toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Van der Paal, J.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A.
  Title Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress Type A1 Journal article
  Year 2016 Publication Chemical science Abbreviated Journal Chem Sci
  Volume 7 Issue 7 Pages (down) 489-498
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We performed molecular dynamics simulations to investigate the effect of lipid peroxidation products on the structural and dynamic properties of the cell membrane. Our simulations predict that the lipid order in a phospholipid bilayer, as a model system for the cell membrane, decreases upon addition of lipid peroxidation products. Eventually, when all phospholipids are oxidized, pore formation can occur. This will allow reactive species, such as reactive oxygen and nitrogen species (RONS), to enter the cell and cause oxidative damage to intracellular macromolecules, such as DNA or proteins. On the other hand, upon increasing the cholesterol fraction of lipid bilayers, the cell membrane order increases, eventually reaching a certain threshold, from which cholesterol is able to protect the membrane against pore formation. This finding is crucial for cancer treatment by plasma technology, producing a large number of RONS, as well as for other cancer treatment methods that cause an increase in the concentration of extracellular RONS. Indeed, cancer cells contain less cholesterol than their healthy counterparts. Thus, they will be more vulnerable to the consequences of lipid peroxidation, eventually enabling the penetration of RONS into the interior of the cell, giving rise to oxidative stress, inducing pro-apoptotic factors. This provides, for the first time, molecular level insight why plasma can selectively treat cancer cells, while leaving their healthy counterparts undamaged, as is indeed experimentally demonstrated.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000366826900058 Publication Date 2015-10-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.668 Times cited 106 Open Access
  Notes The authors acknowledge nancial support from the Fund for Scientic Research (FWO) Flanders, grant number G012413N. The calculations were performed in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 8.668
  Call Number c:irua:131058 Serial 3986
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Bogaerts, A.; Neyts, E.C.
  Title Selective Plasma Oxidation of Ultrasmall Si Nanowires Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 120 Issue 120 Pages (down) 472-477
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Device performance of Si|SiOx core-shell based nanowires critically depends on the exact control over the oxide thickness. Low-temperature plasma oxidation is a highly promising alternative to thermal oxidation allowing for improved control over the oxidation process, in particular for ultrasmall Si nanowires. We here elucidate the room temperature plasma oxidation mechanisms of ultrasmall Si nanowires using hybrid molecular dynamics / force-bias Monte Carlo simulations. We demonstrate how the oxidation and concurrent water formation mechanisms are a function of the oxidizing plasma species and we demonstrate how the resulting core-shell oxide thickness can be controlled through these species. A new mechanism of water formation is discussed in detail. The results provide a detailed atomic level explanation of the oxidation process of highly curved Si surfaces. These results point out a route toward plasma-based formation of ultrathin core-shell Si|SiOx nanowires at room temperature.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000368562200057 Publication Date 2015-12-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 3 Open Access
  Notes U.K. and M.Y. gratefully acknowledge financial support from the Research Foundation – Flanders (FWO), Grants 12M1315N and 1200216N. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 4.536
  Call Number c:irua:130677 Serial 4002
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C.
  Title Atomic-scale mechanisms of plasma-assisted elimination of nascent base-grown carbon nanotubes Type A1 Journal article
  Year 2017 Publication Carbon Abbreviated Journal Carbon
  Volume 118 Issue 118 Pages (down) 452-457
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Selective etching allows for obtaining carbon nanotubes with a specific chirality. While plasma-assisted etching has already been used to separate metallic tubes from their semiconducting counterparts, little is known about the nanoscale mechanisms of the etching process. We combine (reactive) molecular dynamics (MD) and force-bias Monte Carlo (tfMC) simulations to study H-etching of CNTs. In particular, during the hydrogenation and subsequent etching of both the carbon cap and the tube, they sequentially transform to different carbon nanostructures, including carbon nanosheet, nanowall, and polyyne chains, before they are completely removed from the surface of a substrate-bound Ni-nanocluster.We also found that onset of the etching process is different in the cases of the cap and the tube, although the overall etching scenario is similar in both cases. The entire hydrogenation/etching process for both cases is analysed in detail, comparing with available theoretical and experimental evidences.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000401120800053 Publication Date 2017-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.337 Times cited 2 Open Access OpenAccess
  Notes U. K. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), Belgium (Grant No. 12M1315N). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. The authors also thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 6.337
  Call Number PLASMANT @ plasmant @ c:irua:141915 Serial 4531
Permanent link to this record
 

 
Author Bal, K.M.; Bogaerts, A.; Neyts, E.C.
  Title Ensemble-Based Molecular Simulation of Chemical Reactions under Vibrational Nonequilibrium Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett
  Volume 11 Issue 2 Pages (down) 401-406
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We present an approach to incorporate the effect of vibrational nonequilibrium in molecular dynamics (MD) simulations. A perturbed canonical ensemble, in which selected modes are excited to higher temperature while all others remain equilibrated at low temperature, is simulated by applying a specifically tailored bias potential. Our method can be readily applied to any (classical or quantum mechanical) MD setup at virtually no additional computational cost and allows the study of reactions of vibrationally excited molecules in nonequilibrium environments such as plasmas. In combination with enhanced sampling methods, the vibrational efficacy and mode selectivity of vibrationally stimulated reactions can then be quantified in terms of chemically relevant observables, such as reaction rates and apparent free energy barriers. We first validate our method for the prototypical hydrogen exchange reaction and then show how it can capture the effect of vibrational excitation on a symmetric SN2 reaction and radical addition on CO2.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000508473400008 Publication Date 2020-01-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.7 Times cited Open Access
  Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 12ZI420N ; Departement Economie, Wetenschap en Innovatie van de Vlaamse Overheid; K.M.B. was funded as a junior postdoctoral fellow of the FWO (Research Foundation − Flanders), Grant 12ZI420N, and through a TOP-BOF research project of the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government− department EWI. Approved Most recent IF: 5.7; 2020 IF: 9.353
  Call Number PLASMANT @ plasmant @c:irua:165587 Serial 5442
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M.
  Title Modeling PECVD growth of nanostructured carbon materials Type A1 Journal article
  Year 2009 Publication High temperature material processes Abbreviated Journal High Temp Mater P-Us
  Volume 13 Issue 3/4 Pages (down) 399-412
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We present here some of our modeling efforts for PECVD growth of nanostructured carbon materials with focus on amorphous hydrogenated carbon. Experimental data from an expanding thermal plasma setup were used as input for the simulations. Attention was focused both on the film growth mechanism, as well as on the hydrocarbon reaction mechanisms during growth of the films. It is found that the reaction mechanisms and sticking coefficients are dependent on the specific surface sites, and the structural properties of the growth radicals. The film growth results are in correspondence with the experiment. Furthermore, it is found that thin a-C:H films can be densified using an additional H-flux towards the substrate.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000274202300012 Publication Date 2010-02-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1093-3611; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:80991 Serial 2138
Permanent link to this record
 

 
Author Baguer, N.; Neyts, E.; van Gils, S.; Bogaerts, A.
  Title Study of atmospheric MOCVD of TiO2 thin films by means of computational fluid dynamics simulations Type A1 Journal article
  Year 2008 Publication Chemical vapor deposition Abbreviated Journal Chem Vapor Depos
  Volume 14 Issue 11/12 Pages (down) 339-346
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract This paper presents the computational study of the metal-organic (MO) CVD of titanium dioxide (TiO2) films grown using titanium tetraisopropoxide (TTIP) as a precursor and nitrogen as a carrier gas. The TiO2 films are deposited under atmospheric pressure. The effects of the precursor concentration, the substrate temperature, and the hydrolysis reaction on the deposition process are investigated. It is found that hydrolysis of the TTIP decreases the onset temperature of the gas-phase thermal decomposition, and that the deposition rate increases with the precursor concentration and with the decrease of substrate temperature. Concerning the mechanism responsible for the film growth, the model shows that at the lowest precursor concentration, the direct adsorption of the precursor is dominant, while at higher precursor concentrations, the monomer deposition becomes more important.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000262215800003 Publication Date 2008-12-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.333 Times cited 14 Open Access
  Notes Approved Most recent IF: 1.333; 2008 IF: 1.483
  Call Number UA @ lucian @ c:irua:71905 Serial 3325
Permanent link to this record
 

 
Author Brault, P.; Chamorro-Coral, W.; Chuon, S.; Caillard, A.; Bauchire, J.-M.; Baranton, S.; Coutanceau, C.; Neyts, E.
  Title Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source Type A1 Journal article
  Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
  Volume 13 Issue 2 Pages (down) 324-329
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Molecular dynamics simulations are carried out for describing growth of Pd and PdO nanoclusters using the ReaxFF force field. The resulting nanocluster structures are successfully compared to those of nanoclusters experimentally grown in a gas aggregation source. The PdO structure is quasi-crystalline as revealed by high resolution transmission microscope analysis for experimental PdO nanoclusters. The role of the nanocluster temperature in the molecular dynamics simulated growth is highlighted.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000468848400009 Publication Date 2019-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.712 Times cited 3 Open Access Not_Open_Access
  Notes Approved Most recent IF: 1.712
  Call Number UA @ admin @ c:irua:160278 Serial 5276
Permanent link to this record
 

 
Author Bogaerts, A.; de Bleecker, K.; Georgieva, V.; Herrebout, D.; Kolev, I.; Madani, M.; Neyts, E.
  Title Numerical modeling for a better understanding of gas discharge plasmas Type A1 Journal article
  Year 2005 Publication High temperature material processes Abbreviated Journal High Temp Mater P-Us
  Volume 9 Issue 3 Pages (down) 321-344
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000231634100001 Publication Date 2005-10-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1093-3611; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 1 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:55832 Serial 2398
Permanent link to this record
 

 
Author Neyts, E.
  Title Algemene chemie : van atomen tot thermodynamica Type MA2 Book as author
  Year 2014 Publication Abbreviated Journal
  Volume Issue Pages (down) 317 p.
  Keywords MA2 Book as author; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Acco Place of Publication Leuven Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN 978-90-334-9628-8 Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:128094 Serial 4514
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; Gijbels, R.; Benedikt, J.; van de Sanden, M.C.M.
  Title Molecular dynamics simulation of the impact behaviour of various hydrocarbon species on DLC Type A1 Journal article
  Year 2005 Publication Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal Nucl Instrum Meth B
  Volume 228 Issue Pages (down) 315-318
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000226669800052 Publication Date 2004-12-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.109 Times cited 19 Open Access
  Notes Approved Most recent IF: 1.109; 2005 IF: 1.181
  Call Number UA @ lucian @ c:irua:49873 Serial 2172
Permanent link to this record
 

 
Author Neyts, E.; Eckert, M.; Bogaerts, A.
  Title Molecular dynamics simulations of the growth of thin a-C:H films under additional ion bombardment: influence of the growth species and the Ar+ ion kinetic energy Type A1 Journal article
  Year 2007 Publication Chemical vapor deposition Abbreviated Journal Chem Vapor Depos
  Volume 13 Issue 6/7 Pages (down) 312-318
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000248381800007 Publication Date 2007-07-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.333 Times cited 14 Open Access
  Notes Approved Most recent IF: 1.333; 2007 IF: 1.936
  Call Number UA @ lucian @ c:irua:64532 Serial 2176
Permanent link to this record
 

 
Author Neyts, E.; Yan, M.; Bogaerts, A.; Gijbels, R.
  Title PIC-MC simulation of an RF capacitively coupled Ar/H2 discharge Type A1 Journal article
  Year 2003 Publication Nuclear instruments and methods in physics research: B Abbreviated Journal Nucl Instrum Meth B
  Volume 202 Issue Pages (down) 300-304
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000182122500048 Publication Date 2003-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.109 Times cited 8 Open Access
  Notes Approved Most recent IF: 1.109; 2003 IF: 1.041
  Call Number UA @ lucian @ c:irua:44015 Serial 2620
Permanent link to this record
 

 
Author Bogaerts, A.; Bultinck, E.; Eckert, M.; Georgieva, V.; Mao, M.; Neyts, E.; Schwaederlé, L.
  Title Computer modeling of plasmas and plasma-surface interactions Type A1 Journal article
  Year 2009 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
  Volume 6 Issue 5 Pages (down) 295-307
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this paper, an overview is given of different modeling approaches used for describing gas discharge plasmas, as well as plasma-surface interactions. A fluid model is illustrated for describing the detailed plasma chemistry in capacitively coupled rf discharges. The strengths and limitations of Monte Carlo simulations and of a particle-in-cell-Monte Carlo collisions model are explained for a magnetron discharge, whereas the capabilities of a hybrid Monte Carlo-fluid approach are illustrated for a direct current glow discharge used for spectrochemical analysis of materials. Finally, some examples of molecular dynamics simulations, for the purpose of plasma-deposition, are given.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000266471800003 Publication Date 2009-04-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.846 Times cited 18 Open Access
  Notes Approved Most recent IF: 2.846; 2009 IF: 4.037
  Call Number UA @ lucian @ c:irua:76833 Serial 461
Permanent link to this record
 

 
Author Shariat, M.; Hosseini, S.I.; Shokri, B.; Neyts, E.C.
  Title Plasma enhanced growth of single walled carbon nanotubes at low temperature : a reactive molecular dynamics simulation Type A1 Journal article
  Year 2013 Publication Carbon Abbreviated Journal Carbon
  Volume 65 Issue Pages (down) 269-276
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Low-temperature growth of carbon nanotubes (CNTs) has been claimed to provide a route towards chiral-selective growth, enabling a host of applications. In this contribution, we employ reactive molecular dynamics simulations to demonstrate how plasma-based deposition allows such low-temperature growth. We first show how ion bombardment during the growth affects the carbon dissolution and precipitation process. We then continue to demonstrate how a narrow ion energy window allows CNT growth at 500 K. Finally, we also show how CNTs in contrast cannot be grown in thermal CVD at this low temperature, but only at high temperature, in agreement with experimental data. (C) 2013 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000326773200031 Publication Date 2013-08-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.337 Times cited 21 Open Access
  Notes Approved Most recent IF: 6.337; 2013 IF: 6.160
  Call Number UA @ lucian @ c:irua:112697 Serial 2635
Permanent link to this record
 

 
Author Neyts, E.; Mao, M.; Eckert, M.; Bogaerts, A.
  Title Modeling aspects of plasma-enhanced chemical vapor deposition of carbon-based materials Type H1 Book chapter
  Year 2012 Publication Abbreviated Journal
  Volume Issue Pages (down) 245-290
  Keywords H1 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher CRC Press Place of Publication Boca Raton, Fla Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN 978-1-4398-6676-4 Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:107843 Serial 2109
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Huygh, S.; Surmenev, R.A.; Neyts, E.C.
  Title Effects of silicon doping on strengthening adhesion at the interface of the hydroxyapatite-titanium biocomposite : a first-principles study Type A1 Journal article
  Year 2019 Publication Computational materials science Abbreviated Journal Comp Mater Sci
  Volume 159 Issue 159 Pages (down) 228-234
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this paper we employ first-principles calculations to investigate the effect of substitutional Si doping in the amorphous calcium-phosphate (a-HAP) structure on the work of adhesion, integral charge transfer, charge density difference and theoretical tensile strengths between an a-HAP coating and amorphous titanium dioxide (a-TiO2) substrate systemically. Our calculations demonstrate that substitution of a P atom by a Si atom in a-HAP (a-Si-HAP) with the creation of OH-vacancies as charge compensation results in a significant increase of the bonding strength of the coating to the substrate. The work of adhesion of the optimized Si-doped interfaces reaches a value of up to -2.52 J m(-2), which is significantly higher than for the stoichiometric a-HAP/a-TiO2. Charge density difference analysis indicates that the dominant interactions at the interface have significant covalent character, and in particular two Ti-O and three Ca-O bonds are formed for a-Si-HAP/a-TiO2 and one Ti-O and three Ca-O bonds for a-HAP/a-TiO2. From the stress-strain curve, the Young's modulus of a-Si-HAP/a-TiO2 is calculated to be about 25% higher than that of the a-HAP/a-TiO2, and the yielding stress is about 2 times greater than that of the undoped model. Our calculations therefore demonstrate that the presence of Si in the a-HAP structure strongly alters not only the bioactivity and resorption rates, but also the mechanical properties of the a-HAP/a-TiO2 interface. The results presented here provide an important theoretical insight into the nature of the chemical bonding at the a-HAP/a-TiO2 interface, and are particularly significant for the practical medical applications of HAP-based biomaterials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000457856900023 Publication Date 2018-12-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.292 Times cited 1 Open Access Not_Open_Access
  Notes Approved Most recent IF: 2.292
  Call Number UA @ admin @ c:irua:157480 Serial 5272
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A.
  Title Molecular dynamics simulations of the sticking and etch behavior of various growth species of (ultra)nanocrystalline diamond films Type A1 Journal article
  Year 2008 Publication Chemical vapor deposition Abbreviated Journal Chem Vapor Depos
  Volume 14 Issue 7/8 Pages (down) 213-223
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The reaction behavior of species that may affect the growth of ultrananocrystal line and nanocrystalline diamond ((U)NCD) films is investigated by means of molecular dynamics simulations. Impacts of CHx (x = 0 – 4), C2Hx (x=0-6), C3Hx (x=0-2), C4Hx (x = 0 – 2), H, and H-2 on clean and hydrogenated diamond (100)2 x 1 and (111) 1 x 1 surfaces at two different substrate temperatures are simulated. We find that the different bonding structures of the two surfaces cause different temperature effects on the sticking efficiency. These results predict a temperature-dependent ratio of diamond (100) and (111) growth. Furthermore, predictions of which are the most important hydrocarbon species for (U)NCD growth are made.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000259302700008 Publication Date 2008-08-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.333 Times cited 25 Open Access
  Notes Approved Most recent IF: 1.333; 2008 IF: 1.483
  Call Number UA @ lucian @ c:irua:70001 Serial 2177
Permanent link to this record
 

 
Author Neyts, E.; Shibuta, Y.; Bogaerts, A.
  Title Bond switching regimes in nickel and nickel-carbon nanoclusters Type A1 Journal article
  Year 2010 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
  Volume 488 Issue 4/6 Pages (down) 202-205
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Understanding the fundamental dynamics in carbon nanotube (CNT) catalysts is of primary importance to understand CNT nucleation. This Letter reports on calculated bond switching (BS) rates in pure and carbon containing nickel nanoclusters. The rates are analyzed in terms of their temperature dependent spatial distribution and the mobility of the cluster atoms. The BS mechanism is found to change from vibrational to diffusional at around 900 K, with a corresponding strong increase in activation energy. Furthermore, the BS activation energy is observed to decrease as the carbon content in the cluster increases, resulting in an effective liquification of the cluster.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000275751900020 Publication Date 2010-02-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.815 Times cited 20 Open Access
  Notes Approved Most recent IF: 1.815; 2010 IF: 2.282
  Call Number UA @ lucian @ c:irua:80998 Serial 248
Permanent link to this record
 

 
Author Neyts, E.C.
  Title Special Issue on future directions in plasma nanoscience Type Editorial
  Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
  Volume 13 Issue 2 Pages (down) 199-200
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000468848400001 Publication Date 2019-05-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.712 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 1.712
  Call Number UA @ admin @ c:irua:160277 Serial 5280
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Neek-Amal, M.; Partoens, B.; Neyts, E.C.
  Title The formation of Cr2O3 nanoclusters over graphene sheet and carbon nanotubes Type A1 Journal article
  Year 2017 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
  Volume 687 Issue Pages (down) 188-193
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000412453700030 Publication Date 2017-09-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0009-2614 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.815 Times cited 2 Open Access Not_Open_Access: Available from 01.11.2019
  Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 1.815
  Call Number UA @ lucian @ c:irua:146646 Serial 4795
Permanent link to this record
 

 
Author Neyts, E.C.
  Title Plasma-Surface Interactions in Plasma Catalysis Type A1 Journal article
  Year 2016 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P
  Volume 36 Issue 36 Pages (down) 185-212
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this paper the various elementary plasma—surface interaction processes occurring in plasma catalysis are critically evaluated. Specifically, plasma catalysis at atmospheric pressure is considered. The importance of the various processes is analyzed for the most common plasma catalysis sources, viz. the dielectric barrier discharge and the gliding arc. The role and importance of surface chemical reactions (including adsorption, surface-mediated association and dissociation reactions, and desorption), plasma-induced surface modification, photocatalyst activation, heating, charging, surface discharge formation and electric field enhancement are discussed in the context of plasma catalysis. Numerous examples are provided to demonstrate the importance of the various processes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000370720800011 Publication Date 2015-10-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.355 Times cited 66 Open Access
  Notes The author is indebted to many colleagues for fruitful discussions. In particular discussions with A. Bogaerts (University of Antwerp, Belgium), H.-H. Kim (AIST, Japan), J. C. Whitehead (University of Manchester, UK) and T. Nozaki (Tokyo Institute of Technology, Japan) are greatfully acknowledged and appreciated. Approved Most recent IF: 2.355
  Call Number c:irua:130742 Serial 4004
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Verlackt, C.C.; Khalilov, U.; van Duin, A.C.T.; Bogaerts, A.
  Title Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species : a reactive molecular dynamics study Type A1 Journal article
  Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
  Volume 12 Issue 12 Pages (down) 162-171
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Reactive molecular dynamics simulations are performed to study the interaction of reactive oxygen species, such as OH, HO2 and H2O2, with the endotoxic biomolecule lipid A of the gram-negative bacterium Escherichia coli. It is found that the aforementioned plasma species can destroy the lipid A, which consequently results in reducing its toxic activity. All bond dissociation events are initiated by hydrogen-abstraction reactions. However, the mechanisms behind these dissociations are dependent on the impinging plasma species, i.e. a clear difference is observed in the mechanisms upon impact of HO2 radicals and H2O2 molecules on one hand and OH radicals on the other hand. Our simulation results are in good agreement with experimental observations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000350275400005 Publication Date 2014-09-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.846 Times cited 18 Open Access
  Notes Approved Most recent IF: 2.846; 2015 IF: 2.453
  Call Number c:irua:123540 Serial 1589
Permanent link to this record
 

 
Author Neyts, E.C.
  Title The role of ions in plasma catalytic carbon nanotube growth : a review Type A1 Journal article
  Year 2015 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
  Volume 9 Issue 9 Pages (down) 154-162
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract While it is well-known that the plasma-enhanced catalytic chemical vapor deposition (PECVD) of carbon nanotubes (CNTs) offers a number of advantages over thermal CVD, the influence of the various individual contributing factors is not well understood. Especially the role of ions is unclear, since ions in plasmas are generally associated with sputtering rather than with growing a material. Even so, various studies have demonstrated the beneficial effects of ion bombardment during the growth of CNTs. This review looks at the role of the ions in plasma-enhanced CNT growth as deduced from both experimental and simulation studies. Specific attention is paid to the beneficial effects of ion bombardment. Based on the available literature, it can be concluded that ions can be either beneficial or detrimental for carbon nanotube growth, depending on the exact conditions and the control over the growth process.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000360319600003 Publication Date 2015-06-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.712 Times cited 8 Open Access
  Notes Approved Most recent IF: 1.712; 2015 IF: NA
  Call Number UA @ lucian @ c:irua:127815 Serial 4239
Permanent link to this record
 

 
Author Neyts, E.C.
  Title Atomistic simulations of plasma catalytic processes Type A1 Journal article
  Year 2018 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
  Volume 12 Issue 1 Pages (down) 145-154
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this interest, there is, however, a lack in fundamental understanding of the underlying processes in such systems. While a lot of experimental research is already being carried out to gain this understanding, only recently the first simulations have appeared in the literature. In this contribution, an overview is presented on atomic scale simulations of plasma catalytic processes as carried out in our group. In particular, this contribution focusses on plasma-assisted catalyzed carbon nanostructure growth, and plasma catalysis for greenhouse gas conversion. Attention is paid to what can routinely be done, and where challenges persist.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000425156500017 Publication Date 2017-09-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.712 Times cited 5 Open Access Not_Open_Access
  Notes Approved Most recent IF: 1.712
  Call Number UA @ lucian @ c:irua:149233 Serial 4927
Permanent link to this record
 

 
Author Samani, M.K.; Ding, X.Z.; Khosravian, N.; Amin-Ahmadi, B.; Yi, Y.; Chen, G.; Neyts, E.C.; Bogaerts, A.; Tay, B.K.
  Title Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc Type A1 Journal article
  Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
  Volume 578 Issue 578 Pages (down) 133-138
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract A seriesof [TiN/TiAlN]nmultilayer coatingswith different bilayer numbers n=5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEMimaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000351686500019 Publication Date 2015-02-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.879 Times cited 41 Open Access
  Notes Approved Most recent IF: 1.879; 2015 IF: 1.759
  Call Number c:irua:125517 Serial 3626
Permanent link to this record
 

 
Author Shariat, M.; Shokri, B.; Neyts, E.C.
  Title On the low-temperature growth mechanism of single walled carbon nanotubes in plasma enhanced chemical vapor deposition Type A1 Journal article
  Year 2013 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
  Volume 590 Issue Pages (down) 131-135
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Despite significant progress in single walled carbon nanotube (SWCNT) production by plasma enhanced chemical vapor deposition (PECVD), the growth mechanism in this method is not clearly understood. We employ reactive molecular dynamics simulations to investigate how plasma-based deposition allows growth at low temperature. We first investigate the SWCNT growth mechanism at low and high temperatures under conditions similar to thermal CVD and PECVD. We then show how ion bombardment during the nucleation stage increases the carbon solubility in the catalyst at low temperature. Finally, we demonstrate how moderate energy ions sputter amorphous carbon allowing for SWCNT growth at 500 K. (C) 2013 Elsevier B. V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000327721000024 Publication Date 2013-10-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.815 Times cited 14 Open Access
  Notes Approved Most recent IF: 1.815; 2013 IF: 1.991
  Call Number UA @ lucian @ c:irua:112775 Serial 2439
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Huygh, S.; Bal, K.M.; Neyts, E.C.
  Title Temperature influence on the reactivity of plasma species on a nickel catalyst surface : an atomic scale study Type A1 Journal article
  Year 2013 Publication Catalysis today Abbreviated Journal Catal Today
  Volume 211 Issue Pages (down) 131-136
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In recent years, the potential use of hydrogen as a clean energy source has gained considerable attention. Especially H2 formation by Ni-catalyzed reforming of methane at elevated temperatures is an attractive process. However, a more fundamental knowledge at the atomic level is needed for a full comprehension of the reactions at the catalyst surface. In this contribution, we therefore investigate the H2 formation after CHx impacts on a Ni(1 1 1) surface in the temperature range 4001600 K, by means of reactive molecular dynamics (MD) simulations using the ReaxFF potential. While some H2 formation is already observed at the lower temperatures, substantial H2 formation is only obtained at elevated temperatures of 1400 K and above. At 1600 K, the H2 molecules are even the most frequently formed species. In direct correlation with the increasing dehydrogenation at elevated temperatures, an increased surface-to-subsurface C-diffusivity is observed as well. This study highlights the major importance of the temperature on the H2 formation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000320697800020 Publication Date 2013-03-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.636 Times cited 27 Open Access
  Notes Approved Most recent IF: 4.636; 2013 IF: 3.309
  Call Number UA @ lucian @ c:irua:108675 Serial 3500
Permanent link to this record
 

 
Author Ostrikov, K.; Neyts, E.C.; Meyyappan, M.
  Title Plasma nanoscience : from nano-solids in plasmas to nano-plasmas in solids Type A1 Journal article
  Year 2013 Publication Advances in physics Abbreviated Journal Adv Phys
  Volume 62 Issue 2 Pages (down) 113-224
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The unique plasma-specific features and physical phenomena in the organization of nanoscale soild-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter to nano-plasma effects and nano-plasmas of different states of matter.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000320913600001 Publication Date 2013-06-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0001-8732;1460-6976; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 21.818 Times cited 380 Open Access
  Notes Approved Most recent IF: 21.818; 2013 IF: 18.062
  Call Number UA @ lucian @ c:irua:108723 Serial 2639
Permanent link to this record
 

 
Author Bogaerts, A.; de Bleecker, K.; Georgieva, V.; Kolev, I.; Madani, M.; Neyts, E.
  Title Computer simulations for processing plasmas Type A1 Journal article
  Year 2006 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
  Volume 3 Issue 2 Pages (down) 110-119
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000235628300003 Publication Date 2006-02-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.846 Times cited 8 Open Access
  Notes Approved Most recent IF: 2.846; 2006 IF: 2.298
  Call Number UA @ lucian @ c:irua:56076 Serial 465
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
  Title Modeling the growth of SWNTs and graphene on the atomic scale Type A1 Journal article
  Year 2012 Publication ECS transactions Abbreviated Journal
  Volume 45 Issue 4 Pages (down) 73-78
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The possibility of application of nanomaterials is determined by our ability to control the properties of the materials, which are ultimately determined by their structure and hence their growth processes. We employ hybrid molecular dynamics / Monte Carlo (MD/MC) simulations to explore the growth of SWNTs and graphene on nickel as a catalyst, with the specific goal of unraveling the growth mechanisms. While the general observations are in agreement with the literature, we find a number of interesting phenomena to be operative which are crucial for the growth, and which are not accessible by MD simulations alone due to the associated time scale. Specifically, we observe metal mediated healing and restructuring processes to take place, reorganizing the carbon network during the initial nucleation step. In the case of carbon nanotube growth, this leads to the growth of tubes with a determinable chirality. In the case of graphene formation, we find that graphene is only formed at temperatures above 700 K. These results are of importance for understanding the growth mechanisms of these carbon nanomaterials on the fundamental level.
  Address
  Corporate Author Thesis
  Publisher Electrochemical Society Place of Publication Pennington Editor
  Language Wos 000316890000008 Publication Date 2012-04-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1938-6737;1938-5862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 2 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:108535 Serial 2144
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: