toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Elmurodov, A.K.; Peeters, F.M.; Vodolazov, D.Y.; Michotte, S.; Adam, S.; de Menten de Horne, F.; Piraux, L.; Lucot, D.; Mailly, D.
  Title Phase-slip phenomena in NbN superconducting nanowires with leads Type A1 Journal article
  Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
  Volume 78 Issue 21 Pages (up) 214519,1-214519,5
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Transport properties of a superconducting NbN nanowire are studied experimentally and theoretically. Different attached leads (superconducting contacts) allowed us to measure current-voltage (I-V) characteristics of different segments of the wire independently. The experimental results show that with increasing the length of the segment the number of jumps in the I-V curve increases indicating an increasing number of phase-slip phenomena. The system shows a clear hysteresis in the direction of the current sweep, the size of which depends on the length of the superconducting segment. The interpretation of the experimental results is supported by theoretical simulations that are based on the time-dependent Ginzburg-Landau theory, the heat equation has been included in the Ginzbur-Landau theory.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000262244400100 Publication Date 2009-01-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 27 Open Access
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
  Call Number UA @ lucian @ c:irua:76004 Serial 2589
Permanent link to this record
 

 
Author Cabral, L.R.E.; Peeters, F.M.
  Title Elastic modes of vortex configurations in thin disks Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 70 Issue Pages (up) 214522,1-13
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000226111400123 Publication Date 2004-12-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 6 Open Access
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
  Call Number UA @ lucian @ c:irua:69399 Serial 879
Permanent link to this record
 

 
Author Chaves, A.; Komendová, L.; Milošević, M.V.; Andrade, J.S.; Farias, G.A.; Peeters, F.M.
  Title Conditions for nonmonotonic vortex interaction in two-band superconductors Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 83 Issue 21 Pages (up) 214523-214523,6
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We describe a semianalytic approach to the two-band Ginzburg-Landau theory, which predicts the behavior of vortices in two-band superconductors. We show that the character of the short-range vortex-vortex interaction is determined by the sign of the normal domain-superconductor interface energy, in analogy with the conventional differentiation between type I and type II superconductors. However, we also show that the long-range interaction is determined by a modified Ginzburg-Landau parameter κ*, different from the standard κ of a bulk superconductor. This opens the possibility for nonmonotonic vortex-vortex interaction, which is temperature dependent, and can be further tuned by alterations of the material on the microscopic scale.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000292252300009 Publication Date 2011-06-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 46 Open Access
  Notes ; Discussions with A. Moreira, A. Shanenko, R. Prozorov, and A. Golubov are gratefully acknowledged. This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the bilateral project FWO-CNPq, CAPES, and PRONEX/CNPq/FUNCAP. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
  Call Number UA @ lucian @ c:irua:90922 Serial 477
Permanent link to this record
 

 
Author Hernández, A.D.; Baelus, B.J.; Domínguez, D.; Peeters, F.M.
  Title Effects of thermal fluctuations on the magnetic behavior of mesoscopic superconductors Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 71 Issue Pages (up) 214524,1-9
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000230276600103 Publication Date 2005-07-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 14 Open Access
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
  Call Number UA @ lucian @ c:irua:69410 Serial 873
Permanent link to this record
 

 
Author Bafekry, A.; Shayesteh, S.F.; Peeters, F.M.
  Title Two-dimensional carbon nitride (2DCN) nanosheets : tuning of novel electronic and magnetic properties by hydrogenation, atom substitution and defect engineering Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 126 Issue 21 Pages (up) 215104
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract By employing first-principles calculations within the framework of density functional theory, we investigated the structural, electronic, and magnetic properties of graphene and various two-dimensional carbon-nitride (2DNC) nanosheets. The different 2DCN gives rise to diverse electronic properties such as metals (C3N2), semimetals (C4N and C9N4), half-metals (C4N3), ferromagnetic-metals (C9N7), semiconductors (C2N, C3N, C3N4, C6N6, and C6N8), spin-glass semiconductors (C10N9 and C14N12), and insulators (C2N2). Furthermore, the effects of adsorption and substitution of hydrogen atoms as well as N-vacancy defects on the electronic and magnetic properties are systematically studied. The introduction of point defects, including N vacancies, interstitial H impurity into graphene and different 2DCN crystals, results in very different band structures. Defect engineering leads to the discovery of potentially exotic properties that make 2DCN interesting for future investigations and emerging technological applications with precisely tailored properties. These properties can be useful for applications in various fields such as catalysis, energy storage, nanoelectronic devices, spintronics, optoelectronics, and nanosensors. Published under license by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000504007300023 Publication Date 2019-12-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 70 Open Access
  Notes Approved Most recent IF: 2.068
  Call Number UA @ admin @ c:irua:165733 Serial 6329
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M.
  Title Machine learning approach to constructing tight binding models for solids with application to BiTeCl Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
  Volume 128 Issue 21 Pages (up) 215107
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Finding a tight-binding (TB) model for a desired solid is always a challenge that is of great interest when, e.g., studying transport properties. A method is proposed to construct TB models for solids using machine learning (ML) techniques. The approach is based on the LCAO method in combination with Slater-Koster (SK) integrals, which are used to obtain optimal SK parameters. The lattice constant is used to generate training examples to construct a linear ML model. We successfully used this method to find a TB model for BiTeCl, where spin-orbit coupling plays an essential role in its topological behavior.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000597311900001 Publication Date 2020-12-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.2 Times cited 10 Open Access
  Notes ; This work was supported by the Methusalem program of the Flemish government and was partially supported by BOF (UAntwerpen Grant Reference No. ADPERS/BAP/RS/ 2019). We would like to thank one of the anonymous referees for assisting us in making the paper more accessible to the reader. ; Approved Most recent IF: 3.2; 2020 IF: 2.068
  Call Number UA @ admin @ c:irua:174380 Serial 6691
Permanent link to this record
 

 
Author Zhang, R.; Wu, Z.; Li, X.J.; Li, L.L.; Chen, Q.; Li, Y.-M.; Peeters, F.M.
  Title Fano resonances in bilayer phosphorene nanoring Type A1 Journal article
  Year 2018 Publication Nanotechnology Abbreviated Journal Nanotechnology
  Volume 29 Issue 21 Pages (up) 215202
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Tunable transport properties and Fano resonances are predicted in a circular bilayer phosphorene nanoring. The conductance exhibits Fano resonances with varying incident energy and applied perpendicular magnetic field. These Fano resonance peaks can be accurately fitted with the well known Fano curves. When a magnetic field is applied to the nanoring, the conductance oscillates periodically with magnetic field which is reminiscent of the Aharonov-Bohm effect. Fano resonances are tightly related to the discrete states in the central nanoring, some of which are tunable by the magnetic field.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000428920200001 Publication Date 2018-03-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.44 Times cited 4 Open Access
  Notes ; This work was supported by Grant No. 2017YFA0303400 from the National Key R&D Program of China, the Flemish Science Foundation, the grants No. 2016YFE0110000, No. 2015CB921503, and No. 2016YFA0202300 from the MOST of China, the NSFC (Grants Nos. 11504366, 11434010, 61674145 and 61774168) and CAS (Grants No. QYZDJ-SSW-SYS001). ; Approved Most recent IF: 3.44
  Call Number UA @ lucian @ c:irua:150713UA @ admin @ c:irua:150713 Serial 4968
Permanent link to this record
 

 
Author da Costa, D.R.; Chaves, A.; Farias, G.A.; Peeters, F.M.
  Title Valley filtering in graphene due to substrate-induced mass potential Type A1 Journal article
  Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal
  Volume 29 Issue 21 Pages (up) 215502
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The interaction of monolayer graphene with specific substrates may break its sublattice symmetry and results in unidirectional chiral states with opposite group velocities in the different Dirac cones (Zarenia et al 2012 Phys. Rev. B 86 085451). Taking advantage of this feature, we propose a valley filter based on a transversal mass kink for low energy electrons in graphene, which is obtained by assuming a defect region in the substrate that provides a change in the sign of the substrate-induced mass and thus creates a non-biased channel, perpendicular to the kink, for electron motion. By solving the time-dependent Schrodinger equation for the tight-binding Hamiltonian, we investigate the time evolution of a Gaussian wave packet propagating through such a system and obtain the transport properties of this graphene-based substrate-induced quantum point contact. Our results demonstrate that efficient valley filtering can be obtained, provided: (i) the electron energy is sufficiently low, i.e. with electrons belonging mostly to the lowest sub-band of the channel, and (ii) the channel length (width) is sufficiently long (narrow). Moreover, even though the transmission probabilities for each valley are significantly affected by impurities and defects in the channel region, the valley polarization in this system is shown to be robust against their presence.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000400092700002 Publication Date 2017-04-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 15 Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:152636 Serial 8730
Permanent link to this record
 

 
Author Milošević, M.V.; Kanda, A.; Hatsumi, S.; Peeters, F.M.; Ootuka, Y.
  Title Local current injection into mesoscopic superconductors for the manipulation of quantum states Type A1 Journal article
  Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 103 Issue 21 Pages (up) 217003-217003,4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We perform strategic current injection in a small mesoscopic superconductor and control the (non)equilibrium quantum states in an applied homogeneous magnetic field. In doing so, we realize a current-driven splitting of multiquanta vortices, current-induced transitions between states with different angular momenta, and current-controlled switching between otherwise degenerate quantum states. These fundamental phenomena form the basis for the electronic and logic applications discussed, and are confirmed in both theoretical simulations and multiple-small-tunnel-junction transport measurements.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000272054300044 Publication Date 2009-12-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited 48 Open Access
  Notes Approved Most recent IF: 8.462; 2009 IF: 7.328
  Call Number UA @ lucian @ c:irua:94498 Serial 1826
Permanent link to this record
 

 
Author Conti, S.; Van der Donck, M.; Perali, A.; Peeters, F.M.; Neilson, D.
  Title Doping-dependent switch from one- to two-component superfluidity in coupled electron-hole van der Waals heterostructures Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
  Volume 101 Issue 22 Pages (up) 220504-220506
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The hunt for high-temperature superfluidity has received new impetus from the discovery of atomically thin stable materials. Electron-hole superfluidity in coupled MoSe2-WSe2 monolayers is investigated using a mean-field multiband model that includes band splitting caused by strong spin-orbit coupling. This splitting leads to a large energy misalignment of the electron and hole bands which is strongly modified by interchanging the doping of the monolayers. The choice of doping determines if the superfluidity is tunable from one to two components.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000538941900002 Publication Date 2020-06-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited 12 Open Access
  Notes ; This work was partially supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl), the Methusalem Foundation, and the FLAG-ERA project TRANS2DTMD. We thank A. R. Hamilton and A. Vargas-Paredes for useful discussions. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
  Call Number UA @ admin @ c:irua:170201 Serial 6489
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Peeters, F.M.
  Title Cerenkov emission of terahertz acoustic-phonons from graphene Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 102 Issue 22 Pages (up) 222101-222104
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We present a theoretical study of the electrical generation of acoustic-phonon emission from graphene at room temperature. The drift velocity (v(x)) and temperature of electrons driven by dc electric field (F-x) are determined by solving self-consistently the momentum-and energy-balance equations derived from the Boltzmann equation. We find that in the presence of impurity, acoustic-and optic-phonon scattering, v(x) can be much larger than the longitudinal (v(l)) and transverse (v(t)) sound velocities in graphene even within the linear response regime. As a result, although the acoustic Cerenkov effect cannot be obviously seen in the analytical formulas, the enhanced acoustic-phonon emission can be observed with increasing F-x when v(x) > v(l) and v > v(t). The frequency of acoustic-phonon emission from graphene can be above 10 THz, which is much higher than that generated from conventional semiconductor systems. This study is pertinent to the application of graphene as hypersonic devices such as terahertz sound sources. (C) 2013 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000320621600034 Publication Date 2013-06-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 25 Open Access
  Notes ; This work was supported by the National Natural Science Foundation of China (Grant No. 10974206), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 3.411; 2013 IF: 3.515
  Call Number UA @ lucian @ c:irua:109607 Serial 305
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Li, L.L.; Zhang, C.; Peeters, F.M.
  Title Terahertz plasmon-polariton modes in graphene driven by electric field inside a Fabry-Perot cavity Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 117 Issue 117 Pages (up) 223104
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We present a theoretical study on plasmon-polariton modes in graphene placed inside an optical cavity and driven by a source-to-drain electric field. The electron velocity and electron temperature are determined by solving self-consistently the momentum-and energy-balance equations in which electron interactions with impurities, acoustic-, and optic-phonons are included. Based on many-body self-consistent field theory, we develop a tractable approach to study plasmon-polariton in an electron gas system. We find that when graphene is placed inside a Fabry-Perot cavity, two branches of the plasmon-polariton modes can be observed and these modes are very much optic-or plasmon-like. The frequencies of these modes depend markedly on driving electric field especially at higher resonant frequency regime. Moreover, the plasmon-polariton frequency in graphene is in terahertz (THz) bandwidth and can be tuned by changing the cavity length, gate voltage, and driving electric field. This work is pertinent to the application of graphene-based structures as tunable THz plasmonic devices. (C) 2015 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000356176100004 Publication Date 2015-06-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 13 Open Access
  Notes ; This work was supported by the Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. F.M.P. was a specially appointed Professor for foreign expert at the Chinese Academy of Sciences. ; Approved Most recent IF: 2.068; 2015 IF: 2.183
  Call Number c:irua:127076 Serial 3507
Permanent link to this record
 

 
Author Liu, J.; Xu, W.; Xiao, Y.M.; Ding, L.; Li, H.W.; Peeters, F.M.
  Title Optical spectrum of n-type and p-type monolayer MoS₂ in the presence of proximity-induced interactions Type A1 Journal article
  Year 2023 Publication Journal of applied physics Abbreviated Journal
  Volume 134 Issue 22 Pages (up) 224301-224307
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract In this paper, we examined the effects of proximity-induced interactions such as Rashba spin-orbit coupling and effective Zeeman fields (EZFs) on the optical spectrum of n-type and p-type monolayer (ML)-MoS2. The optical conductivity is evaluated using the standard Kubo formula under random-phase approximation by including the effective electron-electron interaction. It has been found that there exist two absorption peaks in n-type ML-MoS2 and two knife shaped absorptions in p-type ML-MoS2, which are contributed by the inter-subband spin-flip electronic transitions within conduction and valence bands at valleys K and K ' with a lifted valley degeneracy. The optical absorptions in n-type and p-type ML-MoS 2 occur in THz and infrared radiation regimes and the position, height, and shape of them can be effectively tuned by Rashba parameter, EZF parameters, and carrier density. The interesting theoretical predictions in this study would be helpful for the experimental observation of the optical absorption in infrared to THz bandwidths contributed by inter-subband spin-flip electronic transitions in a lifted valley degeneracy monolayer transition metal dichalcogenides system. The obtained results indicate that ML-MoS2 with the platform of proximity interactions make it a promising infrared and THz material for optics and optoelectronics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001135684400003 Publication Date 2023-12-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.2 Times cited Open Access
  Notes Approved Most recent IF: 3.2; 2023 IF: 2.068
  Call Number UA @ admin @ c:irua:202777 Serial 9069
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Chao, X.H.; Peeters, F.M.; Wang, H.B.; Moshchalkov, V.V.; Zhu, B.Y.
  Title Magnetoresistance oscillations in superconducting strips : a Ginzburg-Landau study Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 86 Issue 22 Pages (up) 224504-224508
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Within the time-dependent Ginzburg-Landau theory we study the dynamic properties of current-carrying superconducting strips in the presence of a perpendicular magnetic field. We found pronounced voltage peaks as a function of the magnetic field, the amplitude of which depends both on sample dimensions and external parameters. These voltage oscillations are a consequence of moving vortices, which undergo alternating static and dynamic phases. At higher fields or for high currents, the continuous motion of vortices is responsible for the monotonic background on which the resistance oscillations due to the entry of additional vortices are superimposed. Mechanisms for such vortex-assisted resistance oscillations are discussed. Qualitative changes in the magnetoresistance curves are observed in the presence of random defects, which affect the dynamics of vortices in the system.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000312064300004 Publication Date 2012-12-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 31 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the ESF-NES program. G. R. B. acknowledges support from FWO-Vl. B.Y.Z. acknowledges the support from the MOST 973 Projects No. 2011CBA00110 and No. 2009CB930803, and the National Natural Science Foundation of China. V. V. M. acknowledges support from the Methusalem Funding by the Flemish Government. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
  Call Number UA @ lucian @ c:irua:105969 Serial 1930
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M.
  Title Superconducting transition temperature of Pb nanofilms : impact of thickness-dependent oscillations of the phonon-mediated electron-electron coupling Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 85 Issue 22 Pages (up) 224517-224517,6
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract To date, several experimental groups reported measurements of the thickness dependence of T-c of atomically uniform single-crystalline Pb nanofilms. The reported amplitude of the T-c oscillations varies significantly from one experiment to another. Here we propose that the reason for this unresolved issue is an interplay of the quantum-size variations in the single-electron density of states with thickness-dependent oscillations in the phonon-mediated electron-electron coupling. Such oscillations in the coupling depend on the substrate material, the quality of the interface, the protection cover, and other details of the fabrication process, changing from one experiment to another. This explains why the available data do not exhibit one-voice consistency about the amplitude of the T-c oscillations. Our analyses are based on a numerical solution of the Bogoliubov-de Gennes equations for a superconducting slab.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000305251300006 Publication Date 2012-06-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 24 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
  Call Number UA @ lucian @ c:irua:99076 Serial 3368
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.
  Title Heating of quasiparticles driven by oscillations of the order parameter in short superconducting microbridges Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 83 Issue 22 Pages (up) 224523-224523,6
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We predict heating of quasiparticles driven by order parameter oscillations in the resistive state of short superconducting microbridges. The finite relaxation time of the magnitude of the order parameter |Δ| and the dependence of the spectral functions both on |Δ| and the supervelocity Q are the origin of this effect. Our results are opposite to those of Aslamazov and Larkin [ Zh. Eks. Teor. Fiz. 70 1340 (1976)] and Schmid et al. [ Phys. Rev. B 21 5076 (1980)] where cooling of quasiparticles was found.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000292218200010 Publication Date 2011-06-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 4 Open Access
  Notes ; This work was supported by the Russian Foundation for Basic Research, Russian Agency of Education under the Federal Target Programme “Scientific and educational personnel of innovative Russia in 2009-2013,” Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
  Call Number UA @ lucian @ c:irua:90924 Serial 1415
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Bahlouli, H.; Peeters, F.M.
  Title Theoretical study of electronic transport properties of a graphene-silicene bilayer Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 117 Issue 117 Pages (up) 225101
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Electronic transport properties of a graphene-silicene bilayer system are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Depending on the energy of the electrons, the transmission can be larger in this system as compared to the sum of the transmissions of separated graphene and silicene monolayers. This effect is related to the increased electron density of states in the bilayer sample. At some energies, the electronic states become localized in one of the layers, resulting in the suppression of the electron transmission. The effect of an applied voltage on the transmission becomes more pronounced in the layered sample as compared to graphene due to the larger variation of the electrostatic potential profile. Our findings will be useful when creating hybrid nanoscale devices where enhanced transport properties will be desirable. (C) 2015 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000356176100040 Publication Date 2015-06-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 10 Open Access
  Notes ; H. B. and F. M. P. acknowledge support from King Fahd University of Petroleum and Minerals, Saudi Arabia, under the RG1329-1 and RG1329-2 DSR Projects. ; Approved Most recent IF: 2.068; 2015 IF: 2.183
  Call Number c:irua:127075 Serial 3611
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Mortazavi, B.; Ahzi, S.; Peeters, F.M.; Khraisheh, M.K.
  Title Effect of straining graphene on nanopore creation using Si cluster bombardment: A reactive atomistic investigation Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 120 Issue 120 Pages (up) 225108
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Graphene nanosheets have recently received a revival of interest as a new class of ultrathin, high-flux, and energy-efficient sieving membranes because of their unique two-dimensional and atomically thin structure, good flexibility, and outstanding mechanical properties. However, for practical applications of graphene for advanced water purification and desalination technologies, the creation of well controlled, high-density, and subnanometer diameter pores becomes a key factor. Here, we conduct reactive force-field molecular dynamics simulations to study the effect of external strain on nanopore creation in the suspended graphene by bombardment with Si clusters. Depending on the size and energy of the clusters, different kinds of topography were observed in the graphene sheet. In all the considered conditions, tensile strain results in the creation of nanopores with regular shape and smooth edges. On the contrary, compressive strain increases the elastic response of graphene to irradiation that leads to the formation of net-like defective structures with predominantly carbon atom chains. Our findings show the possibility of creating controlled nanopores in strained graphene by bombardment with Si clusters. Published by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000391535900022 Publication Date 2016-12-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 10 Open Access
  Notes ; ; Approved Most recent IF: 2.068
  Call Number UA @ lucian @ c:irua:141451 Serial 4554
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M.
  Title Comment on “Chiral tunneling in trilayer graphene” [Appl. Phys. Lett. 100, 163102 (2012)] Type Editorial
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 101 Issue 22 Pages (up) 226101-1
  Keywords Editorial; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Amer inst physics Place of Publication Melville Editor
  Language Wos 000311967000107 Publication Date 2012-11-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 7 Open Access
  Notes ; ; Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:105999 Serial 408
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
  Title Vortex-antivortex nucleation in magnetically nanotextured superconductors: magnetic-field-driven and thermal scenarios Type A1 Journal article
  Year 2005 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 94 Issue Pages (up) 227001,1-4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000229700800059 Publication Date 2005-06-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited 48 Open Access
  Notes Approved Most recent IF: 8.462; 2005 IF: 7.489
  Call Number UA @ lucian @ c:irua:57243 Serial 3859
Permanent link to this record
 

 
Author Costamagna, S.; Schulz, A.; Covaci, L.; Peeters, F.
  Title Partially unzipped carbon nanotubes as magnetic field sensors Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 100 Issue 23 Pages (up) 232104-232104,3
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The conductance through graphene nanoribbons (GNR) connected to a partially unzipped carbon nanotube (CNT) is studied in the presence of an external magnetic field applied parallel to the long axis of the tube by means of non-equilibrium Green's function technique. We consider CNTs that are partially unzipped to form armchair-GNR/zigzag-CNT/armchair-GNR or zigzag-GNR/armchair-CNT/zigzag-GNR junctions. We find that the inclusion of a longitudinal magnetic field affects the electronic states only in the CNT region, leading to the suppression of the conductance at low energies. We demonstrate that both types of junctions can be used as magnetic field sensors. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726039]
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000305089900038 Publication Date 2012-06-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 10 Open Access
  Notes ; L.C. acknowledges support from the Flemish Science Foundation (FWO-Vl) and S.C. from the Belgian Science Foundation (BELSPO). This work is supported by the ESF-EuroGRAPHENE Project CONGRAN. ; Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:99083 Serial 2556
Permanent link to this record
 

 
Author da Silva, R.M.; Milošević, M.V.; Dominguez, D.; Peeters, F.M.; Albino Aguiar, J.
  Title Distinct magnetic signatures of fractional vortex configurations in multiband superconductors Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 105 Issue 23 Pages (up) 232601
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors. (C) 2014 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000346266000066 Publication Date 2014-12-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 22 Open Access
  Notes ; This work was supported by the Brazilian science agencies CAPES (Grant No. PNPD 223038.003145/2011-00), CNPq (Grant Nos. 307552/2012-8, 141911/2012-3, and APV-4 02937/2013-9), and FACEPE (Grant Nos. APQ-0202-1.05/10 and BCT-0278-1.05/ 11), the Research Foundation Flanders (FWO-Vlaanderen), and by the CNPq-FWO cooperation programme (CNPq Grant No. 490297/2009-9). D.D. acknowledges support from CONICET, CNEA, and ANPCyT-PICT2011-1537. The authors thank A. A. Shanenko for extensive discussions on the topic. ; Approved Most recent IF: 3.411; 2014 IF: 3.302
  Call Number UA @ lucian @ c:irua:122775 Serial 742
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S.
  Title Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 97 Issue 23 Pages (up) 233109,1-233109,3
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The thermal stability of graphene/graphane nanoribbons (GGNRs) is investigated using density functional theory. It is found that the energy barriers for the diffusion of hydrogen atoms on the zigzag and armchair interfaces of GGNRs are 2.86 and 3.17 eV, respectively, while the diffusion barrier of an isolated H atom on pristine graphene was only ∼ 0.3 eV. These results unambiguously demonstrate that the thermal stability of GGNRs can be enhanced significantly by increasing the hydrogen diffusion barriers through graphene/graphane interface engineering. This may provide new insights for viable applications of GGNRs.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000285364000067 Publication Date 2010-12-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 43 Open Access
  Notes ; The financial supports by the Vice-Chancellor's Postdoctoral Research Fellowship Program of the University of New South Wales (SIR50/PS19184), the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP) are acknowledged. A.D.H. acknowledges also support from ANPCyT (Grant No. PICT2008-2236) and the collaborative project FWO-MINCyT (FW/08/01). ; Approved Most recent IF: 3.411; 2010 IF: 3.841
  Call Number UA @ lucian @ c:irua:86972 Serial 1056
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M.
  Title Stark shift in single and vertically coupled type-I and type-II quantum dots Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 65 Issue 23 Pages (up) 233301,1-4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000176767900018 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 43 Open Access
  Notes Approved Most recent IF: 3.836; 2002 IF: NA
  Call Number UA @ lucian @ c:irua:62431 Serial 3150
Permanent link to this record
 

 
Author Anisimovas, E.; Peeters, F.M.
  Title Correlated few-particle states in artificial bipolar molecule Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 65 Issue 23 Pages (up) 233302-233304
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate the ground and excited states of a bipolar artificial molecule composed of two vertically coupled quantum dots containing different type of carriers-electrons and holes-in equilibrium. The approach based on exact diagonalization is used and reveals an intricate pattern of ground-state angular momentum switching and a rearrangement of approximate single-particle levels as a function of the interdot coupling strength.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000176767900019 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 14 Open Access
  Notes Approved Most recent IF: 3.836; 2002 IF: NA
  Call Number UA @ lucian @ c:irua:104154 Serial 519
Permanent link to this record
 

 
Author Novoselov, K.S.; Geim, A.K.; Dubonos, S.V.; Cornelissens, Y.G.; Peeters, F.M.; Maan, J.C.
  Title Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 65 Issue 23 Pages (up) 233312-233314
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We report quenching of the Hall effect with increasing magnetic field confined in a micron-sized spot. Such fields were created by placing tall ferromagnetic pillars on top of a two-dimensional electron gas, which allowed us to achieve the field strength up to 0.4 T under the pillars in the absence of external field. The quenching is accompanied by an anomalous increase in resistance and occurs when the cyclotron diameter matches the size of the magnetic spot. The results are explained by a rapid increase in the number of electrons that are scattered or quasilocalized by the magnetic region.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000176767900029 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 38 Open Access
  Notes Approved Most recent IF: 3.836; 2002 IF: NA
  Call Number UA @ lucian @ c:irua:103349 Serial 2949
Permanent link to this record
 

 
Author Milovanović, S.P.; Masir, M.R.; Peeters, F.M.
  Title Spectroscopy of snake states using a graphene Hall bar Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 103 Issue 23 Pages (up) 233502-233504
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract An approach to observe snake states in a graphene Hall bar containing a pn-junction is proposed. The magnetic field dependence of the bend resistance in a ballistic graphene Hall bar structure containing a tilted pn-junction oscillates as a function of applied magnetic field. We show that each oscillation is due to a specific snake state that moves along the pn-interface. Furthermore, depending on the value of the magnetic field and applied potential, we can control the lead in which the electrons will end up and hence control the response of the system.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000328634900090 Publication Date 2013-12-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 15 Open Access
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 3.411; 2013 IF: 3.515
  Call Number UA @ lucian @ c:irua:113710 Serial 3074
Permanent link to this record
 

 
Author Chang, K.; Li, S.S.; Xia, J.B.; Peeters, F.M.
  Title Electron and hole states in diluted magnetic semiconductor quantum dots Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 69 Issue Pages (up) 235203,1-8
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000222531400048 Publication Date 2004-06-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 32 Open Access
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
  Call Number UA @ lucian @ c:irua:69386 Serial 907
Permanent link to this record
 

 
Author Riva, C.; Peeters, F.M.; Varga, K.
  Title Positively charged magneto-excitons in a semiconductor quantum well Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 64 Issue Pages (up) 235301
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000172867900085 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 25 Open Access
  Notes Approved Most recent IF: 3.836; 2001 IF: NA
  Call Number UA @ lucian @ c:irua:37279 Serial 2679
Permanent link to this record
 

 
Author Szafran, B.; Nowak, M.P.; Bednarek, S.; Chwiej, T.; Peeters, F.M.
  Title Selective suppression of Dresselhaus or Rashba spin-orbit coupling effects by the Zeeman interaction in quantum dots Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
  Volume 79 Issue 23 Pages (up) 235303,1-235303,13
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We study single- and two-electron parabolic quantum dots in the presence of linear Dresselhaus and Rashba spin-orbit interactions. Contributions of both types of spin-orbit coupling are investigated in the context of the spin polarization of the system at high magnetic fields. We demonstrate that for negative Landé factors the effect of the Dresselhaus coupling is suppressed at high magnetic field, which for structures without inversion asymmetry leads to a completely spin-polarized system and a strict antisymmetry of the wave functions with respect to the interchange of spatial-electron coordinates. For negative Landé factor the Rashba coupling is preserved at high field and consequently the spin polarization of the systems as well as the spatial antisymmetry of the two-electron wave function remain approximate.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000267699500073 Publication Date 2009-06-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 13 Open Access
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
  Call Number UA @ lucian @ c:irua:77691 Serial 2969
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: