly demonstrate the positive impacts of the Fe2+ deficiencies and structural defects in the Fe3O4 structure on the heating performance under cellular and intracellular conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451102100028 Publication Date 2018-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 51 Open Access OpenAccess  
  Notes This work is partially funded by the European Research Council (starting grant ICARO, Contract No. 678109 and COLOURATOM-335078), Spanish Ministry of Economy and Competitiveness (MAT2016-81955-REDT, SEV-2016-0686, MAT2017-85617-R) Comunidad de Madrid (NANOFRONTMAG-CM, S2013/MIT-2850), the European COST Action TD1402 (RADIOMAG), and Ramon y Cajal subprogram (RYC-2011-09617). Financial support from the Deutsche Forschungsgemeinschaft, DFG Priority Program 1681 (LU800/4-3). S.B. and N.W. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Project funding G038116N. A.L. acknowledges the Alexander von Humboldt Foundation for the Postdoctoral Research Fellow funding. Mr Emilio J. Artés from the Advanced Instrumentation Unit (iMdea Nanociencia) is acknowledged for his technical assistance. L. M acknowledges the predoctoral fellowship funded from Comunidad de Madrid (PEJD-2017-PRE/IND-4189). Authors thank Tiziano Catelani and Doriana Debellis for the preparation of TEM cell samples (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_Sara Approved Most recent IF: 12.712  
  Call Number EMAT @ emat @c:irua:155439UA @ admin @ c:irua:155439 Serial 5072  
Permanent link to this record
 

 
Author Wolf, D.; Rodriguez, L.A.; Béché, A.; Javon, E.; Serrano, L.; Magen, C.; Gatel, C.; Lubk, A.; Lichte, H.; Bals, S.; Van Tendeloo, G.; Fernández-Pacheco, A.; De Teresa, J.M.; Snoeck, E. url  doi
openurl 
  Title 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages (down) 6771-6778  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap, and carries great potential to impact areas such as data storage, sensing and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nanometers by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic non-planar nanodevices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362920700037 Publication Date 2015-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 50 Open Access OpenAccess  
  Notes This work was supported by the European Union under the Seventh Framework Program under a contract for an Inte-grated Infrastructure Initiative Reference 312483-ESTEEM2. S.B. and A.B. gratefully acknowledge funding by ERC Starting grants number 335078 COLOURATOMS and number 278510 VORTEX. AF-P acknowledges an EPSRC Early Career fellowship and support from the Winton Foundation. E.S., C.G. and L.A. R. acknowledge the French ANR program for support though the project EMMA.; esteem2jra4; ECASJO;; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:129180 c:irua:129180 c:irua:129180 Serial 3950  
Permanent link to this record
 

 
Author Pilehvar, S.; Mehta, J.; Dardenne, F.; Robbens, J.; Blust, R.; De Wael, K. doi  openurl
  Title Aptasensing of chloramphenicol in the presence of its analogues : reaching the maximum residue limit Type A1 Journal article
  Year 2012 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 84 Issue 15 Pages (down) 6753-6758  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A novel label-free folding induced aptamer-based electrochemical biosensor for the detection of chloramphenicol (CAP) in the presence of its analogues has been developed. CAP is a broad-spectrum antibiotic which has lost its favor due to its serious adverse toxic effects on human health. Aptamers are artificial nucleic acid ligands (ssDNA or RNA) able to specifically recognize a target such as CAP. In this article, the aptamers are fixed onto a gold electrode surface by a self-assembly approach. In the presence of CAP, the unfolded ssDNA on the electrode surface changes to a hairpin structure bringing the target molecules close to the surface and trigger electron transfer. Detection limits were determined to be 1.6×10-9 mol L-1. In addition, thiamphenicol (TAP) and florfenicol (FF), antibiotics with a similar structure to CAP, did not influence the performance of the aptasensor, suggesting a good selectivity of the CAP-aptasensor. Simplicity and lower detection limit (because of the home-selected aptamers) make that the electrochemical aptasensor is suitable for practical use in the detection of CAP in milk samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000307159200069 Publication Date 2012-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 68 Open Access  
  Notes ; ; Approved Most recent IF: 6.32; 2012 IF: 5.695  
  Call Number UA @ admin @ c:irua:98816 Serial 5477  
Permanent link to this record
 

 
Author Macke, S.; Radi, A.; Hamann-Borrero, J.E.; Verna, A.; Bluschke, M.; Brück, S.; Goering, E.; Sutarto, R.; He, F.; Cristiani, G.; Wu, M.; Benckiser, E.; Habermeier, H.-U.; Logvenov, G.; Gauquelin, N.; Botton, G.A; Kajdos, A.P.; Stemmer, S.; Sawatzky,G.A.; Haverkort, M.W.; Keimer, B.; Hinkov, V. doi  openurl
  Title Element Specific Monolayer Depth Profiling Type A1 Journal Article
  Year 2014 Publication Advanced Materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 38 Pages (down) 6554-6559  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)  
  Abstract The electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343763200004 Publication Date 2014-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1521-4095 ISBN Additional Links  
  Impact Factor 19.791 Times cited 34 Open Access  
  Notes Approved Most recent IF: 19.791; 2014 IF: NA  
  Call Number EMAT @ emat @ Serial 4541  
Permanent link to this record
 

 
Author Weiβ, R.; Gritsch, S.; Brader, G.; Nikolic, B.; Spiller, M.; Santolin, J.; Weber, H.K.; Schwaiger, N.; Pluchon, S.; Dietel, K.; Guebitz, G.; Nyanhongo, G. url  doi
openurl 
  Title A biobased, bioactive, low CO₂ impact coating for soil improvers Type A1 Journal article
  Year 2021 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 23 Issue 17 Pages (down) 6501-6514  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Lignosulfonate-based bioactive coatings as soil improvers for lawns were developed using laccase as a biocatalyst. Incorporation of glycerol, xylitol and sorbitol as plasticizers considerably reduced the brittleness of the synthesized coatings of marine carbonate granules while thermal enzyme inactivation at 100 degrees C enabled the production of stable coatings. Heat inactivation produced stable coatings with a molecular weight of 2000 kDa and a viscosity of 4.5 x 10(-3) Pas. The desired plasticity for the spray coating of soil improver granules was achieved by the addition of 2.7% of xylitol. Agriculture beneficial microorganisms (four different Bacillus species) were integrated into the coatings. The stable coatings protected the marine calcium carbonate granules, maintained the viability of the microorganisms and showed no toxic effects on the germination and growth of model plants including corn, wheat, salad, and tomato despite a slight delay in germination. Moreover, the coatings reduced the dust formation of soil improvers by 70%. CO2 emission analysis showed potential for the reduction of up to 3.4 kg CO2-eq. kg(-1) product, making it a viable alternative to fossil-based coatings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000683056500001 Publication Date 2021-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.125 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.125  
  Call Number UA @ admin @ c:irua:180511 Serial 7558  
Permanent link to this record
 

 
Author Reclusa, P.; Verstraelen, P.; Taverna, S.; Gunasekaran, M.; Pucci, M.; Pintelon, I.; Claes, N.; de Miguel-Pérez, D.; Alessandro, R.; Bals, S.; Kaushal, S.; Rolfo, C. pdf  url
doi  openurl
  Title Improving extracellular vesicles visualization: From static to motion Type A1 Journal article
  Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume 10 Issue 10 Pages (down) 6494  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In the last decade extracellular vesicles (EVs) have become a hot topic. The findings on EVs content and effects have made them a major field of interest in cancer research. EVs, are able to be internalized through integrins expressed in parental cells, in a tissue specific manner, as a key step of cancer progression and pre-metastatic niche formation. However, this specificity might lead to new opportunities in cancer treatment by using EVs as devices for drug delivery. For future applications of EVs in cancer, improved protocols and methods for EVs isolation and visualization are required. Our group has put efforts on developing a protocol, able to track the EVs for in vivo internalization analysis. We showed, for the first time, the videos of labeled EVs uptake by living lung cancer cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000562145000002 Publication Date 2020-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 25 Open Access OpenAccess  
  Notes Marzia Pucci is supported by a “AIRC” (Associazione Italiana Ricerca sul Cancro) fellowship. “The Leica SP 8 (Hercules grant AUHA.15.12) microscope was funded by the Hercules Foundation of the Flemish Government.” DdM-P is funded by the University of Granada PhD grant and University of Granada international mobility grant 2018/19. Approved Most recent IF: 4.6; 2020 IF: 4.259  
  Call Number EMAT @ emat @c:irua:169234 Serial 6362  
Permanent link to this record
 

 
Author Turner, S.; Lu, Y.-G.; Janssens, S.D.; da Pieve, F.; Lamoen, D.; Verbeeck, J.; Haenen, K.; Wagner, P.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Local boron environment in B-doped nanocrystalline diamond films Type A1 Journal article
  Year 2012 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 4 Issue 19 Pages (down) 5960-5964  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Thin films of heavily B-doped nanocrystalline diamond (B:NCD) have been investigated by a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy performed on a state-of-the-art aberration corrected instrument to determine the B concentration, distribution and the local B environment. Concentrations of [similar]1 to 3 at.% of boron are found to be embedded within individual grains. Even though most NCD grains are surrounded by a thin amorphous shell, elemental mapping of the B and C signal shows no preferential embedding of B in these amorphous shells or in grain boundaries between the NCD grains, in contrast with earlier work on more macroscopic superconducting polycrystalline B-doped diamond films. Detailed inspection of the fine structure of the boron K-edge and comparison with density functional theory calculated fine structure energy-loss near-edge structure signatures confirms that the B atoms present in the diamond grains are substitutional atoms embedded tetrahedrally into the diamond lattice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000308705900026 Publication Date 2012-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 39 Open Access  
  Notes FWO G056810N; GOA XANES meets ELNES; 246791 COUNTATOMS; Hercules; 262348 ESMI; Methusalem Nano Approved Most recent IF: 7.367; 2012 IF: 6.233  
  Call Number UA @ lucian @ c:irua:101227UA @ admin @ c:irua:101227 Serial 1825  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: