|   | 
Details
   web
Records
Author Guttmann, P.; Bittencourt, C.; Rehbein, S.; Umek, P.; Ke, X.; Van Tendeloo, G.; Ewels, C.P.; Schneider, G.
Title Nanoscale spectroscopy with polarized X-rays by NEXAFS-TXM Type A1 Journal article
Year 2012 Publication Nature photonics Abbreviated Journal Nat Photonics
Volume 6 Issue 1 Pages 25-29
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Near-edge X-ray absorption spectroscopy (NEXAFS)1 is an essential analytical tool in material science. Combining NEXAFS with scanning transmission X-ray microscopy (STXM) adds spatial resolution and the possibility to study individual nanostructures2, 3. Here, we describe a full-field transmission X-ray microscope (TXM) that generates high-resolution, large-area NEXAFS data with a collection rate two orders of magnitude faster than is possible with STXM. The TXM optical design combines a spectral resolution of E/ΔE = 1 × 104 with a spatial resolution of 25 nm in a field of view of 1520 µm and a data acquisition time of ~1 s. As an example, we present image stacks and polarization-dependent NEXAFS spectra from individual anisotropic sodium and protonated titanate nanoribbons. Our NEXAFS-TXM technique has the advantage that one image stack visualizes a large number of nanostructures and therefore already contains statistical information. This new high-resolution NEXAFS-TXM technique opens the way to advanced nanoscale science studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298416200011 Publication Date 2011-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1749-4885;1749-4893; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 37.852 Times cited 76 Open Access
Notes Approved Most recent IF: 37.852; 2012 IF: 27.254
Call Number UA @ lucian @ c:irua:94198 Serial 2272
Permanent link to this record
 

 
Author Talgorn, E.; Gao, Y.; Aerts, M.; Kunneman, L.T.; Schins, J.M.; Savenije, T.J.; van Huis, M.A.; van der Zant, H.S.J.; Houtepen, A.J.; Siebbeles, L.D.A.
Title Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids Type A1 Journal article
Year 2011 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol
Volume 6 Issue 11 Pages 733-739
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electronhole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000296737300012 Publication Date 2011-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-3387;1748-3395; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 38.986 Times cited 129 Open Access
Notes Approved Most recent IF: 38.986; 2011 IF: 27.270
Call Number UA @ lucian @ c:irua:93296 Serial 3813
Permanent link to this record
 

 
Author Van Aert, S.; Batenburg, K.J.; Rossell, M.D.; Erni, R.; Van Tendeloo, G.
Title Three-dimensional atomic imaging of crystalline nanoparticles Type A1 Journal article
Year 2011 Publication Nature Abbreviated Journal Nature
Volume 470 Issue 7334 Pages 374-377
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Determining the three-dimensional (3D) arrangement of atoms in crystalline nanoparticles is important for nanometre-scale device engineering and also for applications involving nanoparticles, such as optoelectronics or catalysis. A nanoparticles physical and chemical properties are controlled by its exact 3D morphology, structure and composition1. Electron tomography enables the recovery of the shape of a nanoparticle from a series of projection images2, 3, 4. Although atomic-resolution electron microscopy has been feasible for nearly four decades, neither electron tomography nor any other experimental technique has yet demonstrated atomic resolution in three dimensions. Here we report the 3D reconstruction of a complex crystalline nanoparticle at atomic resolution. To achieve this, we combined aberration-corrected scanning transmission electron microscopy5, 6, 7, statistical parameter estimation theory8, 9 and discrete tomography10, 11. Unlike conventional electron tomography, only two images of the targeta silver nanoparticle embedded in an aluminium matrixare sufficient for the reconstruction when combined with available knowledge about the particles crystallographic structure. Additional projections confirm the reliability of the result. The results we present help close the gap between the atomic resolution achievable in two-dimensional electron micrographs and the coarser resolution that has hitherto been obtained by conventional electron tomography.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000287409100037 Publication Date 2011-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836;1476-4687; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 40.137 Times cited 341 Open Access
Notes Esteem 026019 Approved Most recent IF: 40.137; 2011 IF: 36.280
Call Number UA @ lucian @ c:irua:86745 Serial 3644
Permanent link to this record
 

 
Author Verbeeck, J.; Tian, H.; Schattschneider, P.
Title Production and application of electron vortex beams Type A1 Journal article
Year 2010 Publication Nature Abbreviated Journal Nature
Volume 467 Issue 7313 Pages 301-304
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Vortex beams (also known as beams with a phase singularity) consist of spiralling wavefronts that give rise to angular momentum around the propagation direction. Vortex photon beams are widely used in applications such as optical tweezers to manipulate micrometre-sized particles and in micro-motors to provide angular momentum1, 2, improving channel capacity in optical3 and radio-wave4 information transfer, astrophysics5 and so on6. Very recently, an experimental realization of vortex beams formed of electrons was demonstrated7. Here we describe the creation of vortex electron beams, making use of a versatile holographic reconstruction technique in a transmission electron microscope. This technique is a reproducible method of creating vortex electron beams in a conventional electron microscope. We demonstrate how they may be used in electron energy-loss spectroscopy to detect the magnetic state of materials and describe their properties. Our results show that electron vortex beams hold promise for new applications, in particular for analysing and manipulating nanomaterials, and can be easily produced.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000281824900033 Publication Date 2010-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836;1476-4687; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 40.137 Times cited 626 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 40.137; 2010 IF: 36.104
Call Number UA @ lucian @ c:irua:84878UA @ admin @ c:irua:84878 Serial 2720
Permanent link to this record
 

 
Author Tirry, W.; Schryvers, D.
Title Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain Type A1 Journal article
Year 2009 Publication Nature materials Abbreviated Journal Nat Mater
Volume 8 Issue 9 Pages 752-757
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract NiTi is one of the most popular shape-memory alloys, a phenomenon resulting from a martensitic transformation. Commercial NiTi-based alloys are often thermally treated to contain Ni4Ti3 precipitates. The presence of these precipitates can introduce an extra transformation step related to the so-called R-phase. It is believed that the strain field surrounding the precipitates, caused by the matrixprecipitate lattice mismatch, lies at the origin of this intermediate transformation step. Atomic-resolution transmission electron microscopy in combination with geometrical phase analysis is used to measure the elastic strain field surrounding these precipitates. By combining measurements from two different crystallographic directions, the three-dimensional strain matrix is determined from two-dimensional measurements. Comparison of the measured strain matrix to the eigenstrain of the R-phase shows that both are very similar and that the introduction of the R-phase might indeed compensate the elastic strain introduced by the precipitate.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000269215500022 Publication Date 2009-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122;1476-4660; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 53 Open Access
Notes Multimat Approved Most recent IF: 39.737; 2009 IF: 29.504
Call Number UA @ lucian @ c:irua:77657 Serial 1822
Permanent link to this record
 

 
Author Huijben, M.; Rijnders, G.; Blank, D.H.A.; Bals, S.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Brinkman, A.; Hilgenkamp, H.
Title Electronically coupled complementary interfaces between perovskite band insulators Type A1 Journal article
Year 2006 Publication Nature materials Abbreviated Journal Nat Mater
Volume 5 Issue Pages 556-560
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000238708900021 Publication Date 2006-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122;1476-4660; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 315 Open Access
Notes Fwo Approved Most recent IF: 39.737; 2006 IF: 19.194
Call Number UA @ lucian @ c:irua:59713UA @ admin @ c:irua:59713 Serial 1019
Permanent link to this record
 

 
Author Moshnyaga, V.; Damaschke, B.; Shapoval, O.; Belenchuk, A.; Faupel, J.; Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Mücksch, M.; Tsurkan, V.; Tidecks, R.; Samwer, K.
Title Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1-x:(MgO)x nanocomposite films Type A1 Journal article
Year 2003 Publication Nature materials Abbreviated Journal Nat Mater
Volume 2 Issue 4 Pages 247-252
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract 'Colossal magnetoresistance' in perovskite manganites such as La0.7Ca0.3MnO3 (LCMO), is caused by the interplay of ferro-paramagnetic, metal-insulator and structural phase transitions. Moreover, different electronic phases can coexist on a very fine scale resulting in percolative electron transport. Here we report on (LCMO)(1-x):(MgO)(x) (0 < x less than or equal to 0.8) epitaxial nano-composite films in which the structure and magnetotransport properties of the manganite nanoclusters can be tuned by the tensile stress originating from the MgO second phase. With increasing x, the lattice of LCMO was found to expand, yielding a bulk tensile strain. The largest colossal magnetoresistance of 10(5)% was observed at the percolation threshold in the conductivity at x(c) approximate to 0.3, which is coupled to a structural phase transition from orthorhombic (0 < x less than or equal to 0.1) to rhombohedral R (3) over barc structure (0.33 less than or equal to x less than or equal to 0.8). An increase of the Curie temperature for the R (3) over barc phase was observed. These results may provide a general method for controlling the magnetotransport properties of manganite-based composite films by appropriate choice of the second phase.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000182052700022 Publication Date 2003-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122;1476-4660; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 177 Open Access
Notes Approved Most recent IF: 39.737; 2003 IF: 10.778
Call Number UA @ lucian @ c:irua:54855 Serial 3247
Permanent link to this record
 

 
Author Geim, A.K.; Dubonos, S.V.; Grigorieva, I.V.; Novoselov, K.S.; Peeters, F.M.; Schweigert, V.A.
Title Non-quantized penetration of magnetic field in the vortex state of superconductors Type A1 Journal article
Year 2000 Publication Nature Abbreviated Journal Nature
Volume 407 Issue Pages 55-57
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000089124000037 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 40.137 Times cited 155 Open Access
Notes Approved Most recent IF: 40.137; 2000 IF: 25.814
Call Number UA @ lucian @ c:irua:34356 Serial 2350
Permanent link to this record
 

 
Author Loquet, J.-P.; Perret, J.; Fompeyrine, J.; Mächler, E.; Seo, J.W.; Van Tendeloo, G.
Title Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain Type A1 Journal article
Year 1998 Publication Nature Abbreviated Journal Nature
Volume 394 Issue Pages 453-456
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000075080400044 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 40.137 Times cited 404 Open Access
Notes Approved Most recent IF: 40.137; 1998 IF: 28.833
Call Number UA @ lucian @ c:irua:25676 Serial 757
Permanent link to this record
 

 
Author Morad, V.; Stelmakh, A.; Svyrydenko, M.; Feld, L.G.; Boehme, S.C.; Aebli, M.; Affolter, J.; Kaul, C.J.; Schrenker, N.J.; Bals, S.; Sahin, Y.; Dirin, D.N.; Cherniukh, I.; Raino, G.; Baumketner, A.; Kovalenko, M.V.
Title Designer phospholipid capping ligands for soft metal halide nanocrystals Type A1 Journal article
Year 2024 Publication Nature Abbreviated Journal
Volume 626 Issue Pages 542-548
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission. Phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites and lead-free metal halide nanocrystals, which then exhibit enhanced robustness and optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001176943100001 Publication Date 2023-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836; 1476-4687 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 64.8 Times cited Open Access
Notes Approved Most recent IF: 64.8; 2024 IF: 40.137
Call Number UA @ admin @ c:irua:204796 Serial 9144
Permanent link to this record
 

 
Author Wahab, O.J.; Daviddi, E.; Xin, B.; Sun, P.Z.; Griffin, E.; Colburn, A.W.; Barry, D.; Yagmurcukardes, M.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M.; Unwin, P.R.
Title Proton transport through nanoscale corrugations in two-dimensional crystals Type A1 Journal article
Year 2023 Publication Nature Abbreviated Journal
Volume 620 Issue 7975 Pages 1-17
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Defect-free graphene is impermeable to all atoms(1-5) and ions(6,7) under ambient conditions. Experiments that can resolve gas flows of a few atoms per hour through micrometre-sized membranes found that monocrystalline graphene is completely impermeable to helium, the smallest atom(2,5). Such membranes were also shown to be impermeable to all ions, including the smallest one, lithium(6,7). By contrast, graphene was reported to be highly permeable to protons, nuclei of hydrogen atoms(8,9). There is no consensus, however, either on the mechanism behind the unexpectedly high proton permeability(10-14) or even on whether it requires defects in graphene's crystal lattice(6,8,15-17). Here, using high-resolution scanning electrochemical cell microscopy, we show that, although proton permeation through mechanically exfoliated monolayers of graphene and hexagonal boron nitride cannot be attributed to any structural defects, nanoscale non-flatness of two-dimensional membranes greatly facilitates proton transport. The spatial distribution of proton currents visualized by scanning electrochemical cell microscopy reveals marked inhomogeneities that are strongly correlated with nanoscale wrinkles and other features where strain is accumulated. Our results highlight nanoscale morphology as an important parameter enabling proton transport through two-dimensional crystals, mostly considered and modelled as flat, and indicate that strain and curvature can be used as additional degrees of freedom to control the proton permeability of two-dimensional materials. A study using high-resolution scanning electrochemical cell microscopy attributes proton permeation through defect-free graphene and hexagonal boron nitride to transport across areas of the structure that are under strain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001153630400007 Publication Date 2023-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836; 1476-4687 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 64.8 Times cited Open Access
Notes Approved Most recent IF: 64.8; 2023 IF: 40.137
Call Number UA @ admin @ c:irua:203827 Serial 9078
Permanent link to this record
 

 
Author Van Echelpoel, R.; De Wael, K.
Title Voltammetric drug testing makes sense at the border Type A1 Journal article
Year 2024 Publication Nature Reviews Chemistry Abbreviated Journal
Volume Issue Pages 1-2
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The European BorderSens project leverages voltammetric sensors, developed with end-users' input, to rapidly and accurately detect illicit drugs. By embracing practicalities and validation, this technology has the potential to combat the illicit drug problem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001142000900001 Publication Date 2024-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-3358 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202646 Serial 9112
Permanent link to this record
 

 
Author Johnson, G.; Yang, M.Y.; Liu, C.; Zhou, H.; Zuo, X.; Dickie, D.A.; Wang, S.; Gao, W.; Anaclet, B.; Perras, F.A.; Ma, F.; Zeng, C.; Wang, D.; Bals, S.; Dai, S.; Xu, Z.; Liu, G.; Goddard III, W.A.; Zhang, S.
Title Nanocluster superstructures assembled via surface ligand switching at high temperature Type A1 Journal article
Year 2023 Publication Nature synthesis Abbreviated Journal
Volume 2 Issue 9 Pages 828-837
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Superstructures with nanoscale building blocks, when coupled with precise control of the constituent units, open opportunities in rationally designing and manufacturing desired functional materials. Yet, synthetic strategies for the large-scale production of superstructures are scarce. We report a scalable and generalized approach to synthesizing superstructures assembled from atomically precise Ce24O28(OH)8 and other rare-earth metal-oxide nanoclusters alongside a detailed description of the self-assembly mechanism. Combining operando small-angle X-ray scattering, ex situ molecular and structural characterizations, and molecular dynamics simulations indicates that a high-temperature ligand-switching mechanism, from oleate to benzoate, governs the formation of the nanocluster assembly. The chemical tuning of surface ligands controls superstructure disassembly and reassembly, and furthermore, enables the synthesis of multicomponent superstructures. This synthetic approach, and the accurate mechanistic understanding, are promising for the preparation of superstructures for use in electronics, plasmonics, magnetics and catalysis. Synthesizing superstructures with precisely controlled nanoscale building blocks is challenging. Here the assembly of superstructures is reported from atomically precise Ce24O28(OH)8 and other rare-earth metal-oxide nanoclusters and their multicomponent combinations. A high-temperature ligand-switching mechanism controls the self-assembly.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001124824000001 Publication Date 2023-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202180 Serial 9060
Permanent link to this record
 

 
Author Cui, W.; Lin, W.; Lu, W.; Liu, C.; Gao, Z.; Ma, H.; Zhao, W.; Van Tendeloo, G.; Zhao, W.; Zhang, Q.; Sang, X.
Title Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal
Volume 14 Issue 1 Pages 554-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Weak interlayer van der Waals (vdW) bonding has significant impact on the surface/interface structure, electronic properties, and transport properties of vdW layered materials. Unraveling the complex atomistic dynamics and structural evolution at vdW surfaces is therefore critical for the design and synthesis of the next-generation vdW layered materials. Here, we show that Ge/Bi cation diffusion along the vdW gap in layered GeBi2Te4 (GBT) can be directly observed using in situ heating scanning transmission electron microscopy (STEM). The cation concentration variation during diffusion was correlated with the local Te-6 octahedron distortion based on a quantitative analysis of the atomic column intensity and position in time-elapsed STEM images. The in-plane cation diffusion leads to out-of-plane surface etching through complex structural evolutions involving the formation and propagation of a non-centrosymmetric GeTe2 triple layer surface reconstruction on fresh vdW surfaces, and GBT subsurface reconstruction from a septuple layer to a quintuple layer. Our results provide atomistic insight into the cation diffusion and surface reconstruction in vdW layered materials. Weak interlayer van der Waals (vdW) bonding has significant impact on the structure and properties of vdW layered materials. Here authors use in-situ aberration-corrected ADF-STEM for an atomistic insight into the cation diffusion in the vdW gaps and the etching of vdW surfaces at high temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001076227200001 Publication Date 2023-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited Open Access
Notes Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number UA @ admin @ c:irua:201342 Serial 9021
Permanent link to this record
 

 
Author Huang, S.; Griffin, E.; Cai, J.; Xin, B.; Tong, J.; Fu, Y.; Kravets, V.; Peeters, F.M.; Lozada-Hidalgo, M.
Title Gate-controlled suppression of light-driven proton transport through graphene electrodes Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal
Volume 14 Issue 1 Pages 6932-6937
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Recent experiments demonstrated that proton transport through graphene electrodes can be accelerated by over an order of magnitude with low intensity illumination. Here we show that this photo-effect can be suppressed for a tuneable fraction of the infra-red spectrum by applying a voltage bias. Using photocurrent measurements and Raman spectroscopy, we show that such fraction can be selected by tuning the Fermi energy of electrons in graphene with a bias, a phenomenon controlled by Pauli blocking of photo-excited electrons. These findings demonstrate a dependence between graphene's electronic and proton transport properties and provide fundamental insights into molecularly thin electrode-electrolyte interfaces and their interaction with light. Recent experiments have shown that proton transport through graphene electrodes can be promoted by light, but the understanding of this phenomenon remains unclear. Here, the authors report the electrical tunability of this photo-effect, showing a connection between graphene electronic and proton transport properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001094448600003 Publication Date 2023-10-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 16.6 Times cited Open Access
Notes Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number UA @ admin @ c:irua:201185 Serial 9041
Permanent link to this record
 

 
Author Sasaki, S.; Giri, S.; Cassidy, S.J.; Dey, S.; Batuk, M.; Vandemeulebroucke, D.; Cibin, G.; Smith, R.I.; Holdship, P.; Grey, C.P.; Hadermann, J.; Clarke, S.J.
Title Anion redox as a means to derive layered manganese oxychalcogenides with exotic intergrowth structures Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal
Volume 14 Issue 1 Pages 2917-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Topochemistry enables step-by-step conversions of solid-state materials often leading to metastable structures that retain initial structural motifs. Recent advances in this field revealed many examples where relatively bulky anionic constituents were actively involved in redox reactions during (de)intercalation processes. Such reactions are often accompanied by anion-anion bond formation, which heralds possibilities to design novel structure types disparate from known precursors, in a controlled manner. Here we present the multistep conversion of layered oxychalcogenides Sr(2)MnO(2)Cu(1.5)Ch(2) (Ch=S, Se) into Cu-deintercalated phases where antifluorite type [Cu(1.5)Ch(2)](2.5-) slabs collapsed into two-dimensional arrays of chalcogen dimers. The collapse of the chalcogenide layers on deintercalation led to various stacking types of Sr(2)MnO(2)Ch(2) slabs, which formed polychalcogenide structures unattainable by conventional high-temperature syntheses. Anion-redox topochemistry is demonstrated to be of interest not only for electrochemical applications but also as a means to design complex layered architectures. Low temperature chemical transformations of solids using high-energy intermediates have enabled the synthesis of a new series of layered oxide chalcogenide containing oxidised chalcogenide dimers promising a new range of solids.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001024186000011 Publication Date 2023-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number UA @ admin @ c:irua:199281 Serial 8832
Permanent link to this record
 

 
Author Yang, S.; An, H.; Arnouts, S.; Wang, H.; Yu, X.; de Ruiter, J.; Bals, S.; Altantzis, T.; Weckhuysen, B.M.; van der Stam, W.
Title Halide-guided active site exposure in bismuth electrocatalysts for selective CO₂ conversion into formic acid Type A1 Journal article
Year 2023 Publication Nature Catalysis Abbreviated Journal
Volume 6 Issue 9 Pages 796-806
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract It remains a challenge to identify the active sites of bismuth catalysts in the electrochemical CO2 reduction reaction. Here we show through in situ characterization that the activation of bismuth oxyhalide electrocatalysts to metallic bismuth is guided by the halides. In situ X-ray diffraction results show that bromide promotes the selective exposure of planar bismuth surfaces, whereas chloride and iodide result in more disordered active sites. Furthermore, we find that bromide-activated bismuth catalysts outperform the chloride and iodide counterparts, achieving high current density (>100 mA cm(-2)) and formic acid selectivity (>90%), suggesting that planar bismuth surfaces are more active for the electrochemical CO2 reduction reaction. In addition, in situ X-ray absorption spectroscopy measurements reveal that the reconstruction proceeds rapidly in chloride-activated bismuth and gradually when bromide is present, facilitating the formation of ordered planar surfaces. These findings show the pivotal role of halogens on selective facet exposure in activated bismuth-based electrocatalysts during the electrochemical CO2 reduction reaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001050367400001 Publication Date 2023-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2520-1158 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 37.8 Times cited 13 Open Access OpenAccess
Notes B.M.W. acknowledges support from the Strategic UU-TU/e Alliance project 'Joint Centre for Chemergy Research' as well as from the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO gravitation programme funded by the Ministry of Education, Culture and Science of the government of the Netherlands. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S.A. and T.A. acknowledge funding from the University of Antwerp Research fund (BOF). We also thank J. Wijten, J. Janssens and T. Prins (all from the Inorganic Chemistry and Catalysis group, Utrecht University) for helpful technical support. S. Deelen (Faculty of Science, Utrecht University) and L. Wu (Inorganic Chemistry and Catalysis group, Utrecht University) are acknowledged for the design of the in situ XRD cell. We also acknowledge B. Detlefs, P. Glatzel and V. Paidi (ESRF) for the support during the HERFD-XANES measurements on the ID26 beamline of the ESRF. Approved Most recent IF: 37.8; 2023 IF: NA
Call Number UA @ admin @ c:irua:199190 Serial 8877
Permanent link to this record
 

 
Author Arteaga Cardona, F.; Jain, N.; Popescu, R.; Busko, D.; Madirov, E.; Arús, B.A.; Gerthsen, D.; De Backer, A.; Bals, S.; Bruns, O.T.; Chmyrov, A.; Van Aert, S.; Richards, B.S.; Hudry, D.
Title Preventing cation intermixing enables 50% quantum yield in sub-15 nm short-wave infrared-emitting rare-earth based core-shell nanocrystals Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal Nat Commun
Volume 14 Issue 1 Pages 4462
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (α-NaYF<sub>4</sub>) or heterogeneous (CaF<sub>2</sub>) shell domains on optically-active α-NaYF<sub>4</sub>:Yb:Er (with and without Ce<sup>3+</sup>co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm<sup>2</sup>; one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001037058500022 Publication Date 2023-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 1 Open Access OpenAccess
Notes D.H. would like to thank Dominique Ectors (Bruker AXS GmbH, Karlsruhe, Germany) for assistance and discussion on the PXRD data and TOPAS evaluations. The authors would like to acknowledge the financial support provided by the Helmholtz Association via: i) the Professorial Recruitment Initiative Funding (B.S.R.); ii) the Research Field Energy – Program Materials and Technologies for the Energy Transition – Topic 1 Photovoltaics (F.A.C., D.B., E.M., B.S.R., D.H.). This project received funding from the European Union’s Horizon 2020 innovation programme under grant agreement 823717. This work was supported by the European Research Council (grant 770887-PICOMETRICS to S.V.A. and Grant 815128-REALNANO to S.B.). The authors acknowledge financial support from the ResearchFoundation Flanders (FWO, Belgium) through project fundings (G.0346.21 N to S.V.A. and S.B.) and a postdoctoral grant (A.D.B.). The authors (B.A.A., O.T.B. and A.C.) acknowledge funding from the Helmholtz Zentrum München, the DFG-Emmy Noether program (BR 5355/2-1) and from the CZI Deep Tissue Imaging (DTI-0000000248). The authors (O.T.B. and D.H.) would like to thank the Helmholtz Imaging (ZT-I-PF-4-038-BENIGN). Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number EMAT @ emat @c:irua:198158 Serial 8808
Permanent link to this record
 

 
Author Vijayakumar, J.; Savchenko, T.M.; Bracher, D.M.; Lumbeeck, G.; Béché, A.; Verbeeck, J.; Vajda, Š.; Nolting, F.; Vaz, Ca.f.; Kleibert, A.
Title Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal Nat Commun
Volume 14 Issue 1 Pages 174
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Understanding chemical reactivity and magnetism of 3<italic>d</italic>transition metal nanoparticles is of fundamental interest for applications in fields ranging from spintronics to catalysis. Here, we present an atomistic picture of the early stage of the oxidation mechanism and its impact on the magnetism of Co nanoparticles. Our experiments reveal a two-step process characterized by (i) the initial formation of small CoO crystallites across the nanoparticle surface, until their coalescence leads to structural completion of the oxide shell passivating the metallic core; (ii) progressive conversion of the CoO shell to Co<sub>3</sub>O<sub>4</sub>and void formation due to the nanoscale Kirkendall effect. The Co nanoparticles remain highly reactive toward oxygen during phase (i), demonstrating the absence of a pressure gap whereby a low reactivity at low pressures is postulated. Our results provide an important benchmark for the development of theoretical models for the chemical reactivity in catalysis and magnetism during metal oxidation at the nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000955726400021 Publication Date 2023-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 1 Open Access OpenAccess
Notes Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 200021160186 2002153540 ; EC | Horizon 2020 Framework Programme, 810310 823717 ; University of Basel | Swiss Nanoscience Institute, P1502 ; This work is funded by Swiss National Foundation (SNF) (Grants. No 200021160186 and 2002153540) and the Swiss Nanoscience Institut (SNI) (Grant No. SNI P1502). S.V. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 810310, which corresponds to the J. Heyrovsky Chair project (“ERA Chair at J. Heyrovský Institute of Physical Chemistry AS CR – The institutional approach towards ERA”). The funders had no role in the preparation of the article. Part of this work was performed at the Surface/Interface: Microscopy (SIM) beamline of the Swiss Light Source (SLS), Paul Scherrer Institut, Villigen, Switzerland. We kindly acknowledge Anja Weber and Elisabeth Müller from PSI for their help in fabricating the sample markers. A.B. and J. Verbeeck received funding from the European Union’s Horizon 2020 Research Infrastructure – Integrating Activities for Advanced Communities under grant agreement No. 823717 – ESTEEM3 reported Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number EMAT @ emat @c:irua:196738 Serial 8804
Permanent link to this record
 

 
Author Chen, H.; Xiong, Y.; Li, J.; Abed, J.; Wang, D.; Pedrazo-Tardajos, A.; Cao, Y.; Zhang, Y.; Wang, Y.; Shakouri, M.; Xiao, Q.; Hu, Y.; Bals, S.; Sargent, E.H.H.; Su, C.-Y.; Yang, Z.
Title Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal Nat Commun
Volume 14 Issue 1 Pages 1719-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Despite the natural abundance and promising properties of Si, there are few examples of crystalline Si-based catalysts. Here, the authors report an epitaxial growth method to construct Co single atoms on Si for light driven CO2 reduction to syngas. Improving the dispersion of active sites simultaneous with the efficient harvest of photons is a key priority for photocatalysis. Crystalline silicon is abundant on Earth and has a suitable bandgap. However, silicon-based photocatalysts combined with metal elements has proved challenging due to silicon's rigid crystal structure and high formation energy. Here we report a solid-state chemistry that produces crystalline silicon with well-dispersed Co atoms. Isolated Co sites in silicon are obtained through the in-situ formation of CoSi2 intermediate nanodomains that function as seeds, leading to the production of Co-incorporating silicon nanocrystals at the CoSi2/Si epitaxial interface. As a result, cobalt-on-silicon single-atom catalysts achieve an external quantum efficiency of 10% for CO2-to-syngas conversion, with CO and H-2 yields of 4.7 mol g((Co))(-1) and 4.4 mol g((Co))(-1), respectively. Moreover, the H-2/CO ratio is tunable between 0.8 and 2. This photocatalyst also achieves a corresponding turnover number of 2 x 10(4) for visible-light-driven CO2 reduction over 6 h, which is over ten times higher than previously reported single-atom photocatalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000962607600018 Publication Date 2023-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 6 Open Access OpenAccess
Notes This work was supported by the National Natural Science Foundation of China (21821003, 21890380, 21905316), Guangdong Natural Science Foundation (2019A1515011748), the Science and Technology Planning Project of Guangdong Province (2019A050510018), Pearl River Recruitment Program of Talent (2019QN01C108), the EU Infrastructure Project EUSMI (Grant No. E190700310), and Sun Yat-sen University. D.W. acknowledges an Individual Fellowship funded by the Marie-Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by grant no. 731019 (EUSMI) and ERC Consolidator grant no. 815128 (REALNANO). This project has received funding from the European Commission Grant (EUSMI E190700310). Synchrotron XAS data described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council (NSERC), the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number UA @ admin @ c:irua:196062 Serial 7932
Permanent link to this record
 

 
Author Zhou, Z.; Tan, Y.; Yang, Q.; Bera, A.; Xiong, Z.; Yagmurcukardes, M.; Kim, M.; Zou, Y.; Wang, G.; Mishchenko, A.; Timokhin, I.; Wang, C.; Wang, H.; Yang, C.; Lu, Y.; Boya, R.; Liao, H.; Haigh, S.; Liu, H.; Peeters, F.M.; Li, Y.; Geim, A.K.; Hu, S.
Title Gas permeation through graphdiyne-based nanoporous membranes Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 4031-4036
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeance. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows. Using isotope and cryogenic temperature measurements, the seemingly conflicting characteristics are explained by a high density of straight-through holes (direct porosity of similar to 0.1%), in which heavy atoms are adsorbed on the walls, partially blocking Knudsen flows. Our work offers important insights into intricate transport mechanisms playing a role at nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000918423100001 Publication Date 2022-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 10 Open Access OpenAccess
Notes Approved Most recent IF: 16.6
Call Number UA @ admin @ c:irua:194402 Serial 7308
Permanent link to this record
 

 
Author Geim, A.K.; Grigorieva, I.V.; Dubonos, S.V.; Lok, J.G.S.; Maan, J.C.; Filippov, A.E.; Peeters, F.M.
Title Phase transitions in individual sub-micrometre superconductors Type A1 Journal article
Year 1997 Publication Nature Abbreviated Journal Nature
Volume 390 Issue Pages 259-262
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1997YG66700054 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 40.137 Times cited 370 Open Access
Notes Approved Most recent IF: 40.137; 1997 IF: 27.368
Call Number UA @ lucian @ c:irua:19265 Serial 2595
Permanent link to this record
 

 
Author Parastaev, A.; Muravev, V.; Osta, E.H.; Kimpel, T.F.; Simons, J.F.M.; van Hoof, A.J.F.; Uslamin, E.; Zhang, L.; Struijs, J.J.C.; Burueva, D.B.; Pokochueva, E.V.; Kovtunov, K.V.; Koptyug, I.V.; Villar-Garcia, I.J.; Escudero, C.; Altantzis, T.; Liu, P.; Béché, A.; Bals, S.; Kosinov, N.; Hensen, E.J.M.
Title Breaking structure sensitivity in CO2 hydrogenation by tuning metal–oxide interfaces in supported cobalt nanoparticles Type A1 Journal article
Year 2022 Publication Nature Catalysis Abbreviated Journal Nat Catal
Volume 5 Issue 11 Pages 1051-1060
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract A high dispersion of the active metal phase of transition metals on oxide supports is important when designing efficient heterogeneous catalysts. Besides nanoparticles, clusters and even single metal atoms can be attractive for a wide range of reactions. However, many industrially relevant catalytic transformations suffer from structure sensitivity, where reducing the size of the metal particles below a certain size substantially lowers catalytic performance. A case in point is the low activity of small cobalt nanoparticles in the hydrogenation of CO and CO2. Here we show how engineering of catalytic sites at the metal–oxide interface in cerium oxide–zirconium dioxide (ceria–zirconia)-supported cobalt can overcome this structure sensitivity. Few-atom cobalt clusters dispersed on 3 nm cobalt(II)-oxide particles stabilized by ceria–zirconia yielded a highly active CO2 methanation catalyst with a specific activity higher than that of larger particles under the same conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000884939300006 Publication Date 2022-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2520-1158 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 37.8 Times cited 32 Open Access OpenAccess
Notes This research was supported by the Applied and Engineering Sciences division of the Netherlands Organization for Scientific Research through the Alliander (now Qirion) Perspective program on Plasma Conversion of CO2. We acknowledge Diamond Light Source for time on beamline B18 under proposal SP20715-1. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO) and T.A. acknowledges funding from the University of Antwerp Research fund (BOF). A.B. received funding from the European Union under grant agreement No 823717 – ESTEEM3. The authors acknowledge funding through the Hercules grant (FWO, University of Antwerp) I003218N “Infrastructure for imaging nanoscale processes in gas/vapour or liquid environments”. I.V.K., D.B.B., and E.V.P. acknowledge the Russian Ministry of Science and Higher Education (contract 075-15-2021-580) for financial support of parahydrogen-based studies. Experiments using synchrotron radiation XPS were performed at the CIRCE beamline at ALBA Synchrotron with the collaboration of ALBA staff. F. Oropeza Palacio and Rim C.J. van de Poll are acknowledged for the help with RPES measurements.; esteem3reported; esteem3jra Approved Most recent IF: 37.8
Call Number EMAT @ emat @c:irua:192068 Serial 7230
Permanent link to this record
 

 
Author Wang, F.; Wang, C.; Chaves, A.; Song, C.; Zhang, G.; Huang, S.; Lei, Y.; Xing, Q.; Mu, L.; Xie, Y.; Yan, H.
Title Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus Type A1 Journal article
Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun
Volume 12 Issue 1 Pages 5628
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Hyperbolic polaritons exhibit large photonic density of states and can be collimated in certain propagation directions. The majority of hyperbolic polaritons are sustained in man-made metamaterials. However, natural-occurring hyperbolic materials also exist. Particularly, natural in-plane hyperbolic polaritons in layered materials have been demonstrated in MoO3 and WTe2, which are based on phonon and plasmon resonances respectively. Here, by determining the anisotropic optical conductivity (dielectric function) through optical spectroscopy, we predict that monolayer black phosphorus naturally hosts hyperbolic exciton-polaritons due to the pronounced in-plane anisotropy and strong exciton resonances. We simultaneously observe a strong and sharp ground state exciton peak and weaker excited states in high quality monolayer samples in the reflection spectrum, which enables us to determine the exciton binding energy of similar to 452 meV. Our work provides another appealing platform for the in-plane natural hyperbolic polaritons, which is based on excitons rather than phonons or plasmons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000698984500003 Publication Date 2021-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 12.124
Call Number UA @ admin @ c:irua:191688 Serial 8404
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.H.; Barry, D.; Xin, B.; Yagmurcukardes, M.; Zhang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M.
Title Wien effect in interfacial water dissociation through proton-permeable graphene electrodes Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 5776-5777
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 10(7) V m(-1), sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O reversible arrow H+ + OH-) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 10(8) V m(-1). The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager's theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000862552600012 Publication Date 2022-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 3 Open Access OpenAccess
Notes Approved Most recent IF: 16.6
Call Number UA @ admin @ c:irua:191575 Serial 7228
Permanent link to this record
 

 
Author Wang, D.; Hermes, M.; Najmr, S.; Tasios, N.; Grau-Carbonell, A.; Liu, Y.; Bals, S.; Dijkstra, M.; Murray, C.B.; van Blaaderen, A.
Title Structural diversity in three-dimensional self-assembly of nanoplatelets by spherical confinement Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 6001-6012
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanoplatelets offer many possibilities to construct advanced materials due to new properties associated with their (semi)two-dimensional shapes. However, precise control of both positional and orientational order of the nanoplatelets in three dimensions, which is required to achieve emerging and collective properties, is challenging to realize. Here, we combine experiments, advanced electron tomography and computer simulations to explore the structure of supraparticles self-assembled from nanoplatelets in slowly drying emulsion droplets. We demonstrate that the rich phase behaviour of nanoplatelets, and its sensitivity to subtle changes in shape and interaction potential can be used to guide the self-assembly into a wide range of different structures, offering precise control over both orientation and position order of the nanoplatelets. Our research is expected to shed light on the design of hierarchically structured metamaterials with distinct shape- and orientation- dependent properties. Nanoplatelets can be used as anisotropic building blocks for constructing novel optoelectronic materials. Here, Wang et al. show a route of assembling nanoplatelets with controllable positional and orientational order in three dimensions facilitated by the surface tension of drying emulsion droplets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000867312100031 Publication Date 2022-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 7 Open Access OpenAccess
Notes We thank A. Kadu, M. Chiappini, F. Rabouw, S. Paliwal, X. Xie, C. Xia and Z. Wang for fruitful discussions. D.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union's Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. M.H. was supported by the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). Y.L. acknowledges the Sustainability project between the faculties of Science and Geosciences of Utrecht University. M.D. acknowledges financial support from European Research Council (Grant No. ERC-2019-ADV-H2020 884902 SoftML). S.B. acknowledges financial support from ERC Consolidator Grant No. 815128 REALNANO. C.B.M. acknowledges support for materials synthesis from the Office of Naval Research Multidisciplinary University Research Initiative Award ONR N00014-18-1-2497. The authors acknowledge the EM square center at Utrecht University for the access to the microscopes. Approved Most recent IF: 16.6
Call Number UA @ admin @ c:irua:191387 Serial 7214
Permanent link to this record
 

 
Author Zhang, H.; Pryds, N.; Park, D.-S.; Gauquelin, N.; Santucci, S.; Christensen, D., V.; Jannis, D.; Chezganov, D.; Rata, D.A.; Insinga, A.R.; Castelli, I.E.; Verbeeck, J.; Lubomirsky, I.; Muralt, P.; Damjanovic, D.; Esposito, V.
Title Atomically engineered interfaces yield extraordinary electrostriction Type A1 Journal article
Year 2022 Publication Nature Abbreviated Journal
Volume 609 Issue 7928 Pages 695-700
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electrostriction is a property of dielectric materials whereby an applied electric field induces a mechanical deformation proportional to the square of that field. The magnitude of the effect is usually minuscule (<10(-19) m(2) V-2 for simple oxides). However, symmetry-breaking phenomena at the interfaces can offer an efficient strategy for the design of new properties(1,2). Here we report an engineered electrostrictive effect via the epitaxial deposition of alternating layers of Gd2O3-doped CeO2 and Er2O3-stabilized delta-Bi2O3 with atomically controlled interfaces on NdGaO3 substrates. The value of the electrostriction coefficient achieved is 2.38 x 10(-14) m(2) V-2, exceeding the best known relaxor ferroelectrics by three orders of magnitude. Our theoretical calculations indicate that this greatly enhanced electrostriction arises from coherent strain imparted by interfacial lattice discontinuity. These artificial heterostructures open a new avenue for the design and manipulation of electrostrictive materials and devices for nano/micro actuation and cutting-edge sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000859073900001 Publication Date 2022-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access OpenAccess
Notes This research was supported by the BioWings project, funded by the European Union’s Horizon 2020, Future and Emerging Technologies programme (grant no. 801267), and by the Danish Council for Independent Research Technology and Production Sciences for the DFF—Research Project 2 (grant no. 48293). N.P. and D.V.C. acknowledge funding from Villum Fonden for the NEED project (no. 00027993) and from the Danish Council for Independent Research Technology and Production Sciences for the DFF—Research Project 3 (grant no. 00069 B). V.E. acknowledges funding from Villum Fonden for the IRIDE project (no. 00022862). N.G. and J.V. acknowledge funding from the GOA project ('Solarpaint') of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. D.J. acknowledges funding from the FWO Project (no. G093417N) from the Flemish Fund for Scientific Research. D.C. acknowledges TOP/BOF funding from the University of Antwerp. This project has received funding from the European Union’s Horizon 2020 Research Infrastructure—Integrating Activities for Advanced Communities—under grant agreement no. 823717-ESTEEM3. We thank T. D. Pomar and A. J. Bergne for English proofreading.; esteem3reported; esteem3TA Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:190576 Serial 7129
Permanent link to this record
 

 
Author Toso, S.; Imran, M.; Mugnaioli, E.; Moliterni, A.; Caliandro, R.; Schrenker, N.J.; Pianetti, A.; Zito, J.; Zaccaria, F.; Wu, Y.; Gemmi, M.; Giannini, C.; Brovelli, S.; Infante, I.; Bals, S.; Manna, L.
Title Halide perovskites as disposable epitaxial templates for the phase-selective synthesis of lead sulfochloride nanocrystals Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 3976-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Colloidal chemistry grants access to a wealth of materials through simple and mild reactions. However, even few elements can combine in a variety of stoichiometries and structures, potentially resulting in impurities or even wrong products. Similar issues have been long addressed in organic chemistry by using reaction-directing groups, that are added to a substrate to promote a specific product and are later removed. Inspired by such approach, we demonstrate the use of CsPbCl3 perovskite nanocrystals to drive the phase-selective synthesis of two yet unexplored lead sulfochlorides: Pb3S2Cl2 and Pb4S3Cl2. When homogeneously nucleated in solution, lead sulfochlorides form Pb3S2Cl2 nanocrystals. Conversely, the presence of CsPbCl3 triggers the formation of Pb4S3Cl2/CsPbCl3 epitaxial heterostructures. The phase selectivity is guaranteed by the continuity of the cationic subnetwork across the interface, a condition not met in a hypothetical Pb3S2Cl2/CsPbCl3 heterostructure. The perovskite domain is then etched, delivering phase-pure Pb4S3Cl2 nanocrystals that could not be synthesized directly. Phase-selective approaches, such using reaction-directing groups, are often seen in traditional organic chemistry and catalysis. Here authors use perovskite nanocrystals as disposable templates to drive the phase-selective synthesis of two colloidal nanomaterials, the lead sulfohalides Pb3S2Cl2 and Pb4S3Cl2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000825867200003 Publication Date 2022-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 15 Open Access OpenAccess
Notes The authors would like to acknowledge Dr. Joka Buha for the help with preliminary tests preceding this project, and Dr. B. M. Aresta and Dr. L. Cassano for their administrative support. The authors acknowledge financial support from the Research Foundation Flanders (FWO) through a postdoctoral fellowship to N.J.S. (FWO Grant No. 1238622N, N.J.S). S.B. acknowledges financial support from the European Commission by ERC Consolidator grant REALNANO (No. 815128, S.B.). L.M. acknowledges financial support from the Italian Ministry of University and Research (MIUR) through the Flag-Era JTC2019 project “Solution-Processed Perovskite/Graphene Nanocomposites for SelfPowered Gas Sensors” (PeroGaS, L.M.). The access to the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC0298CH10886 (NSLS-II Proposal Number 307441). Approved Most recent IF: 16.6
Call Number UA @ admin @ c:irua:189684 Serial 7085
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Strkalj, N.; Huang, S.; Halisdemir, U.; Nguyen, M.D.; Jannis, D.; Sarott, M.F.; Eltes, F.; Abel, S.; Spreitzer, M.; Fiebig, M.; Trassin, M.; Fompeyrine, J.; Verbeeck, J.; Huijben, M.; Rijnders, G.; Koster, G.
Title Signatures of enhanced out-of-plane polarization in asymmetric BaTiO3 superlattices integrated on silicon Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 265
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In order to bring the diverse functionalities of transition metal oxides into modern electronics, it is imperative to integrate oxide films with controllable properties onto the silicon platform. Here, we present asymmetric LaMnO<sub>3</sub>/BaTiO<sub>3</sub>/SrTiO<sub>3</sub>superlattices fabricated on silicon with layer thickness control at the unit-cell level. By harnessing the coherent strain between the constituent layers, we overcome the biaxial thermal tension from silicon and stabilize<italic>c</italic>-axis oriented BaTiO<sub>3</sub>layers with substantially enhanced tetragonality, as revealed by atomically resolved scanning transmission electron microscopy. Optical second harmonic generation measurements signify a predominant out-of-plane polarized state with strongly enhanced net polarization in the tricolor superlattices, as compared to the BaTiO<sub>3</sub>single film and conventional BaTiO<sub>3</sub>/SrTiO<sub>3</sub>superlattice grown on silicon. Meanwhile, this coherent strain in turn suppresses the magnetism of LaMnO<sub>3</sub>as the thickness of BaTiO<sub>3</sub>increases. Our study raises the prospect of designing artificial oxide superlattices on silicon with tailored functionalities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000741852200073 Publication Date 2022-01-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 11 Open Access OpenAccess
Notes This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823717—ESTEEM3. B.C. is sponsored by Shanghai Sailing Program 21YF1410700. J.V. and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. D.J. acknowledges funding from FWO Project G093417N from the Flemish fund for scientific research. M.T., N.S., M.F.S. and M.F. acknowledge the financial support by the EU European Research Council (Advanced Grant 694955—INSEETO). M.T. acknowledges the Swiss National Science Foundation under Project No. 200021-188414. N.S. acknowledges support under the Swiss National Science Foundation under Project No. P2EZP2-199913. M.S. acknowledges funding from Slovenian Research Agency (Grants No. J2-2510, N2-0149 and P2-0091). B.C. acknowledges Prof. C.D.; Prof. F.Y.; Prof. B.T. and Dr. K.J. for valuable discussions.; esteem3reported; esteem3TA Approved Most recent IF: 16.6
Call Number EMAT @ emat @c:irua:185179 Serial 6902
Permanent link to this record
 

 
Author Lee, Y.; Forte, J.D.'arf S.; Chaves, A.; Kumar, A.; Tran, T.T.; Kim, Y.; Roy, S.; Taniguchi, T.; Watanabe, K.; Chernikov, A.; Jang, J.I.; Low, T.; Kim, J.
Title Boosting quantum yields in two-dimensional semiconductors via proximal metal plates Type A1 Journal article
Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun
Volume 12 Issue 1 Pages 7095
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The short exciton lifetime and strong exciton-exciton interaction in transition metal dichalcogenides limit the efficiency of exciton emission. Here, the authors show that exciton-exciton interaction in monolayer WS2 can be screened using proximal metal plates, leading to an improved quantum yield. Monolayer transition metal dichalcogenides (1L-TMDs) have tremendous potential as atomically thin, direct bandgap semiconductors that can be used as convenient building blocks for quantum photonic devices. However, the short exciton lifetime due to the defect traps and the strong exciton-exciton interaction in TMDs has significantly limited the efficiency of exciton emission from this class of materials. Here, we show that exciton-exciton interaction in 1L-WS2 can be effectively screened using an ultra-flat Au film substrate separated by multilayers of hexagonal boron nitride. Under this geometry, induced dipolar exciton-exciton interaction becomes quadrupole-quadrupole interaction because of effective image dipoles formed within the metal. The suppressed exciton-exciton interaction leads to a significantly improved quantum yield by an order of magnitude, which is also accompanied by a reduction in the exciton-exciton annihilation (EEA) rate, as confirmed by time-resolved optical measurements. A theoretical model accounting for the screening of the dipole-dipole interaction is in a good agreement with the dependence of EEA on exciton densities. Our results suggest that fundamental EEA processes in the TMD can be engineered through proximal metallic screening, which represents a practical approach towards high-efficiency 2D light emitters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000728559600014 Publication Date 2021-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 12.124
Call Number UA @ admin @ c:irua:184870 Serial 7566
Permanent link to this record