toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ball, J.M.; Schryvers, D. doi  openurl
  Title The analysis of macrotwins in NiAl martensite Type A1 Journal article
  Year 2003 Publication Journal de physique: 4 T2 – 10th International Conference on Martensitic Transformations, JUN 10-14, 2002, ESPOO, FINLAND Abbreviated Journal J Phys Iv  
  Volume 112 Issue Part 1 Pages (down) 159-162  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present a theoretical study of macrotwins arising in cubic to tetragonal martensitic transformations. The results help to explain some features of such macrotwins observed in Ni65Al35.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos 000186503200024 Publication Date 2008-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103275 Serial 3569  
Permanent link to this record
 

 
Author van Dyck, D.; Lobato, I.; Chen, F.-R.; Kisielowski, C. pdf  doi
openurl 
  Title Do you believe that atoms stay in place when you observe them in HREM? Type A1 Journal article
  Year 2015 Publication Micron Abbreviated Journal Micron  
  Volume 68 Issue 68 Pages (down) 158-163  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Recent advancements in aberration-corrected electron microscopy allow for an evaluation of unexpectedly large atom displacements beyond a resolution limit of similar to 0.5 angstrom, which are found to be dose-rate dependent in high resolution images. In this paper we outline a consistent description of the electron scattering process, which explains these unexpected phenomena. Our approach links thermal diffuse scattering to electron beam-induced object excitation and relaxation processes, which strongly contribute to the image formation process. The effect can provide an explanation for the well-known contrast mismatch (“Stobbs factor”) between image calculations and experiments. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000348016500023 Publication Date 2014-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 11 Open Access  
  Notes Approved Most recent IF: 1.98; 2015 IF: 1.988  
  Call Number c:irua:123802 Serial 745  
Permanent link to this record
 

 
Author Peeters, F.M.; Schweigert, V.A.; Baelus, B.J. doi  openurl
  Title Fractional and negative flux penetration in mesoscopic superconducting disks Type A1 Journal article
  Year 2002 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 369 Issue 1-4 Pages (down) 158-164  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The one vortex entry in a superconducting disk is investigated within the non-linear Ginzburg-Landau theory near the first critical field. We find that in mesoscopic superconducting disks the magnetic flux enters with fractions of one flux quantum phi(0) = ch/2e. For disks with a very smooth surface it is possible to drive the Meissner state so far into the metastable region that at the vortex entry a net amount of flux is expelled from the superconductor. We show that the magnetic field for flux entry is very sensitive to indentations of the disk surface and only weakly to bulges. On the other hand the flux exit field is practically insensitive to such geometrical surface defects. Our results are in agreement with recent experimental findings. (C) 2001 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000174200000023 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 11 Open Access  
  Notes Approved Most recent IF: 1.404; 2002 IF: 0.912  
  Call Number UA @ lucian @ c:irua:99412 Serial 1272  
Permanent link to this record
 

 
Author Elmurodov, A.K.; Vodolazov, D.Y.; Peeters, F.M. url  doi
openurl 
  Title The break-up of the vortex structure in a mesoscopic wire containing a constriction Type A1 Journal article
  Year 2006 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 74 Issue 1 Pages (down) 151-155  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000236197000023 Publication Date 2006-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 11 Open Access  
  Notes Approved Most recent IF: 1.957; 2006 IF: 2.229  
  Call Number UA @ lucian @ c:irua:57460 Serial 255  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Abakumov, A.M.; Hadermann, J. url  doi
openurl 
  Title Synergy between transmission electron microscopy and powder diffraction : application to modulated structures Type A1 Journal article
  Year 2015 Publication Acta crystallographica: section B: structural science Abbreviated Journal Acta Crystallogr B  
  Volume 71 Issue 71 Pages (down) 127-143  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure solution of modulated compounds is often very challenging, even using the well established methodology of single-crystal X-ray crystallography. This task becomes even more difficult for materials that cannot be prepared in a single-crystal form, so that only polycrystalline powders are available. This paper illustrates that the combined application of transmission electron microscopy (TEM) and powder diffraction is a possible solution to the problem. Using examples of anion-deficient perovskites modulated by periodic crystallographic shear planes, it is demonstrated what kind of local structural information can be obtained using various TEM techniques and how this information can be implemented in the crystal structure refinement against the powder diffraction data. The following TEM methods are discussed: electron diffraction (selected area electron diffraction, precession electron diffraction), imaging (conventional high-resolution TEM imaging, high-angle annular dark-field and annular bright-field scanning transmission electron microscopy) and state-of-the-art spectroscopic techniques (atomic resolution mapping using energy-dispersive X-ray analysis and electron energy loss spectroscopy).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000352166500002 Publication Date 2015-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-5206; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.032 Times cited 11 Open Access  
  Notes Fwo G039211n Approved Most recent IF: 2.032; 2015 IF: NA  
  Call Number c:irua:124411 Serial 3408  
Permanent link to this record
 

 
Author Potapov, P.L.; Kulkova, S.E.; Schryvers, D. pdf  doi
openurl 
  Title Study of changes in L32 EELS ionisation edges upon formation of Ni-based intermetallic compounds Type A1 Journal article
  Year 2003 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford  
  Volume 210 Issue Pages (down) 102-109  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000182189600014 Publication Date 2005-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2720;1365-2818; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.692 Times cited 11 Open Access  
  Notes Approved Most recent IF: 1.692; 2003 IF: 1.779  
  Call Number UA @ lucian @ c:irua:48778 Serial 3328  
Permanent link to this record
 

 
Author Verleysen, E.; Bender, H.; Richard, O.; Schryvers, D.; Vandervorst, W. doi  openurl
  Title Characterization of nickel silicides using EELS-based methods Type A1 Journal article
  Year 2010 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford  
  Volume 240 Issue 1 Pages (down) 75-82  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The characterization of Ni-silicides using electron energy loss spectroscopy (EELS) based methods is discussed. A series of Ni-silicide phases is examined: Ni3Si, Ni31Si12, Ni2Si, NiSi and NiSi2. The composition of these phases is determined by quantitative core-loss EELS. A study of the low loss part of the EELS spectrum shows that both the energy and the shape of the plasmon peak are characteristic for each phase. Examination of the Ni-L edge energy loss near edge structure (ELNES) shows that the ratio and the sum of the L2 and L3 white line intensities are also characteristic for each phase. The sum of the white line intensities is used to determine the trend in electron occupation of the 3d states of the phases. The dependence of the plasmon energy on the electron occupation of the 3d states is demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000281715400009 Publication Date 2010-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2720; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.692 Times cited 11 Open Access  
  Notes Approved Most recent IF: 1.692; 2010 IF: 1.872  
  Call Number UA @ lucian @ c:irua:84879 Serial 329  
Permanent link to this record
 

 
Author Dadsetani, M.; Titantah, J.T.; Lamoen, D. doi  openurl
  Title Ab initio calculation of the energy-loss near-edge structure of some carbon allotropes: comparison with n-diamond Type A1 Journal article
  Year 2010 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 19 Issue 1 Pages (down) 73-77  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The energy-loss near-edge structure (ELNES) spectra of several carbon allotropes (non-hydrogenated and hydrogenated face-centered cubic (FCC) carbon, rhombohedral carbon, glitter, hexagonite and lonsdaleite) are calculated within the supercell-core-excited density functional theory approach. In particular an experimental ELNES spectrum of new diamond (n-diamond) [Konyashin et al., Diamond Relat. Mater. 10, (2001) 99102] is compared with the ELNES spectra of FCC carbon, rhombohedral carbon and the so-called glitter structure. Our calculations show that the ELNES spectrum considered in that publication cannot be that of FCC carbon.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000274234500013 Publication Date 2009-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 11 Open Access  
  Notes Goa; Esteem 026019 Approved Most recent IF: 2.561; 2010 IF: 1.825  
  Call Number UA @ lucian @ c:irua:79444 Serial 29  
Permanent link to this record
 

 
Author Samaeeaghmiyoni, V.; Idrissi, H.; Groten, J.; Schwaiger, R.; Schryvers, D. pdf  url
doi  openurl
  Title Quantitative in-situ TEM nanotensile testing of single crystal Ni facilitated by a new sample preparation approach Type A1 Journal article
  Year 2017 Publication Micron Abbreviated Journal Micron  
  Volume 94 Issue 94 Pages (down) 66-73  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Twin-jet electro-polishing and Focused Ion Beam (FIB) were combined to produce small size Nickel single crystal specimens for quantitative in-situ nanotensile experiments in the transmission electron microscope. The combination of these techniques allows producing samples with nearly defect-free zones in the centre in contrast to conventional FIB-prepared samples. Since TEM investigations can be performed on the electro-polished samples prior to in-situ TEM straining, specimens with desired crystallographic orientation and initial microstructure can be prepared. The present results reveal a dislocation nucleation controlled plasticity, in which small loops induced by FIB near the edges of the samples play a central role.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393247300008 Publication Date 2016-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 11 Open Access OpenAccess  
  Notes This research has been performed with the financial support of the Belgian Science Policy (Belspo) under the framework of the interuniversity attraction poles program, IAP7/21. Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13N and SCHW855/5-1, respectively, is gratefully acknowledged. V. Samaeeaghmiyoni also acknowledges the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H. Idrissi is currently mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 1.98  
  Call Number EMAT @ emat @ c:irua:139515 Serial 4341  
Permanent link to this record
 

 
Author Goux, L.; Fantini, A.; Govoreanu, B.; Kar, G.; Clima, S.; Chen, Y.-Y.; Degraeve, R.; Wouters, D.J.; Pourtois, G.; Jurczak, M. doi  openurl
  Title Asymmetry and switching phenomenology in TiN\ (Al2O3) \ HfO2 \ Hf systems Type A1 Journal article
  Year 2012 Publication ECS solid state letters Abbreviated Journal Ecs Solid State Lett  
  Volume 1 Issue 4 Pages (down) 63-65  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this letter, we address the bipolar resistive switching phenomenology in scaled TiN\HfO2\Hf cells. By means of stack engineering using a thin Al2O3 layer inserted either at the TiN\HfO2 or at the Hf\HfO2 interface, we demonstrate that the reset operation takes place close to the TiNanode. Due to the increase of the oxygen-vacancy profile from the TiN to the Hf interface, the filament-confining and wide band-gap Al2O3 layer should indeed be engineered at the interface with the TiN electrode in order to further improve the switching control and to allow reaching larger state resistances. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.003204ssl] All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor  
  Language Wos 000318340300005 Publication Date 2012-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-8742;2162-8750; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.184 Times cited 11 Open Access  
  Notes Approved Most recent IF: 1.184; 2012 IF: NA  
  Call Number UA @ lucian @ c:irua:108530 Serial 160  
Permanent link to this record
 

 
Author Bogaerts, A.; de Bleecker, K.; Kolev, I.; Madani, M. doi  openurl
  Title Modeling of gas discharge plasmas: What can we learn from it? Type A1 Journal article
  Year 2005 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech  
  Volume 200 Issue Pages (down) 62-67  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000232327800014 Publication Date 2005-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.589 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.589; 2005 IF: 1.646  
  Call Number UA @ lucian @ c:irua:53629 Serial 2122  
Permanent link to this record
 

 
Author Schryvers, D.; de Saegher, B.; van Landuyt, J. openurl 
  Title Electron microscopy and diffraction study of the composition dependency of the 3R microtwinned martensite in Ni-Al Type A1 Journal article
  Year 1991 Publication Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 26 Issue Pages (down) 57-66  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1991EU98500007 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.288 Times cited 11 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:48348 Serial 943  
Permanent link to this record
 

 
Author Litzius, K.; Leliaert, J.; Bassirian, P.; Rodrigues, D.; Kromin, S.; Lemesh, I.; Zazvorka, J.; Lee, K.-J.; Mulkers, J.; Kerber, N.; Heinze, D.; Keil, N.; Reeve, R.M.; Weigand, M.; Van Waeyenberge, B.; Schuetz, G.; Everschor-Sitte, K.; Beach, G.S.D.; Klaeui, M. pdf  doi
openurl 
  Title The role of temperature and drive current in skyrmion dynamics Type A1 Journal article
  Year 2020 Publication Nature Electronics Abbreviated Journal  
  Volume 3 Issue 1 Pages (down) 30-36  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnetic skyrmions are topologically stabilized nanoscale spin structures that could be of use in the development of future spintronic devices. When a skyrmion is driven by an electric current it propagates at an angle relative to the flow of current-known as the skyrmion Hall angle (SkHA)-that is a function of the drive current. This drive dependence, as well as thermal effects due to Joule heating, could be used to tailor skyrmion trajectories, but are not well understood. Here we report a study of skyrmion dynamics as a function of temperature and drive amplitude. We find that the skyrmion velocity depends strongly on temperature, while the SkHA does not and instead evolves differently in the low- and high-drive regimes. In particular, the maximum skyrmion velocity in ferromagnetic devices is limited by a mechanism based on skyrmion surface tension and deformation (where the skyrmion transitions into a stripe). Our mechanism provides a complete description of the SkHA in ferromagnetic multilayers across the full range of drive strengths, illustrating that skyrmion trajectories can be engineered for device applications. An analysis of skyrmion dynamics at different temperatures and electric drive currents is used to develop a complete description of the skyrmion Hall angle in ferromagnetic multilayers from the creep to the flow regime and illustrates that skyrmion trajectories can be engineered for device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000510860800012 Publication Date 2020-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:167863 Serial 6625  
Permanent link to this record
 

 
Author Krause, F.F.; Ahl, J.P.; Tytko, D.; Choi, P.P.; Egoavil, R.; Schowalter, M.; Mehrtens, T.; Müller-Caspary, K.; Verbeeck, J.; Raabe, D.; Hertkorn, J.; Engl, K.; Rosenauer, A. pdf  url
doi  openurl
  Title Homogeneity and composition of AlInGaN : a multiprobe nanostructure study Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 156 Issue 156 Pages (down) 29-36  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electronic properties of quaternary AlInGaN devices significantly depend on the homogeneity of the alloy. The identification of compositional fluctuations or verification of random-alloy distribution is hence of grave importance. Here, a comprehensive multiprobe study of composition and compositional homogeneity is presented, investigating AlInGaN layers with indium concentrations ranging from 0 to 17 at% and aluminium concentrations between 0 and 39 at% employing high-angle annular dark field scanning electron microscopy (HAADF STEM), energy dispersive X-ray spectroscopy (EDX) and atom probe tomography (APT). EDX mappings reveal distributions of local concentrations which are in good agreement with random alloy atomic distributions. This was hence investigated with HAADF STEM by comparison with theoretical random alloy expectations using statistical tests. To validate the performance of these tests, HAADF STEM image simulations were carried out for the case of a random-alloy distribution of atoms and for the case of In-rich clusters with nanometer dimensions. The investigated samples, which were grown by metal-organic vapor phase epitaxy (MOVPE), were thereby found to be homogeneous on this nanometer scale. Analysis of reconstructions obtained from APT measurements yielded matching results. Though HAADF STEM only allows for the reduction of possible combinations of indium and aluminium concentrations to the proximity of isolines in the two-dimensional composition space. The observed ranges of composition are in good agreement with the EDX and APT results within the respective precisions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000361001800006 Publication Date 2015-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 11 Open Access  
  Notes 312483 Esteem2; esteem2_ta Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:126965 c:irua:126965UA @ admin @ c:irua:126965 Serial 1485  
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Atomic scale behavior of oxygen-based radicals in water Type A1 Journal article
  Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue 50 Pages (down) 11LT01  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric pressure plasmas in and in contact with liquids represent a growing field of research for various applications. Understanding the interactions between the plasma generated species and the liquid is crucial. In this work we perform molecular dynamics (MD) simulations based on a quantum mechanical method, i.e. density-functional based tight-binding (DFTB), to examine the interactions of OH radicals and O atoms in bulk water. Our calculations reveal that the transport of OH radicals through water is not only governed by diffusion, but also by an equilibrium reaction of H-abstraction with water molecules. Furthermore, when two OH radicals encounter each other, they either form a stable cluster, or react, resulting in the formation of a new water molecule and an O atom. In addition,

the O atoms form either oxywater (when in singlet configuration) or they remain stable in solution (when in triplet configuration), stressing the important role that O atoms can play in aqueous solution, and in contact with biomolecules. Our observations are in line with both experimental and ab initio results from the literature.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000415252400001 Publication Date 2017-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 11 Open Access OpenAccess  
  Notes The authors thank Peter Bruggeman (University of Minnesota, USA) and Jan Benedikt (Ruhr-Universität Bochum, Germany) for the interesting discussions regarding the existence of O in aqueous solutions. Furthermore, they acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (project number G012413N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @ c:irua:140845 Serial 4420  
Permanent link to this record
 

 
Author Milat, O.; Van Tendeloo, G.; Amelinckx, S.; Babu, T.G.N.; Greaves, C. pdf  doi
openurl 
  Title Superstructure and structural variants in Sr2CuO2(CO3) Type A1 Journal article
  Year 1994 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 109 Issue 1 Pages (down) 5-14  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1994MY48800002 Publication Date 2002-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.133 Times cited 11 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:99919 Serial 3384  
Permanent link to this record
 

 
Author Borah, R.; Smets, J.; Ninakanti, R.; Tietze, M.L.; Ameloot, R.; Chigrin, D.N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Self-assembled ligand-capped plasmonic Au nanoparticle films in the Kretschmann configuration for sensing of volatile organic compounds Type A1 Journal article
  Year 2022 Publication ACS applied nano materials Abbreviated Journal  
  Volume 5 Issue 8 Pages (down) acsanm.2c02524-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Films of close-packed Au nanoparticles are coupled electrodynamically through their collective plasmon resonances. This collective optical response results in enhanced light–matter interactions, which can be exploited in various applications. Here, we demonstrate their application in sensing volatile organic compounds, using methanol as a test case. Ordered films over several cm2 were obtained by interfacial self-assembly of colloidal Au nanoparticles (∼10 nm diameter) through controlled evaporation of the solvent. Even though isolated nanoparticles of this size are inherently nonscattering, when arranged in a close-packed film the plasmonic coupling results in a strong reflectance and absorbance. The in situ tracking of vapor phase methanol concentration through UV–vis transmission measurements of the nanoparticle film is first demonstrated. Next, in situ ellipsometry of the self-assembled films in the Kretschmann (also known as ATR) configuration is shown to yield enhanced sensitivity, especially with phase difference measurements, Δ. Our study shows the excellent agreement between theoretical models of the spectral response of self-assembled films with experimental in situ sensing experiments. At the same time, the theoretical framework provides the basis for the interpretation of the various observed experimental trends. Combining periodic nanoparticle films with ellipsometry in the Kretschmann configuration is a promising strategy toward highly sensitive and selective plasmonic thin-film devices based on colloidal fabrication methods for volatile organic compound (VOC) sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000834348300001 Publication Date 2022-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.9 Times cited 11 Open Access OpenAccess  
  Notes R.B. acknowledges financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. J.S. acknowledges financial support from the Research Foundation Flanders (FWO) by a Ph.D. fellowship (11H8121N) . M.L.T. acknowledges financial support from the Research Foundation Flanders (FWO) by a senior postdoctoral fellowship (12ZK720N) . Approved Most recent IF: 5.9  
  Call Number UA @ admin @ c:irua:189295 Serial 7095  
Permanent link to this record
 

 
Author Tsvyashchenko, A.V.; Nikolaev, A.V.; Velichkov, A.I.; Salamatin, A.V.; Fomicheva, L.N.; Ryasny, G.K.; Sorokin, A.A.; Kochetov, O.I.; Budzynski, M.; Michel, K.H. doi  openurl
  Title Lowering of the spatial symmetry at the gamma ->alpha phase transition in cerium Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 9 Pages (down) 1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using time-differential perturbed angular correlation spectroscopy we have measured the electric field gradient (EFG) at 111Cd probe nuclei in solid Ce in a pressure range up to 8 GPa. Covering various allotropic phases of Ce, we find that the value of the EFG in the cubic α phase is almost four times larger than in the cubic γ phase and close to values in the noncubic phases α′ and α″. These results together with the differences in time modulation of the spectra are interpreted as evidence for quadrupolar electronic charge-density ordering and symmetry lowering at the γ→α transition while the lattice remains face-centered cubic  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000282004400001 Publication Date 2010-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work is supported by the Program of the Presidium of the Russian Academy of Sciences “Physics of Strongly Compressed Matter.” We are grateful to S. M. Stishov, B. Verberck, A. N. Grum-Grzhimailo, V. B. Brudanin and G. Heger for support of this work and discussion of the results. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85464 Serial 1854  
Permanent link to this record
 

 
Author van Oeffelen, L.; Van Roy, W.; Idrissi, H.; Charlier, D.; Lagae, L.; Borghs, G. url  doi
openurl 
  Title Ion current rectification, limiting and overlimiting conductances in nanopores Type A1 Journal article
  Year 2015 Publication PLoS ONE Abbreviated Journal Plos One  
  Volume 10 Issue 10 Pages (down) e0124171  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000354916100012 Publication Date 2015-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.806 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.806; 2015 IF: 3.234  
  Call Number c:irua:126366 Serial 1744  
Permanent link to this record
 

 
Author Lebedev, O.I.; Van Tendeloo, G.; Attfield, J.P.; McLaughlin, A.C. doi  openurl
  Title Defect structure of ferromagnetic superconducting RuSr2GdCu2O8 Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 73 Issue 22 Pages (down)  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure and defect structure of superconducting ferromagnetic bulk RuSr2GdCu2O8 has been investigated using high-resolution transmission electron microscopy and high-resolution scanning transmission microscopy. Two distinct, but closely related structures, due to ordering of rotated RuO6 octahedra and due to Cu substitution in the Ru-O layer, have been revealed. The structure of Ru1-xSr2GdCu2+xO8-delta can be described as a periodic alteration along the c axis of CuO4 planes and RuO6 octahedra. The unit-cell parameters of this phase are root 2a(p) x root 2a(p) x 2c. The possible influence of this phase and defect structure on the sensitivity of the superconductivity and magnetic properties is discussed. Local defects such as 90 S domain boundaries, (130) antiphase boundaries, and the associated dislocations are analyzed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000238696300115 Publication Date 2006-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes Iap V-I Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:59707 Serial 619  
Permanent link to this record
 

 
Author Milošević, M.M.; Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title Effects of lateral asymmetry on electronic structure of strained semiconductor nanorings in a magnetic field Type A1 Journal article
  Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 19 Issue 45 Pages (down)  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of lateral asymmetry on the electronic structure and optical transitions in elliptical strained InAs nanorings is analyzed in the presence of a perpendicular magnetic field. Two-dimensional rings are assumed to have elliptical inner and outer boundaries oriented in mutually orthogonal directions. The influence of the eccentricity of the ring on the energy levels is analyzed. For large eccentricity of the ring, we do not find any AharonovBohm effect, in contrast to circular rings. Rather, the single-particle states of the electrons and the holes are localized as in two laterally coupled quantum dots formed in the lobes of the nanoring. Our work indicates that the control of shape is important for the existence of the AharonovBohm effect in semiconductor nanorings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000259922000016 Publication Date 2008-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.44; 2008 IF: 3.446  
  Call Number UA @ lucian @ c:irua:76874 Serial 865  
Permanent link to this record
 

 
Author Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Batuk, M.; Hadermann, J.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title Effect of zinc oxide modification by indium oxide on microstructure, adsorbed surface species, and sensitivity to CO Type A1 Journal article
  Year 2019 Publication Frontiers in materials Abbreviated Journal  
  Volume 6 Issue 6 Pages (down)  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Additives in semiconductor metal oxides are commonly used to improve sensing behavior of gas sensors. Due to complicated effects of additives on the materials microstructure, adsorption sites and reactivity to target gases the sensing mechanism with modified metal oxides is a matter of thorough research. Herein, we establish the promoting effect of nanocrystalline zinc oxide modification by 1-7 at.% of indium on the sensitivity to CO gas due to improved nanostructure dispersion and concentration of active sites. The sensing materials were synthesized via an aqueous coprecipitation route. Materials composition, particle size and BET area were evaluated using X-ray diffraction, nitrogen adsorption isotherms, high-resolution electron microscopy techniques and EDX-mapping. Surface species of chemisorbed oxygen, OH-groups, and acid sites were characterized by probe molecule techniques and infrared spectroscopy. It was found that particle size of zinc oxide decreased and the BET area increased with the amount of indium oxide. The additive was observed as amorphous indium oxide segregated on agglomerated ZnO nanocrystals. The measured concentration of surface species was higher on In2O3-modified zinc oxide. With the increase of indium oxide content, the sensor response of ZnO/In2O3 to CO was improved. Using in situ infrared spectroscopy, it was shown that oxidation of CO molecules was enhanced on the modified zinc oxide surface. The effect of modifier was attributed to promotion of surface OH-groups and enhancement of CO oxidation on the segregated indium ions, as suggested by DFT in previous work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461540600001 Publication Date 2019-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access OpenAccess  
  Notes ; Research was supported by the grant from Russian Science Foundation (project No. 18-73-00071). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158540 Serial 5205  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: