toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van Eyndhoven, G.; Batenburg, K.J.; van Oers, C.; Kurttepeli, M.; Bals, S.; Cool, P.; Sijbers, J. openurl 
  Title Reliable pore-size measurements based on a procedure specifically designed for electron tomography measurements of nanoporous samples Type P3 Proceeding
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords P3 Proceeding; Electron microscopy for materials research (EMAT); Vision lab; Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:124548 Serial 2866  
Permanent link to this record
 

 
Author Skorikov, A.; Heyvaert, W.; Albrecht, W.; Pelt, D.M.; Bals, S. doi  openurl
  Title EMAT Simulated 3D Nanoparticle Structures Dataset Type Dataset
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract This dataset contains 1000 simulated nanoparticle-like 3D structures and noisy EDX-like elemental maps based on them. These data are intended to be used for quantitative analysis of data processing methods in (EDX) tomography of nanoparticles and training the data-driven approaches for these tasks. The dataset is structured as follows: voxel_data/clean 3D voxel grid representation of the simulated nanoparticles. Voxel intensities are adjusted so that the total intensity equals 103. All 3D structures have unique identifiers in 0..999 range. The data derived from a 3D structure preserves this unique identifier. sinograms/clean Tilt series of projection images obtained from the corresponding 3D structures over an angular range of -75..75 degrees with a tilt step of 10 degrees to simulate a typical tilt series used in EDX tomography. Total intensity in each projection image equals 103. sinograms/noisy Tilt series of projection images corrupted with Poisson noise and an additional spatially uniform background noise. projections/clean Projection images extracted from the clean tilt series at 0 degrees tilt angle. projections/noisy Projection images extracted from the noisy tilt series at 0 degrees tilt angle. images/clean Visualizations of the clean projections as PNG images with the intensity range adjusted to 0..255 images/noisy Visualizations of the noisy projections as PNG images with the intensity range adjusted to 0..255  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180615 Serial 6838  
Permanent link to this record
 

 
Author Marchetti, A.; Gori, A.; Ferretti, A.M.; Esteban, D.A.; Bals, S.; Pigliacelli, C.; Metrangolo, P. pdf  url
doi  openurl
  Title Templated Out‐of‐Equilibrium Self‐Assembly of Branched Au Nanoshells (Small 12/2023) Type A1 Journal Article
  Year 2023 Publication Small Abbreviated Journal Small  
  Volume 19 Issue 12 Pages (up)  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different

types of strategies and fuels, but the achievement of finite 3D structures with a controlled

morphology through this assembly mode is still rare. Here we used a spherical peptide-gold

superstructure (PAuSS) as a template to control the out-of-equilibrium self-assembly of Au NPs,

obtaining a transient 3D branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate

(SDS). The BAuNS dismantled upon concentration gradient equilibration over time in the solution,

leading to NPs disassembly. Notably, BAuNS assembly and disassembly favoured temporary

interparticle plasmonic coupling, leading to a remarkable oscillation of their optical properties.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record  
  Impact Factor 13.3 Times cited Open Access Not_Open_Access  
  Notes P.M. is grateful to the European Research Council (ERC) for the Starting Grant ERC-2012- StG_20111012 FOLDHALO (Grant Agreement no. 307108) and the Proof-of-Concept Grant ERC-2017-PoC MINIRES (Grant Agreement no.789815). A. M. and P. M. are thankful to the project Hydrogex funded by Cariplo Foundation (grant no. 2018-1720). D.A.E. and S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO and Grant Agreement No. 731019 (EUSMI). Approved Most recent IF: 13.3; 2023 IF: 8.643  
  Call Number EMAT @ emat @c:irua:200859 Serial 8960  
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J. doi  openurl
  Title Supplementary Information for “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” Type Dataset
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Supplementary information for the article “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” containing the videos of in-situ SEM imaging (mp4 files), raw data/images, and Jupyter notebooks (ipynb files) for data treatment and plots. Link to the preprint: https://doi.org/10.48550/arXiv.2308.15123 Explanation of the data files can be found in the Information.pdf file. The Videos folder contains the in-situ SEM image series mentioned in the paper. If there are any questions/bugs, feel free to contact me at lukas.grunewaldatuantwerpen.be  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203389 Serial 9100  
Permanent link to this record
 

 
Author Mayer, J.A.; Offermans, T.; Chrapa, M.; Pfannmöller, M.; Bals, S.; Ferrini, R.; Nisato, G. url  doi
openurl 
  Title Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures Type A1 Journal article
  Year 2018 Publication Optics express Abbreviated Journal Opt Express  
  Volume 26 Issue 26 Pages (up) A240  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solution processable organic tandem solar cells offer a promising approach to achieve cost-effective, lightweight and flexible photovoltaics. In order to further enhance the efficiency of optimized organic tandem cells, diffractive light-management nanostructures were designed for an optimal redistribution of the light as function of both wavelength and propagation angles in both sub-cells. As the fabrication of these optical structures is compatible with roll-to-roll production techniques such as hot-embossing or UV NIL imprinting, they present an optimal cost-effective solution for printed photovoltaics. Tandem cells with power conversion efficiencies of 8-10% were fabricated in the ambient atmosphere by doctor blade coating, selected to approximate the conditions during roll-to-roll manufacturing. Application of the light management structure onto an 8.7% efficient encapsulated tandem cell boosted the conversion efficiency of the cell to 9.5%. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000427900400003 Publication Date 2018-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 9 Open Access OpenAccess  
  Notes ; FP7 European collaborative project SUNFLOWER (FP7-ICT-2011-7, grant number 287594); German Federal Ministry of Education and Research (BMBF) (03xEK3504, project TAURUS); FP7 European project ESTEEM2 (grant number 312483); HEiKA centre FunTECH-3D. ; Approved Most recent IF: 3.307  
  Call Number UA @ lucian @ c:irua:150839UA @ admin @ c:irua:150839 Serial 4975  
Permanent link to this record
 

 
Author Milagres de Oliveira, T.; Albrecht, W.; González-Rubio, G.; Altantzis, T.; Lobato Hoyos, I.P.; Béché, A.; Van Aert, S.; Guerrero-Martínez, A.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title 3D Characterization and Plasmon Mapping of Gold Nanorods Welded by Femtosecond Laser Irradiation Type A1 Journal article
  Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 14 Issue Pages (up) acsnano.0c02610  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Ultrafast laser irradiation can induce morphological and structural changes in plasmonic nanoparticles. Gold nanorods (Au NRs), in particular, can be welded together upon irradiation with femtosecond laser pulses, leading to dimers and trimers through the formation of necks between individual nanorods. We used electron tomography to determine the 3D (atomic) structure at such necks for representative welding geometries and to characterize the induced defects. The spatial distribution of localized surface plasmon modes for different welding configurations was assessed by electron energy loss spectroscopy. Additionally, we were able to directly compare the plasmon line width of single-crystalline and welded Au NRs with single defects at the same resonance energy, thus making a direct link between the structural and plasmonic properties. In this manner, we show that the occurrence of (single) defects results in significant plasmon broadening.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000586793400016 Publication Date 2020-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 25 Open Access OpenAccess  
  Notes This project has received funding from the European Research Council under the European Union's Horizon 2020 research and innovation program (ERC Consolidator Grants #815128 – REALNANO and #770887 – PICOMETRICS). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project funding G.0381.16N and G.0267.18N. W.A. acknowledges an Individual Fellowship funded by the Marie 27 Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 797153, SOPMEN). G.G.-R. acknowledge receipt of FPI Fellowship from the Spanish MINECO. This work has been funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grants RTI2018-095844-B-I00 and MAT2017-86659-R) and the Madrid Regional Government (Grant P2018/NMT-4389). A.B. acknowledges funding from FWO project G093417N and from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. L.M.L.-M. acknowledges the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720); Comunidad de Madrid, P2018/NMT-4389 ; Ministerio de Ciencia, Innovación y Universidades, MAT2017-86659-R RTI2018-095844-B-I00 ; Ministerio de Economía y Competitividad; H2020 Marie Sklodowska-Curie Actions, 797153 ; Fonds Wetenschappelijk Onderzoek, G.0267.18N G.0381.16N G093417N ; H2020 Research Infrastructures, 823717 ; H2020 European Research Council, 770887 815128 ; Agencia Estatal de Investigación, Ministerio de Ciencia, Innovación y Universidades, MDM-2017-0720 ; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number EMAT @ emat @c:irua:172440 Serial 6426  
Permanent link to this record
 

 
Author Albrecht, W.; Bals, S. url  doi
openurl 
  Title Fast Electron Tomography for Nanomaterials Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue Pages (up) acs.jpcc.0c08939  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography (ET) has become a well-established technique to visualize nanomaterials in three dimensions. A vast richness in information can be gained by ET, but the conventional acquisition of a tomography series is an inherently slow process on the order of 1 h. The slow acquisition limits the applicability of ET for monitoring dynamic processes or visualizing nanoparticles, which are sensitive to the electron beam. In this Perspective, we summarize recent work on the development of emerging experimental and computational schemes to enhance the data acquisition process. We particularly focus on the application of these fast ET techniques for beam-sensitive materials and highlight insight into dynamic transformations of nanoparticles under external stimuli, which could be gained by fast in situ ET. Moreover, we discuss challenges and possible solutions for simultaneously increasing the speed and quality of fast ET.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000608876900003 Publication Date 2020-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 26 Open Access OpenAccess  
  Notes H2020 Research Infrastructures, 823717 ; H2020 European Research Council, 815128 ; The authors acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grant No. 815128-REALNANO) and the European Commission (EUSMI). The authors furthermore acknowledge funding from the European Union’s Horizon 2020 research and innovation program, ESTEEM3. The authors also acknowledge contributions from all co-workers that have contributed over the years: J. Batenburg and co-workers, A. Béché, E. Bladt, L. Liz-Marzán and co-workers, H. Pérez Garza and co-workers, A. Skorikov, S. Skrabalak and co-workers, S. Van Aert, A. van Blaaderen and co-workers, H. Vanrompay, and J. Verbeeck.; sygma Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number EMAT @ emat @c:irua:173965 Serial 6656  
Permanent link to this record
 

 
Author Imran, M.; Ramade, J.; Di Stasio, F.; De Franco, M.; Buha, J.; Van Aert, S.; Goldoni, L.; Lauciello, S.; Prato, M.; Infante, I.; Bals, S.; Manna, L. url  doi
openurl 
  Title Alloy CsCdxPb1–xBr3Perovskite Nanocrystals: The Role of Surface Passivation in Preserving Composition and Blue Emission Type A1 Journal article
  Year 2020 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 32 Issue Pages (up) acs.chemmater.0c03825  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Various strategies have been proposed to engineer the band gap of metal halide perovskite nanocrystals (NCs) while preserving their structure and composition and thus ensuring spectral stability of the emission color. An aspect that has only been marginally investigated is how the type of surface passivation influences the structural/color stability of AMX3 perovskite NCs composed of two different M2+ cations. Here, we report the synthesis of blue-emitting Cs-oleate capped CsCdxPb1–xBr3 NCs, which exhibit a cubic perovskite phase containing Cd-rich domains of Ruddlesden–Popper phases (RP phases). The RP domains spontaneously transform into pure orthorhombic perovskite ones upon NC aging, and the emission color of the NCs shifts from blue to green over days. On the other hand, postsynthesis ligand exchange with various Cs-carboxylate or ammonium bromide salts, right after NC synthesis, provides monocrystalline NCs with cubic phase, highlighting the metastability of RP domains. When NCs are treated with Cs-carboxylates (including Cs-oleate), most of the Cd2+ ions are expelled from NCs upon aging, and the NCs phase evolves from cubic to orthorhombic and their emission color changes from blue to green. Instead, when NCs are coated with ammonium bromides, the loss of Cd2+ ions is suppressed and the NCs tend to retain their blue emission (both in colloidal dispersions and in electroluminescent devices), as well as their cubic phase, over time. The improved compositional and structural stability in the latter cases is ascribed to the saturation of surface vacancies, which may act as channels for the expulsion of Cd2+ ions from NCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603288800034 Publication Date 2020-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 44 Open Access OpenAccess  
  Notes European Commission; Fonds Wetenschappelijk Onderzoek, G.0267.18N ; H2020 European Research Council, 770887 815128 851794 ; We acknowledge funding from the FLAG-ERA JTC2019 project PeroGas. S.B., and S.V.A. acknowledges funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants #815128REALNANO and #770887PICOMETRICS) and from the Research Foundation Flanders (FWO, Belgium) through project funding G.0267.18N. F.D.S. acknowledges the funding from ERC starting grant NANOLED (851794). The computational work was carried out on the Dutch National e-infrastructure with the support of the SURF Cooperative; sygma Approved Most recent IF: 8.6; 2020 IF: 9.466  
  Call Number EMAT @ emat @c:irua:174004 Serial 6659  
Permanent link to this record
 

 
Author Bagiński, M.; Pedrazo-Tardajos, A.; Altantzis, T.; Tupikowska, M.; Vetter, A.; Tomczyk, E.; Suryadharma, R.N.S.; Pawlak, M.; Andruszkiewicz, A.; Górecka, E.; Pociecha, D.; Rockstuhl, C.; Bals, S.; Lewandowski, W. url  doi
openurl 
  Title Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume Issue Pages (up) acsnano.0c09746  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV−vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV−vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634569100101 Publication Date 2021-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 10 Open Access OpenAccess  
  Notes Ministerstwo Nauki i Szkolnictwa Wyzszego, 0112/DIA/2019/48 ; European Commission, 731019 E171000009 (EUSMI) ; Narodowe Centrum Nauki, 2016/21/N/ST5/03356 ; Deutsche Forschungsgemeinschaft, RO 3640/12-1 ; Fundacja na rzecz Nauki Polskiej, First TEAM2016–2/15 ; European Research Council, 815128 (REALNANO) ; sygma; Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:175872 Serial 6673  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Kavak, S.; Bals, S.; Meynen, V. pdf  url
doi  openurl
  Title Modifying the Stöber Process: Is the Organic Solvent Indispensable? Type A1 Journal Article
  Year 2022 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J  
  Volume Issue Pages (up)  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The Stöber method is one of the most important and fundamental processes for the synthesis of inorganic (nano)materials but has the drawback of using a large amount of organic solvent. Herein, ethanol was used as an example to explore if the organic solvent in a typical Stöber method can be omitted. It was found that ethanol increases the particle size of the obtained silica spheres and aids the formation of uniform silica particles rather than forming a gel. Nevertheless, the results indicated that an organic solvent in the initial synthesis mixture is not indispensable. An initially immiscible synthesis method was discovered, which can replace the organic solvent-based Stöber method to successfully synthesize silica particles with the same size ranges as the original Stöber process without addition of organic solvents. Moreover, this process can be of further value for the extension to synthesis processes of other materials based on the Stöber process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000898283500001 Publication Date 2022-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.3 Times cited 3 Open Access OpenAccess  
  Notes The authors are grateful to Alexander Vansant and Dr. Steven Mullens of VITO for their contributions to the DLS measurements in this paper. J.W acknowledges the State Scholarship funded by the China Scholarship Council (201806060123). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). S.K acknowledges the Flemish Fund for Scientific Research (FWO Flanders) through a PhD research grant (1181122N). Approved Most recent IF: 4.3  
  Call Number EMAT @ emat @c:irua:191646 Serial 7233  
Permanent link to this record
 

 
Author Daele, K.V.; Arenas‐Esteban, D.; Choukroun, D.; Hoekx, S.; Rossen, A.; Daems, N.; Pant, D.; Bals, S.; Breugelmans, T. url  doi
openurl 
  Title Enhanced Pomegranate‐Structured SnO2Electrocatalysts for the Electrochemical CO2Reduction to Formate Type A1 Journal article
  Year 2023 Publication ChemElectroChem Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Although most state-of-the-art Sn-based electrocatalysts yield promising results in terms of selectivity and catalyst activity, their stability remains insufficient to date. Here, we demonstrate the successful application of the recently developed pomegranate-structured SnO2 (Pom. SnO2) and SnO2@C (Pom. SnO2@C) nanocomposite electrocatalysts for the efficient electrochemical conversion of CO2 to formate. With an initial selectivity of 83 and 86% towards formate and an operating potential of -0.72 V and -0.64 V vs. RHE, respectively, these pomegranate SnO2 electrocatalysts are able to compete with most of the current state-of-the-art Sn-based electrocatalysts in terms of activity and selectivity. Given the importance of electrocatalyst stability, long-term experiments (24 h) were performed and a temporary loss in selectivity for the Pom. SnO2@C electrocatalyst was largely restored to its initial selectivity upon drying and exposure to air. Of all the used (24 h) electrocatalysts, the pomegranate SnO2@C had the highest selectivity over a time period of one hour, reaching an average recovered FE of 85%, while the commercial SnO2 and bare pomegranate SnO2 electrocatalysts reached an average of 79 and 80% FE towards formate, respectively. Furthermore, the pomegranate structure of Pom. SnO2@C was largely preserved due to the presence of the heterogeneous carbon shell, which acts as a protective layer, physically inhibiting particle segregation/pulverisation and agglomeration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000936694800001 Publication Date 2023-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes European Regional Development Fund, E2C 2S03-019 ; Approved Most recent IF: 4; 2023 IF: 4.136  
  Call Number EMAT @ emat @c:irua:195228 Serial 7249  
Permanent link to this record
 

 
Author van der Sluijs, M.M.; Salzmann, B.B.V.; Arenas Esteban, D.; Li, C.; Jannis, D.; Brafine, L.C.; Laning, T.D.; Reinders, J.W.C.; Hijmans, N.S.A.; Moes, J.R.; Verbeeck, J.; Bals, S.; Vanmaekelbergh, D. url  doi
openurl 
  Title Study of the Mechanism and Increasing Crystallinity in the Self-Templated Growth of Ultrathin PbS Nanosheets Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal 2D semiconductor nanocrystals, the analogue of solid-state quantum wells, have attracted strong interest in material science and physics. Molar quantities of suspended quantum objects with spectrally pure absorption and emission can be synthesized. For the visible region, CdSe nanoplatelets with atomically precise thickness and tailorable emission have been (almost) perfected. For the near-infrared region, PbS nanosheets (NSs) hold strong promise, but the photoluminescence quantum yield is low and many questions on the crystallinity, atomic structure, intriguing rectangular shape, and formation mechanism remain to be answered. Here, we report on a detailed investigation of the PbS NSs prepared with a lead thiocyanate single source precursor. Atomically resolved HAADF-STEM imaging reveals the presence of defects and small cubic domains in the deformed orthorhombic PbS crystal lattice. Moreover, variations in thickness are observed in the NSs, but only in steps of 2 PbS monolayers. To study the reaction mechanism, a synthesis at a lower temperature allowed for the study of reaction intermediates. Specifically, we studied the evolution of pseudo-crystalline templates towards mature, crystalline PbS NSs. We propose a self-induced templating mechanism based on an oleylamine-lead-thiocyanate (OLAM-Pb-SCN) complex with two Pb-SCN units as a building block; the interactions between the long-chain ligands regulate the crystal structure and possibly the lateral dimensions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000959572100001 Publication Date 2023-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 2 Open Access OpenAccess  
  Notes H2020 Research Infrastructures, 731019 ; H2020 European Research Council, 692691 815128 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 715.016.002 ; Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number EMAT @ emat @c:irua:195894 Serial 7255  
Permanent link to this record
 

 
Author Filez, M.; Feng, J.-Y.; Minjauw, M.M.; Solano, E.; Poonkottil, N.; Van Daele, M.; Ramachandran, R.K.; Li, C.; Bals, S.; Poelman, H.; Detavernier, C.; Dendooven, J.; Filez, M.; Minjauw, M.; Solano, E.; Poonkottil, N.; Li, C.; Bals, S.; Dendooven, J. pdf  url
doi  openurl
  Title Shuffling atomic layer deposition gas sequences to modulate bimetallic thin films and nanoparticle properties Type A1 Journal article
  Year 2022 Publication Chemistry of materials Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic layer deposition (ALD) typically employs metal precursors and co-reactant pulses to deposit thin films in a layer-by-layer fashion. While conventional ABAB-type ALD sequences implement only two functionalities, namely, a metal source and ligand exchange agent, additional functionalities have emerged, including etching and reduction agents. Herein, we construct gas-phase sequences-coined as ALD+-with complex-ities reaching beyond the classic ABAB-type ALD by freely combining multiple functionalities within irregular pulse schemes, e.g., ABCADC. The possibilities of such combinations are explored as a smart strategy to tailor bimetallic thin films and nanoparticle (NP) properties. By doing so, we demonstrate that bimetallic thin films can be tailored with target thickness and through the full compositional range, while the morphology can be flexibly modulated from thin films to NPs by shuI 1ing the pulse sequence. These complex pulse schemes are expected to be broadly applicable but are here explored for Pd-Ru bimetallic thin films and NPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000823205700001 Publication Date 2022-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes This research was funded by the Research Foundation, Flanders (FWO) , and the Special Research Fund BOF of Ghent University (GOA 01G01019) . M.F. and M.M.M. acknowledge the FWO for a postdoctoral research fellowship (1280621N) . N.P. acknowledges the European Union's Horizon 2020 research and innovation program under the Marie Skiodowska-Curie grant agreement no. 765378. For the GISAXS measurements, the author s received funding from the European Community's Transnational Access Program CALIPSOplus. E.S. acknowledges the Spanish project RTI2018-093996-B-C32 MICINN/FEDER funds. Air Liquide is acknowledged for supporting this research. The authors acknowledge SOLEIL for the provision of synchrotron radiation facilities and would like to thank Dr. Alessandro Coati for assistance in using beamline SiXS. The GIWAXS experiments were performed at NCD-SWEET beamline at ALBA Synchrotron with the collaboration of ALBA staff . Approved no  
  Call Number UA @ admin @ c:irua:189541 Serial 8928  
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J. url  doi
openurl 
  Title In Situ Plasma Studies Using a Direct Current Microplasma in a Scanning Electron Microscope Type A1 Journal Article
  Year 2024 Publication Advanced Materials Technologies Abbreviated Journal Adv Materials Technologies  
  Volume Issue Pages (up)  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Microplasmas can be used for a wide range of technological applications and to improve the understanding of fundamental physics. Scanning electron microscopy, on the other hand, provides insights into the sample morphology and chemistry of materials from the mm‐ down to the nm‐scale. Combining both would provide direct insight into plasma‐sample interactions in real‐time and at high spatial resolution. Up till now, very few attempts in this direction have been made, and significant challenges remain. This work presents a stable direct current glow discharge microplasma setup built inside a scanning electron microscope. The experimental setup is capable of real‐time in situ imaging of the sample evolution during plasma operation and it demonstrates localized sputtering and sample oxidation. Further, the experimental parameters such as varying gas mixtures, electrode polarity, and field strength are explored and experimental<italic>V</italic>–<italic>I</italic>curves under various conditions are provided. These results demonstrate the capabilities of this setup in potential investigations of plasma physics, plasma‐surface interactions, and materials science and its practical applications. The presented setup shows the potential to have several technological applications, for example, to locally modify the sample surface (e.g., local oxidation and ion implantation for nanotechnology applications) on the µm‐scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2365-709X ISBN Additional Links  
  Impact Factor 6.8 Times cited Open Access OpenAccess  
  Notes L.G., S.B., and J.V. acknowledge support from the iBOF-21-085 PERsist research fund. D.C., S.V.A., and J.V. acknowledge funding from a TOPBOF project of the University of Antwerp (FFB 170366). R.D.M., A.B., and J.V. acknowledge funding from the Methusalem project of the University of Antwerp (FFB 15001A, FFB 15001C). A.O. and J.V. acknowledge funding from the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. Approved Most recent IF: 6.8; 2024 IF: NA  
  Call Number EMAT @ emat @ Serial 8995  
Permanent link to this record
 

 
Author Musolino, N.; Bals, S.; Van Tendeloo, G.; Clayton, N.; Walker, E.; Flükiger, R. doi  openurl
  Title Modulation-free phase in heavily Pb-doped (Bi,Pb)2212 crystals Type A1 Journal article
  Year 2003 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 399 Issue 1/2 Pages (up) 1-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the complete disappearance of the structural modulation in heavily lead-doped Bi2-xPbxSr2CaCu2O8+delta crystals observed by transmission electron microscopy. Crystals with a nominal lead content of x = 0.8, corresponding to an effective lead content of x = 0.39, yield the non-modulated phase. The superconducting properties of this modulation-free phase (beta phase) have been studied and compared to those of undoped crystals displaying the modulated phase (alpha phase). Magnetisation measurements reveal that the irreversibility field H-irr(T) and relaxation rates are strongly improved within the beta phase. Measurements of the lower critical field, H-c1, show that the anisotropy factor, epsilon, is considerably reduced in the modulation-free crystals. This is the signature of stronger coupling between CuO2 layers which in turn deeply influences the effectiveness of the pinning. These measurements explain the enhanced pinning properties in moderately Pb-doped crystals in which the alpha phase and beta phase coexist. The enhanced pinning is not only due to the alpha/beta interfaces, which act as effective pinning centers: the emergence of modulation-free domains, characterized by a strongly reduced anisotropy, also significantly contribute to this effect. (C) 2003 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000186526200001 Publication Date 2003-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 31 Open Access  
  Notes Approved Most recent IF: 1.404; 2003 IF: 1.192  
  Call Number UA @ lucian @ c:irua:54797 Serial 2167  
Permanent link to this record
 

 
Author Heidari, H.; van den Broek, W.; Bals, S. pdf  url
doi  openurl
  Title Quantitative electron tomography : the effect of the three-dimensional point spread function Type A1 Journal article
  Year 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 135 Issue Pages (up) 1-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The intensity levels in a three-dimensional (3D) reconstruction, obtained by electron tomography, can be influenced by several experimental imperfections. Such artifacts will hamper a quantitative interpretation of the results. In this paper, we will correct for artificial intensity variations by determining the 3D point spread function (PSF) of a tomographic reconstruction based on high angle annular dark field scanning transmission electron microscopy. The large tails of the PSF cause an underestimation of the intensity of smaller particles, which in turn hampers an accurate radius estimate. Here, the error introduced by the PSF is quantified and corrected a posteriori.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000326941500001 Publication Date 2013-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 6 Open Access  
  Notes Esteem2; Sunflower; esteem2_jra4 Approved Most recent IF: 2.843; 2013 IF: 2.745  
  Call Number UA @ lucian @ c:irua:111397 Serial 2756  
Permanent link to this record
 

 
Author Wang, D.; Dasgupta, T.; van der Wee, E.B.; Zanaga, D.; Altantzis, T.; Wu, Y.; Coli, G.M.; Murray, C.B.; Bals, S.; Dijkstra, M.; van Blaaderen, A. pdf  url
doi  openurl
  Title Binary icosahedral clusters of hard spheres in spherical confinement Type A1 Journal article
  Year 2020 Publication Nature Physics Abbreviated Journal Nat Phys  
  Volume Issue Pages (up) 1-9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The influence of geometry on the local and global packing of particles is important to many fundamental and applied research themes, such as the structure and stability of liquids, crystals and glasses. Here we show by experiments and simulations that a binary mixture of hard-sphere-like nanoparticles crystallizing into a MgZn(2)Laves phase in bulk spontaneously forms icosahedral clusters in slowly drying droplets. Using advanced electron tomography, we are able to obtain the real-space coordinates of all the spheres in the icosahedral clusters of up to about 10,000 particles. The local structure of 70-80% of the particles became similar to that of the MgCu(2)Laves phase. These observations are important for photonic applications. In addition, we observed in simulations that the icosahedral clusters nucleated away from the spherical boundary, which is distinctly different from that of the single species clusters. Our findings open the way for particle-level studies of nucleation and growth of icosahedral clusters, and of binary crystallization. The authors investigate out-of-equilibrium crystallization of a binary mixture of sphere-like nanoparticles in small droplets. They observe the spontaneous formation of an icosahedral structure with stable MgCu(2)phases, which are promising for photonic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000564497300002 Publication Date 2020-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473; 1745-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.6 Times cited 38 Open Access OpenAccess  
  Notes ; D.W., E.B.v.d.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union's Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. T.D. and M. D. acknowledge financial support from the Industrial Partnership Programme, 'Computational Sciences for Energy Research' (grant number 13CSER025), of the Netherlands Organization for Scientific Research (NWO), which was co-financed by Shell Global Solutions International BV G.M.C. was also financially supported by NWO. S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO. T.A. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). C.B.M. and Y.W. acknowledge support for materials synthesis from the Office of Naval Research Multidisciplinary University Research Initiative Award ONR N00014-18-1-2497. G. A. Blab is gratefully acknowledged for 3D printing numerous truncated tetrahedra, which increased our understanding of the connection between the binary icosahedral cluster and Laves phase structures. N. Tasios is sincerely thanked for providing the code for the diffraction pattern calculation. M. Hermes is sincerely thanked for providing interactive views of the structures in this work. We thank G. van Tendeloo, M. Engel, J. Wang, S. Dussi, L. Filion, E. Boattini, S. Paliwal, N. Tasios, B. van der Meer, I. Lobato, J. Wu and L. Laurens for fruitful discussions. We acknowledge the EM Square centre at Utrecht University for the access to the microscopes. ; sygma Approved Most recent IF: 19.6; 2020 IF: 22.806  
  Call Number UA @ admin @ c:irua:172044 Serial 6460  
Permanent link to this record
 

 
Author Feng, X.; Jena, H.S.; Krishnaraj, C.; Arenas-Esteban, D.; Leus, K.; Wang, G.; Sun, J.; Rüscher, M.; Timoshenko, J.; Roldan Cuenya, B.; Bals, S.; Voort, P.V.D. pdf  url
doi  openurl
  Title Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-Metal UiO-66 Type A1 Journal article
  Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume Issue Pages (up) jacs.1c05357  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The differentiation between missing linker defects

and missing cluster defects in MOFs is difficult, thereby limiting the

ability to correlate materials properties to a specific type of defects.

Herein, we present a novel and easy synthesis strategy for the

creation of solely “missing cluster defects” by preparing mixed-metal

(Zn, Zr)-UiO-66 followed by a gentle acid wash to remove the Zn

nodes. The resulting material has the reo UiO-66 structure, typical

for well-defined missing cluster defects. The missing clusters are

thoroughly characterized, including low-pressure Ar-sorption, iDPCSTEM

at a low dose (1.5 pA), and XANES/EXAFS analysis. We

show that the missing cluster UiO-66 has a negligible number of missing linkers. We show the performance of the missing cluster

UiO-66 in CO2 sorption and heterogeneous catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000730569500001 Publication Date 2021-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 29 Open Access OpenAccess  
  Notes Agentschap Innoveren en Ondernemen, HBC.2019.0110 HBC.2021.0254 ; Universiteit Gent; Fonds Wetenschappelijk Onderzoek, 665501 ; Dalian University of Technology; China Scholarship Council, 201507565009 ; National Natural Science Foundation of China, 22101039 ; H2020 European Research Council, 815128 REALNANO ; sygmaSB Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:183951 Serial 6833  
Permanent link to this record
 

 
Author Chen, Q.; Skorikov, A.; van der Hoeven, J.E.S.; van Blaaderen, A.; Albrecht, W.; Perez-Garza, H.H.; Bals, S. pdf  doi
openurl 
  Title Estimation of temperature homogeneity in MEMS-based heating nanochips via quantitative HAADF-STEM tomography Type A1 Journal article
  Year 2023 Publication Particle and particle systems characterization Abbreviated Journal  
  Volume 41 Issue 2 Pages (up) 1-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Sample holders for transmission electron microscopy (TEM) based on micro-electro-mechanical systems (MEMS) have recently become popular for investigating the behavior of nanomaterials under in situ or environmental conditions. The accuracy and reproducibility of these in situ holders are essential to ensure the reliability of experimental results. In addition, the uniformity of an applied temperature trigger across the MEMS chip is a crucial parameter. In this work, it is measured the temperature homogeneity of MEMS-based heating sample supports by locally analyzing the dynamics of heat-induced alloying of Au@Ag nanoparticles located in different regions of the support through quantitative fast high-angle annular dark-field scanning TEM tomography. These results demonstrate the superior temperature homogeneity of a microheater design based on a heating element shaped as a circular spiral with a width decreasing outwards compared to a double spiral-shaped designed microheater. The proposed approach to measure the local temperature homogeneity based on the thermal properties of bimetallic nanoparticles will support the future development of MEMS-based heating supports with improved thermal properties and in situ studies where high precision in the temperature at a certain position is required. This schematic delineates an approach to quantifying potential localized temperature deviation within a nanochip. Employing two comparable nanoparticles as thermal probes in discrete nanochip regions, the alloying kinetics of these nanoparticles are monitorable using in situ quantitative high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) tomography, thus enabling the precise estimation of local temperature deviations.image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001060394600001 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access Not_Open_Access  
  Notes This project was funded from the European Commission and The Marie Sklodowska-Curie Innovative Training Network MUMMERING (Grant Agreement no. 765604) Approved Most recent IF: 2.7; 2023 IF: 4.474  
  Call Number UA @ admin @ c:irua:199219 Serial 8863  
Permanent link to this record
 

 
Author Moggia, G.; Hoekx, S.; Daems, N.; Bals, S.; Breugelmans, T. url  doi
openurl 
  Title Synthesis and characterization of a highly electroactive composite based on Au nanoparticles supported on nanoporous activated carbon for electrocatalysis Type A1 Journal article
  Year 2023 Publication ChemElectroChem Abbreviated Journal  
  Volume Issue Pages (up) 1-11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract A facile, “one-pot”, chemical approach to synthesize gold-based nanoparticles finely dispersed on porous activated carbon (Norit) was demonstrated in this work. The pH of the synthesis bath played a critical role in determining the optimal gold-carbon interaction, which enabled a successful deposition of the gold nanoparticles onto the carbon matrix with a maximized metal utilization of 93 %. The obtained AuNP/C nanocomposite was characterized using SEM, HAADF-STEM electron tomography and electrochemical techniques. It was found that the Au nanoparticles, with diameters between 5 and 20 nm, were evenly distributed over the carbon matrix, both inside and outside the pores. Electrochemical characterization indicated that the composite had a very large electroactive surface area (EASA), as high as 282.4 m2 gAu-1. By exploiting its very high EASA, the catalyst was intended to boost the productivity of glucaric acid in the electrooxidation of its precursor, gluconic acid. However, cyclic voltammetry experiments revealed a very limited reactivity towards gluconic acid oxidation, due to the spacial hindrance of gluconic acid molecule which prevented diffusion inside the catalyst nanopores. On the other hand, the as-synthesized nanocomposite promises to be effective towards the ORR, and might thus find potential application as anode catalyst for fuel cells as well as for the scalability of all those electrochemical reactions involving small molecules with high diffusivity and catalysed by noble metals (i. e. CO2, CH4, N2, etc..). Electrocatalysis: Gold nanoparticles with diameter between 5 and 20 nm evenly distributed onto porous activated carbon (Norit) were obtained using a facile “one-pot” chemical synthesis technique with very high metal utilization. The AuNP/C nanocomposite was characterized using SEM, HAADF-STEM electron tomography and electrochemical techniques, revealing a very large electroactive surface area (EASA). The figure shows the HAADF-STEM image (a) and the respective EDX elemental distribution (b) for the AuNP/C composite with 9.3 % Au-loading developed in this work (Au is marked in red and C in green).image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001060398900001 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 1 Open Access OpenAccess  
  Notes The research described in this article has not been supported by the Climate, Infrastructure and Environment Executive Agency of the European Commission. The views expressed in this article have not been adopted or in any way approved by the European Commission and do not constitute a statement of the European Commission & apos;s views.r S. Hoekx was supported by Research Foundation Flanders (FWO 1S42623N). The authors would like to thank Prof. Dr. Christophe Vande Velde, University of Antwerp, for the XRD analysis. Approved Most recent IF: 4; 2023 IF: 4.136  
  Call Number UA @ admin @ c:irua:199210 Serial 8941  
Permanent link to this record
 

 
Author Borah, R.; Smets, J.; Ninakanti, R.; Tietze, M.L.; Ameloot, R.; Chigrin, D.N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Self-assembled ligand-capped plasmonic Au nanoparticle films in the Kretschmann configuration for sensing of volatile organic compounds Type A1 Journal article
  Year 2022 Publication ACS applied nano materials Abbreviated Journal  
  Volume 5 Issue 8 Pages (up) acsanm.2c02524-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Films of close-packed Au nanoparticles are coupled electrodynamically through their collective plasmon resonances. This collective optical response results in enhanced light–matter interactions, which can be exploited in various applications. Here, we demonstrate their application in sensing volatile organic compounds, using methanol as a test case. Ordered films over several cm2 were obtained by interfacial self-assembly of colloidal Au nanoparticles (∼10 nm diameter) through controlled evaporation of the solvent. Even though isolated nanoparticles of this size are inherently nonscattering, when arranged in a close-packed film the plasmonic coupling results in a strong reflectance and absorbance. The in situ tracking of vapor phase methanol concentration through UV–vis transmission measurements of the nanoparticle film is first demonstrated. Next, in situ ellipsometry of the self-assembled films in the Kretschmann (also known as ATR) configuration is shown to yield enhanced sensitivity, especially with phase difference measurements, Δ. Our study shows the excellent agreement between theoretical models of the spectral response of self-assembled films with experimental in situ sensing experiments. At the same time, the theoretical framework provides the basis for the interpretation of the various observed experimental trends. Combining periodic nanoparticle films with ellipsometry in the Kretschmann configuration is a promising strategy toward highly sensitive and selective plasmonic thin-film devices based on colloidal fabrication methods for volatile organic compound (VOC) sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000834348300001 Publication Date 2022-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.9 Times cited 11 Open Access OpenAccess  
  Notes R.B. acknowledges financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. J.S. acknowledges financial support from the Research Foundation Flanders (FWO) by a Ph.D. fellowship (11H8121N) . M.L.T. acknowledges financial support from the Research Foundation Flanders (FWO) by a senior postdoctoral fellowship (12ZK720N) . Approved Most recent IF: 5.9  
  Call Number UA @ admin @ c:irua:189295 Serial 7095  
Permanent link to this record
 

 
Author van den Broek, W.; Rosenauer, A.; Goris, B.; Martinez, G.T.; Bals, S.; Van Aert, S.; van Dyck, D. pdf  doi
openurl 
  Title Correction of non-linear thickness effects in HAADF STEM electron tomography Type A1 Journal article
  Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 116 Issue Pages (up) 8-12  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In materials science, high angle annular dark field scanning transmission electron microscopy is often used for tomography at the nanometer scale. In this work, it is shown that a thickness dependent, non-linear damping of the recorded intensities occurs. This results in an underestimated intensity in the interior of reconstructions of homogeneous particles, which is known as the cupping artifact. In this paper, this non-linear effect is demonstrated in experimental images taken under common conditions and is reproduced with a numerical simulation. Furthermore, an analytical derivation shows that these non-linearities can be inverted if the imaging is done quantitatively, thus preventing cupping in the reconstruction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000304473700002 Publication Date 2012-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 67 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:96558 Serial 518  
Permanent link to this record
 

 
Author Van Eyndhoven, G.; Kurttepeli, M.; van Oers, C.J.; Cool, P.; Bals, S.; Batenburg, K.J.; Sijbers, J. pdf  url
doi  openurl
  Title Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 148 Issue 148 Pages (up) 10-19  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab; Laboratory of adsorption and catalysis (LADCA)  
  Abstract Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm POre REconstruction and Segmentation is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000345973000002 Publication Date 2014-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 7 Open Access OpenAccess  
  Notes Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:119083 Serial 2672  
Permanent link to this record
 

 
Author Zanaga, D.; Altantzis, T.; Sanctorum, J.; Freitag, B.; Bals, S. pdf  url
doi  openurl
  Title An alternative approach for ζ-factor measurement using pure element nanoparticles Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 164 Issue 164 Pages (up) 11-16  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is very challenging to measure the chemical composition of hetero nanostructures in a reliable and quantitative manner. Here, we propose a novel and straightforward approach that can be used to quantify energy dispersive X-ray spectra acquired in a transmission electron microscope. Our method is based on a combination of electron tomography and the so-called ζ-factor technique. We will demonstrate the reliability of our approach as well as its applicability by investigating Au-Ag and Au-Pt hetero nanostructures. Given its simplicity, we expect that the method could become a new standard in the field of chemical characterization using electron microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373526200002 Publication Date 2016-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 19 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS) and the European Union under the FP7 (Integrated Infrastructure Initiative N. 312483 – ESTEEM2). The authors would also like to thank Luis M. Liz-Marzán, Ana Sánchez-Iglesias, Stefanos Mourdikoudis and Cristina Fernández-López for sample provision and useful discussions.; esteem2jra4; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ Serial 4019  
Permanent link to this record
 

 
Author Zanaga, D.; Altantzis, T.; Sanctorum, J.; Freitag, B.; Bals, S. pdf  url
doi  openurl
  Title An alternative approach for \zeta-factor measurement using pure element nanoparticles Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 164 Issue Pages (up) 11-16  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is very challenging to measure the chemical composition of hetero nanostructures in a reliable and quantitative manner. Here, we propose a novel and straightforward approach that can be used to quantify energy dispersive X-ray spectra acquired in a transmission electron microscope. Our method is based on a combination of electron tomography and the so-called zeta-factor technique. We will demonstrate the reliability of our approach as well as its applicability by investigating Au-Ag and Au-Pt hetero nanostructures. Given its simplicity, we expect that the method could become a new standard in the field of chemical characterization using electron microscopy. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000373526200002 Publication Date 2016-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 19 Open Access OpenAccess  
  Notes ; The authors acknowledge financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS) and the European Union under the FP7 (Integrated Infrastructure Initiative N. 312483 – ESTEEM2). ; ecas_Sara Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:133259 Serial 4439  
Permanent link to this record
 

 
Author Goris, B.; De Beenhouwer, J.; de Backer, A.; Zanaga, D.; Batenburg, J.; Sanchez-Iglesias, A.; Liz-Marzan, L.; Van Aert, S.; Sijbers, J.; Van Tendeloo, G.; Bals, S. doi  openurl
  Title Investigating lattice strain in Au nanodecahedrons Type P1 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages (up) 11-12  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2016-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-3-527-80846-5 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:145813 Serial 5144  
Permanent link to this record
 

 
Author Martens, J.A.; Thybaut, J.W.; Denayer, J.F.M.; Sree, S.P.; Aerts, A.; Reyniers, M.-F.; van Speybroeck, V.; Waroquier, M.; Buekenhoudt, A.; Vankelecom, I.; Buijs, W.; Persoons, J.; Baron, G.V.; Bals, S.; Van Tendeloo, G.; Marin, G.B.; Jacobs, P.A.; Kirschhock, C.E.A. pdf  doi
openurl 
  Title Catalytic and molecular separation properties of Zeogrids and Zeotiles Type A1 Journal article
  Year 2011 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 168 Issue 1 Pages (up) 17-27  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Zeogrids and Zeotiles are hierarchical materials built from assembled MFI zeolite precursor units. Permanent secondary porosity in these materials is obtained through self assembly of nanoparticles encountered in MFI zeolite synthesis in the presence of supramolecular templates. Hereon, the aggregated species are termed nanoslabs. Zeogrids are layered materials with lateral spacings between nanoslabs creating galleries qualifying as supermicropores. Zeotiles present a diversity of tridimensional nanoslab assemblies with mesopores. Zeotile-1, -4 and -6 are hexagonal mesostructures. Zeotile-1 has triangular and hexagonal channels; Zeotile-4 has hexagonal channels interconnected via slits. Zeotile-2 has a cubic structure with gyroid type mesoporosity. The behavior of Zeogrids and Zeotiles in adsorption, membrane and chromatographic separation and catalysis has been characterized and compared with zeolites and mesoporous materials derived from unstructured silica sources. Shape selectivity was detected via adsorption of n- and iso-alkanes. The mesoporosity of Zeotiles can be exploited in chromatographic separation of biomolecules. Zeotiles present attractive separation properties relevant to CO2 sequestration. Because of its facile synthesis procedure without hydrothermal steps Zeogrid is convenient for membrane synthesis. The performance of Zeogrid membrane in gas separation, nanofiltration and pervaporation is reported. In the Beckmann rearrangement of cyclohexanone oxime Zeogrids and Zeotiles display a catalytic activity characteristic of silicalite-1 zeolites. Introduction of acidity and redox catalytic activity can be achieved via incorporation of Al and Ti atoms in the nanoslabs during synthesis. Zeogrids are active in hydrocracking, catalytic cracking, alkylation and epoxidation reactions. Zeogrids and Zeotiles often behave differently from ordered mesoporous materials as well as from zeolites and present a valuable extension of the family of hierarchical silicate based materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000291033300003 Publication Date 2011-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 13 Open Access  
  Notes Fwo; Iap Sbo Approved Most recent IF: 4.636; 2011 IF: 3.407  
  Call Number UA @ lucian @ c:irua:88647 Serial 290  
Permanent link to this record
 

 
Author Liao, T.-W.; Verbruggen, S.; Claes, N.; Yadav, A.; Grandjean, D.; Bals, S.; Lievens, P. pdf  url
doi  openurl
  Title TiO2 Films Modified with Au Nanoclusters as Self-Cleaning Surfaces under Visible Light Type A1 Journal article
  Year 2018 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 8 Issue 8 Pages (up) 30  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this study, we applied cluster beam deposition (CBD) as a new approach for fabricating efficient plasmon-based photocatalytic materials. Au nanoclusters (AuNCs) produced in the gas phase were deposited on TiO2 P25-coated silicon wafers with coverage ranging from 2 to 8 atomic monolayer (ML) equivalents. Scanning Electron Microscopy (SEM) images of the AuNCs modified TiO2 P25 films show that the surface is uniformly covered by the AuNCs that remain isolated at low coverage (2 ML, 4 ML) and aggregate at higher coverage (8 ML). A clear relationship between AuNCs coverage and photocatalytic activity towards stearic acid photo-oxidation was measured, both under ultraviolet and green light illumination. TiO2 P25 covered with 4 ML AuNCs showed the best stearic acid photo-oxidation performance under green light illumination (Formal Quantum Efficiency 1.6 x 10-6 over a period of 93 h). These results demonstrate the large potential of gas-phase AuNCs beam deposition technology for the fabrication of visible light active plasmonic photocatalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424131600030 Publication Date 2018-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 29 Open Access OpenAccess  
  Notes The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n 607417 (Catsense). We also thank the Research Foundation—Flanders (FWO, Belgium), the Flemish Concerted Action (BOF KU Leuven, Project No. GOA/14/007) research program, and the microscope was partly funded by the Hercules Fund from the Flemish Government for the support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). ECAS_Sara (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.553  
  Call Number EMAT @ emat @c:irua:147898UA @ admin @ c:irua:147898 Serial 4805  
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis Type A1 Journal article
  Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 200 Issue 200 Pages (up) 31-38  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Affordable silver-polymer core-shell nanoparticles are prepared using the layer-by-layer (LbL) technique. The metallic silver core is encapsulated with an ultra-thin protective shell that prevents oxidation and clustering without compromising the plasmonic properties. The core-shell nanoparticles retain their plasmonic near field enhancement effect, as studied from finite element numerical simulations. Control over the shell thickness up to the sub-nanometer level is there for key. The particles are used to prepare a plasmonic Ag-TiO2 photocatalyst of which the gas phase photocatalytic activity is monitored over a period of four months. The described system outperforms pristine TiO2 and retains its plasmonic enhancement in contrast to TiO2 modified with bare silver nanoparticles. With this an important step is made toward the development of long-term stable plasmonic (photocatalytic) applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384775600004 Publication Date 2016-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 45 Open Access OpenAccess  
  Notes CD, SL and SWV acknowledge the Research Foundation − Flanders (FWO) for financial support. CD further acknowledges BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014). SB acknowledges the European Research Council for the ERC Starting Grant #335078-COLOURATOM.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446  
  Call Number c:irua:134384 c:irua:134384UA @ admin @ c:irua:134384 Serial 4104  
Permanent link to this record
 

 
Author van Aarle, W.; Palenstijn, W.J.; De Beenhouwer, J.; Altantzis, T.; Bals, S.; Batenburg, K.J.; Sijbers, J. pdf  url
doi  openurl
  Title The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 157 Issue 157 Pages (up) 35-47  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract We present the ASTRA Toolbox as an open platform for 3D image reconstruction in tomography. Most of the software tools that are currently used in electron tomography offer limited flexibility with respect to the geometrical parameters of the acquisition model and the algorithms used for reconstruction. The ASTRA Toolbox provides an extensive set of fast and flexible building blocks that can be used to develop advanced reconstruction algorithms, effectively removing these limitations. We demonstrate this flexibility, the resulting reconstruction quality, and the computational efficiency of this toolbox by a series of experiments, based on experimental dual-axis tilt series.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000361002400005 Publication Date 2015-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 562 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the iMinds ICONMetroCT project,the IWT SBO Tom Food project and from the Netherlands Organisation for Scientific Research (NWO),Project no. 639.072.005. Networking support was provided by the EXTREMA COST Action MP 1207. Sara Bals acknowledges financial support from the European Research Council (ERC Starting Grant #335078 COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:127834 Serial 3974  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: