toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van Nijen, K.; Van Passel, S.; Brown, C.G.; Lodge, M.W.; Segerson, K.; Squires, D. url  doi
openurl 
  Title The development of a payment regime for deep sea mining activities in the area through stakeholder participation Type A1 Journal article
  Year 2019 Publication International Journal Of Marine And Coastal Law Abbreviated Journal Int J Mar Coast Law  
  Volume 34 Issue 4 Pages 571-601  
  Keywords A1 Journal article; Economics; Law; Engineering Management (ENM)  
  Abstract In July 2015, the Council of the International Seabed Authority (ISA) adopted seven priority deliverables for the development of the exploitation code. The first priority was the development of a zero draft of the exploitation regulations. This article focusses on the second priority deliverable, namely the development of a payment mechanism for exploitation activities, following detailed financial and economic models based on proposed business plans. Between 2015 and 2017, five workshops have been organised with 196 active participants from 34 countries. The results so far are synthesised, drawing upon the outcome of these workshops, ISA technical papers, and the scholarly literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000496420700002 Publication Date 2019-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-3522 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor 0.362 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 0.362  
  Call Number UA @ admin @ c:irua:164294 Serial 6181  
Permanent link to this record
 

 
Author Skorikov, A.; Albrecht, W.; Bladt, E.; Xie, X.; van der Hoeven, J.E.S.; van Blaaderen, A.; Van Aert, S.; Bals, S. pdf  url
doi  openurl
  Title Quantitative 3D Characterization of Elemental Diffusion Dynamics in Individual Ag@Au Nanoparticles with Different Shapes Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue 13 Pages 13421-13429  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Anisotropic bimetallic nanoparticles are promising candidates for plasmonic and catalytic applications. Their catalytic performance and plasmonic properties are closely linked to the distribution of the two metals, which can change during applications in which the particles are exposed to heat. Due to this fact, correlating the thermal stability of complex heterogeneous nanoparticles to their microstructural properties is of high interest for the practical applications of such materials. Here, we employ quantitative electron tomography in high-angle annular dark-field scanning transmission electron microscopy (HAADFSTEM) mode to measure the 3D elemental diffusion dynamics in individual anisotropic Au−Ag nanoparticles upon heating in situ. This approach allows us to study the elemental redistribution in complex, asymmetric nanoparticles on a single particle level, which has been inaccessible to other techniques so far. In this work, we apply the proposed method to compare the alloying dynamics of Au−Ag nanoparticles with different shapes and compositions and find that the shape of the nanoparticle does not exhibit a significant effect on the alloying speed whereas the composition does. Finally, comparing the experimental results to diffusion simulations allows us to estimate the diffusion coefficients of the metals for individual nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000500650000115 Publication Date 2019-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 29 Open Access OpenAccess  
  Notes This project has received funding from the European Commission (grant 731019, EUSMI) and European Research Council (ERC Consolidator Grants 815128, REALNANO; 770887, PICOMETRICS; 648991, 3MC; and ERC Advanced Grant 291667, HierarSACol). This project has also received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement 823717, ESTEEM3. W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 797153, SOPMEN). E.B. acknowledges a postdoctoral grant 12T2719N from the Research Foundation Flanders (FWO, Belgium). X.X. acknowledges financial support from the EU H2020-MSCAITN-2015 project 676045, MULTIMAT. The authors also acknowledge financial support by the Research Foundation Flanders (FWO grants G038116N, G026718N, and G036915N).; sygma; esteem3JRA; esteem3reported Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:164061 Serial 5379  
Permanent link to this record
 

 
Author Nord, M.; Semisalova, A.; Kákay, A.; Hlawacek, G.; MacLaren, I.; Liersch, V.; Volkov, O.M.; Makarov, D.; Paterson, G.W.; Potzger, K.; Lindner, J.; Fassbender, J.; McGrouther, D.; Bali, R. pdf  url
doi  openurl
  Title Strain Anisotropy and Magnetic Domains in Embedded Nanomagnets Type A1 Journal article
  Year 2019 Publication Small Abbreviated Journal Small  
  Volume Issue Pages 1904738  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscale modifications of strain and magnetic anisotropy can open pathways to engineering magnetic domains for device applications. A periodic magnetic domain structure can be stabilized in sub‐200 nm wide linear as well as curved magnets, embedded within a flat non‐ferromagnetic thin film. The nanomagnets are produced within a non‐ferromagnetic B2‐ordered Fe60Al40 thin film, where local irradiation by a focused ion beam causes the formation of disordered and strongly ferromagnetic regions of A2 Fe60Al40. An anisotropic lattice relaxation is observed, such that the in‐plane lattice parameter is larger when measured parallel to the magnet short‐axis as compared to its length. This in‐plane structural anisotropy manifests a magnetic anisotropy contribution, generating an easy‐axis parallel to the short axis. The competing effect of the strain and shape anisotropies stabilizes a periodic domain pattern in linear as well as spiral nanomagnets, providing a versatile and geometrically controllable path to engineering the strain and thereby the magnetic anisotropy at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000495563400001 Publication Date 2019-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 2 Open Access  
  Notes Deutsche Forschungsgemeinschaft, BA5656/1‐1 ; Engineering and Physical Sciences Research Council, EP/M009963/1 ; Approved Most recent IF: 8.643  
  Call Number EMAT @ emat @c:irua:164059 Serial 5376  
Permanent link to this record
 

 
Author Nord, M.; Verbeeck, J. pdf  doi
openurl 
  Title Towards Reproducible and Transparent Science of (Big) Electron Microscopy Data Using Version Control Type P1 Proceeding
  Year 2019 Publication Microscopy and microanalysis T2 – Microscopy & Microanalysis 2019, 4-8 August, 2019, Portland, Oregon Abbreviated Journal Microsc Microanal  
  Volume 25 Issue S2 Pages 232-233  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links (down) UA library record  
  Impact Factor 1.891 Times cited Open Access  
  Notes Approved Most recent IF: 1.891  
  Call Number EMAT @ emat @c:irua:164058 Serial 5377  
Permanent link to this record
 

 
Author Ramachandran, R.K.; Filez, M.; Solano, E.; Poelman, H.; Minjauw, M.M.; Van Daele, M.; Feng, J.-Y.; La Porta, A.; Altantzis, T.; Fonda, E.; Coati, A.; Garreau, Y.; Bals, S.; Marin, G.B.; Detavernier, C.; Dendooven, J. url  doi
openurl 
  Title Chemical and Structural Configuration of Pt Doped Metal Oxide Thin Films Prepared by Atomic Layer Deposition Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 31 Issue 31 Pages 9673-9683  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Pt doped semiconducting metal oxides and Pt metal clusters embedded in an oxide matrix are of interest for applications such as catalysis and gas sensing, energy storage and memory devices. Accurate tuning of the dopant level is crucial for adjusting the properties of these materials. Here, a novel atomic layer deposition (ALD) based method for doping Pt into In2O3 in specific, and metals in metal oxides in general, is demonstrated. This approach combines alternating exposures of Pt and In2O3 ALD processes in a single ‘supercycle’, followed by supercycle repetition leading to multilayered nanocomposites. The atomic level control of ALD and its conformal nature make the method suitable for accurate dopant control even on high surface area supports. Oxidation state, local structural environment and crystalline phase of the embedded Pt dopants were obtained by means of X-ray characterization methods and high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In addition, this approach allows characterization of the nucleation stages of metal ALD processes, by stacking those states multiple times in an oxide matrix. Regardless of experimental conditions, a few Pt ALD cycles leads to the formation of oxidized Pt species due to their highly dispersed nature, as proven by X-ray absorption spectroscopy (XAS). Grazing-incidence small-angle X-ray scattering (GISAXS) and highresolution scanning transmission electron microscopy, combined with energy dispersive X-ray spectroscopy (HR-STEM/EDXS) show that Pt is evenly distributed in the In2O3 metal oxide matrix without the formation of clusters. For a larger number of Pt ALD

cycles, typ. > 10, the oxidation state gradually evolves towards fully metallic, and metallic Pt clusters are obtained within the In2O3 metal oxide matrix. This work reveals how tuning of the ALD supercycle approach for Pt doping allows controlled engineering of the Pt compositional and structural configuration within a metal oxide matrix.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000502418000010 Publication Date 2019-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access OpenAccess  
  Notes This research was supported by the Flemish Research Foundation (FWO-Vlaanderen), the Flemish Government (Long term structural funding – Methusalem funding and Medium scale research infrastructure funding-Hercules funding), the Special Research Fund BOF of Ghent University (GOA 01G01513) and the CALIPSO Trans National Access Program funded by the European Commission in supplying financing of travel costs. We are grateful to the SIXS and SAMBA-SOLEIL staff for smoothly running the beamline facilities. J.D. and R.K.R. are postdoctoral fellows of the FWO. Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:164056 Serial 5380  
Permanent link to this record
 

 
Author Sui, Y. url  isbn
openurl 
  Title Producing nutritional protein with Dunaliella microalgae : technological and economic optimization Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 140 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract ​In this thesis, microalga Dunaliella salina is highlighted as a novel source of protein to sustain the human needs. As demonstrated in this thesis, the biochemical composition of D. salina is not fixed, and can be substantially influenced by internal and external conditions. In order to comply with the human requirement of protein, various important factors affecting the protein quantity and quality of D. salina have been evaluated in this thesis for an optimized production strategy. All tested parameters, namely salinity, pH, light regimes (continuous light and light/dark cycle), light intensity, nutrient levels and growth phases can contribute to significant variations of protein content and essential amino acid (EAA) level in D. salina. Ultimately, D. salina is capable of producing high amount of superior quality protein, complying with the FAO reference for human consumption. Even better, such protein of superior quality can be accompanied by unique β-carotene accumulation in D. salina, a pigment with anti-oxidant pro-vitamin A effect. In the end, according to the techno-economic analysis (TEA), it is economically feasible to produce D. salina biomass for human nutrition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-5728-630-8 Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:164002 Serial 8420  
Permanent link to this record
 

 
Author Trenchev, G. pdf  openurl
  Title Computational modelling of atmospheric DC discharges for CO2 conversion Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 206 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163986 Serial 6290  
Permanent link to this record
 

 
Author Semlali, B.-eddine B.; El Amrani, C.; Denys, S. pdf  doi
openurl 
  Title Development of a Java-based application for environmental remote sensing data processing Type A1 Journal article
  Year 2019 Publication International Journal of Electrical and Computer Engineering Abbreviated Journal  
  Volume 9 Issue 3 Pages 1978-1986  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Air pollution is one of the most serious problems the world faces today. It is highly necessary to monitor pollutants in real-time to anticipate and reduce damages caused in several fields of activities. Likewise, it is necessary to provide decision makers with useful and updated environmental data. As a solution to a part of the above-mentioned necessities, we developed a Java-based application software to collect, process and visualize several environmental and pollution data, acquired from the Mediterranean Dialog earth Observatory (MDEO) platform [1]. This application will amass data of Morocco area from EUMETSAT satellites, and will decompress, filter and classify the received datasets. Then we will use the processed data to build an interactive environmental real-time map of Morocco. This should help finding out potential correlations between pollutants and emitting sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2088-8708 ISBN Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:163847 Serial 7799  
Permanent link to this record
 

 
Author Billet, J.; Vandewalle, S.; Meire, M.; Blommaerts, N.; Lommens, P.; Verbruggen, S.W.; De Buysser, K.; Du Prez, F.; Van Driesche, I. url  doi
openurl 
  Title Mesoporous TiO2 from poly(N,N-dimethylacrylamide)-b-polystyrene block copolymers for long-term acetaldehyde photodegradation Type A1 Journal article
  Year 2019 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 55 Issue 55 Pages 1933-1945  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Although already some mesoporous (2–50 nm) sol–gel TiO2 synthesis strategies exist, no pore size control beyond the 12 nm range is possible without using specialized organic structure-directing agents synthetized via controlled anionic/radical polymerizations. Here, we present the use of reversible addition–fragmentation chain transfer (RAFT) polymerization as a straightforward and industrial applicable alternative to the existing controlled polymerization methods for structure-directing agent synthesis. Poly(N,N-dimethylacrylamide)-block-polystyrene (PDMA-b-PS) block copolymer, synthesized via RAFT, was chosen as structure-directing agent for the formation of the mesoporous TiO2. Crack-free thin layers TiO2 with tunable pores from 8 to 45 nm could be acquired. For the first time, in a detailed and systematic approach, the influence of the block size and dispersity of the block copolymer is experimentally screened for their influence on the final meso-TiO2 layers. As expected, the mesoporous TiO2 pore sizes showed a clear correlation to the polystyrene block size and the dispersity of the PDMA-b-PS block copolymer. Surprisingly, the dispersity of the polymer was shown not to be affecting the standard deviation of the pores. As a consequence, RAFT could be seen as a viable alternative to the aforementioned controlled polymerization reactions for the synthesis of structure-directing agents enabling the formation of mesoporous pore size-controlled TiO2. To examine the photocatalytic activity of the mesoporous TiO2 thin layers, the degradation of acetaldehyde, a known indoor pollutant, was studied. Even after 3 years of aging, the TiO2 thin layer retained most of its activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000494929300001 Publication Date 2019-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2461 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 2 Open Access  
  Notes ; Ghent University is acknowledged for funding the research presented in this paper. M. Meire and S. W. Verbruggen acknowledge the FWO-Flanders (Fund for Scientific Research-Flanders) for financial support. The authors thank Bernhard De Meyer for the SEC analysis, Hannes Rijckaert for the cross-sectional analysis, Tom Planckaert for BET analysis of the meso-TiO<INF>2</INF> powders, Jeroen Kint for the porosiellipsometry tests and Frank Driessen for the MALDI-TOF analysis. ; Approved Most recent IF: 2.599  
  Call Number UA @ admin @ c:irua:163842 Serial 5969  
Permanent link to this record
 

 
Author Biely, K.; Mathijs, E.; Van Passel, S. doi  openurl
  Title Causal loop diagrams to systematically analyze market power in the Belgian sugar value chain Type A1 Journal article
  Year 2019 Publication AIMS Agriculture and Food Abbreviated Journal  
  Volume 4 Issue 3 Pages 711-730  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract It has been acknowledged that power is a fundamental aspect that needs to be considered when performing a value chain analysis. The structure of the value chain is indicative of the power distribution along the chain. By employing systems thinking the structure of the value chain can be further investigated and inferences on market power issues can be made. This novel approach connects value chain research with insights from Industrial Organization (IO) literature. Depending on the case, market power may not be measurable by traditional economic tools. Systems thinking offers an alternative tool, allowing the employment of qualitative and quantitative data, overcoming drawbacks of IO methods and providing more depth to value chain analysis. In this paper the valuable contribution of systems thinking to market power analysis is exemplified by the Belgian sugar beet case. The analysis showed that transportability and perishability of sugar beet are key causes of market failure in the Belgian sugar value chain. Systems thinking can support understanding potential future behavior of the market based on the thorough understanding of the current market structure. We illustrate how to integrate factors determining the market structure into causal loop diagrams. This novel approach allows a comprehensive evaluation and thus opens up market power analysis to interdisciplinary research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488251600014 Publication Date 2019-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-2086 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes ; This research was performed within the frame of the EU's HORIZON 2020 project SUFISA with the grant agreement number 635577. The authors want to thank colleagues from the SUFISA project for stimulating and inspiring discussions on this topic. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163833 Serial 6165  
Permanent link to this record
 

 
Author Creemers, S.; Van Passel, S.; Vigani, M.; Vlahos, G. url  doi
openurl 
  Title Relationship between farmers' perception of sustainability and future farming strategies : a commodity-level comparison Type A1 Journal article
  Year 2019 Publication AIMS Agriculture and Food Abbreviated Journal  
  Volume 4 Issue 3 Pages 613-642  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract The environmental challenges have become increasingly integrated into the European Union's Common Agricultural Policy (CAP). The Europe 2020 CAP Framework defines new rules for farmers and targets on innovation, resource efficiency, economic viability, and environmental sustainability. Given the continual evolution of the CAP, it is relevant to focus on sustainable agriculture and which indicators can be employed to aid our understanding of the future farming strategies. This study examines the relationship between perceived sustainability and future farming strategies for three different commodities: sugar beet, dairy, and feta cheese. Survey data collected between 2017-2018 from 191 Belgian sugar beet farmers, 524 dairy farmers (from UK, Denmark, France, and Latvia), and 150 Greek sheep and goat farmers producing milk for feta cheese were analysed using multinomial logistic regressions. Our results show that the farmers' attitude towards sustainability affects intentions to implement specific farming strategies. Belgian sugar beet farmers who perceive their supply chain arrangements (SCAs) environmentally sustainable are less likely to reduce the scale of their farms' operations rather than to maintain them. Dairy farmers are more likely to change the existing scale than to maintain scale if they perceive that production choices affect environmental sustainability to a higher extent. Dairy farmers who perceive their SCAs economically sustainable are less likely to abandon farming. Greek sheep and goat farmers who perceive their SCAs economically sustainable are more likely to expand the existing scale. The observed differences at commodity-level show the importance of well targeted policy measures towards more sustainable farming systems in the European Union.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488251600009 Publication Date 2019-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-2086 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited 1 Open Access  
  Notes ; This research was performed within the frame of the EU's HORIZON 2020 project SUFISA with the grant agreement number 635577. The authors want to thank colleagues from the SUFISA project for stimulating and inspiring discussions on this topic. In particular we would like to thank all the participants of the 2019 SUFISA final conference at the Jagiellonian University of Krakow for fruitful discussions. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163832 Serial 6242  
Permanent link to this record
 

 
Author De Meyer, S.; Vanmeert, F.; Vertongen, R.; Van Loon, A.; Gonzalez, V.; Delaney, J.; Dooley, K.; Dik, J.; van der Snickt, G.; Vandivere, A.; Janssens, K. url  doi
openurl 
  Title Macroscopic x-ray powder diffraction imaging reveals Vermeer's discriminating use of lead white pigments in Girl with a Pearl Earring Type A1 Journal article
  Year 2019 Publication Science Advances Abbreviated Journal  
  Volume 5 Issue 8 Pages eaax1975  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract Until the 19th century, lead white was the most important white pigment used in oil paintings. Lead white is typically composed of two crystalline lead carbonates: hydrocerussite [2PbCO(3)center dot Pb(OH)(2)] and cerussite (PbCO3). Depending on the ratio between hydrocerussite and cerussite, lead white can be classified into different subtypes, each with different optical properties. Current methods to investigate and differentiate between lead white subtypes involve invasive sampling on a microscopic scale, introducing problems of paint damage and representativeness. In this study, a 17th century painting Girl with a Pearl Earring (by Johannes Vermeer, c. 1665, collection of the Mauritshuis, NL) was analyzed with a recently developed mobile and noninvasive macroscopic x-ray powder diffraction (MA-XRPD) scanner within the project Girl in the Spotlight. Four different subtypes of lead white were identified using XRPD imaging at the macroscopic and microscopic scale, implying that Vermeer was highly discriminatory in his use of lead white.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000491121200021 Publication Date 2019-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes ; K.J. wishes to thank the Research Council of the University of Antwerp for financial support through GOA project SolarPaint. Also, FWO, Brussels is acknowledged for financial support through grants G056619N and G054719N. The support of InterReg programme Smart*Light is appreciated. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163815 Serial 5700  
Permanent link to this record
 

 
Author Rezaei, F.; Vanraes, P.; Nikiforov, A.; Morent, R.; De Geyter, N. url  doi
openurl 
  Title Applications of plasma-liquid systems : a review Type A1 Journal article
  Year 2019 Publication Materials Abbreviated Journal Materials  
  Volume 12 Issue 17 Pages 2751  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-liquid systems have attracted increasing attention in recent years, owing to their high potential in material processing and nanoscience, environmental remediation, sterilization, biomedicine, and food applications. Due to the multidisciplinary character of this scientific field and due to its broad range of established and promising applications, an updated overview is required, addressing the various applications of plasma-liquid systems till now. In the present review, after a brief historical introduction on this important research field, the authors aimed to bring together a wide range of applications of plasma-liquid systems, including nanomaterial processing, water analytical chemistry, water purification, plasma sterilization, plasma medicine, food preservation and agricultural processing, power transformers for high voltage switching, and polymer solution treatment. Although the general understanding of plasma-liquid interactions and their applications has grown significantly in recent decades, it is aimed here to give an updated overview on the possible applications of plasma-liquid systems. This review can be used as a guide for researchers from different fields to gain insight in the history and state-of-the-art of plasma-liquid interactions and to obtain an overview on the acquired knowledge in this field up to now.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488880300104 Publication Date 2019-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1944 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.654 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.654  
  Call Number UA @ admin @ c:irua:163805 Serial 6285  
Permanent link to this record
 

 
Author Katiyar, K.S.; Lin, A.; Fridman, A.; Keating, C.E.; Cullen, D.K.; Miller, V. url  doi
openurl 
  Title Non-thermal plasma accelerates astrocyte regrowth and neurite regeneration following physical trauma in vitro Type A1 Journal article
  Year 2019 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel  
  Volume 9 Issue 18 Pages 3747  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Non-thermal plasma (NTP), defined as a partially ionized gas, is an emerging technology with several biomedical applications, including tissue regeneration. In particular, NTP treatment has been shown to activate endogenous biological processes to promote cell regrowth, differentiation, and proliferation in multiple cell types. However, the effects of this therapy on nervous system regeneration have not yet been established. Accordingly, the current study explored the effects of a nanosecond-pulsed dielectric barrier discharge plasma on neural regeneration. Following mechanical trauma in vitro, plasma was applied either directly to (1) astrocytes alone, (2) neurons alone, or (3) neurons or astrocytes in a non-contact co-culture. Remarkably, we identified NTP treatment intensities that accelerated both neurite regeneration and astrocyte regrowth. In astrocyte cultures alone, an exposure of 20-90 mJ accelerated astrocyte re-growth up to three days post-injury, while neurons required lower treatment intensities (<= 20 mJ) to achieve sub-lethal outgrowth. Following injury to neurons in non-contact co-culture with astrocytes, 20 mJ exposure of plasma to only neurons or astrocytes resulted in increased neurite regeneration at three days post-treatment compared to the untreated, but no enhancement was observed when both cell types were treated. At day seven, although regeneration further increased, NTP did not elicit a significant increase from the control. However, plasma exposure at higher intensities was found to be injurious, underscoring the need to optimize exposure levels. These results suggest that growth-promoting physiological responses may be elicited via properly calibrated NTP treatment to neurons and/or astrocytes. This could be exploited to accelerate neurite re-growth and modulate neuron-astrocyte interactions, thereby hastening nervous system regeneration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489115200107 Publication Date 2019-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.679 Times cited 2 Open Access  
  Notes Approved Most recent IF: 1.679  
  Call Number UA @ admin @ c:irua:163799 Serial 6312  
Permanent link to this record
 

 
Author Morales-Yanez, F.; Trashin, S.; Hermy, M.; Sariego, I.; Polman, K.; Muyldermans, S.; De Wael, K. url  doi
openurl 
  Title Fast one-step ultrasensitive detection of toxocara canis antigens by a nanobody-based electrochemical magnetosensor Type A1 Journal article
  Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 91 Issue 18 Pages 11582-11588  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Human toxocariasis (HT) is a cosmopolitan zoonotic disease caused by the migration of the larval stage of the roundworm Toxocara canis. Current HT diagnostic methods do not discriminate between active and past infections. Here, we present a method to quantify Toxocara excretory/secretory antigen, aiming to identify active cases of HT. High specificity is achieved by employing nanobodies (Nbs), single domain antigen binding fragments from camelid heavy chain-only antibodies. High sensitivity is obtained by the design of an electrochemical magnetosensor with an amperometric read-out. Reliable detection of TES antigen at 10 and 30 pg/mL level was demonstrated in phosphate buffered saline and serum, respectively. Moreover, the assay showed no cross-reactivity with other nematode antigens. To our knowledge, this is the most sensitive method to quantify the TES antigen so far. It also has great potential to develop point of care diagnostic systems in other conditions where high sensitivity and specificity are required.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487156900016 Publication Date 2019-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 2 Open Access  
  Notes ; This project was funded by the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Flanders, Project G.0189.13N) and BOF UAntwerp. The authors acknowledge Prof. Pierre Dorny (Institute of Tropical Medicine Antwerp) and Dr. Beatrice Nickel (Swiss Institute of Tropical Medicine) for providing the antigens needed for the cross-reactivity experiments. ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:163784 Serial 5621  
Permanent link to this record
 

 
Author Thomassen, G.; Van Dael, M.; Van Passel, S.; You, F. url  doi
openurl 
  Title How to assess the potential of emerging green technologies? Towards a prospective environmental and techno-economic assessment framework Type A1 Journal article
  Year 2019 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 21 Issue 18 Pages 4868-4886  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract For sustainable production and consumption, emerging green technologies need to be optimized towards a minimal environmental impact and a maximal economic impact. In an early stage of technology development, more flexibility is available to adapt the technology. Therefore, a prospective environmental and techno-economic assessment is required. The prospective assessment differs at the different stages of technology development, as also the data availability and accuracy evolves. This paper reviews the different prospective technological, economic and environmental assessment methods which have been used to assess the potential of new green chemical technologies. Based on the current best practices, an overarching framework is introduced to assess the technological, economic and environmental potential of an emerging green chemical technology at the different stages of technology development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486309300002 Publication Date 2019-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.125 Times cited 5 Open Access  
  Notes ; ; Approved Most recent IF: 9.125  
  Call Number UA @ admin @ c:irua:163782 Serial 6211  
Permanent link to this record
 

 
Author Chizhov, A.; Vasiliev, R.; Rumyantseva, M.; Krylov, I.; Drozdov, K.; Batuk, M.; Hadermann, J.; Abakumov, A.; Gaskov, A. url  doi
openurl 
  Title Light-activated sub-ppm NO2 detection by hybrid ZnO/QD nanomaterials vs. charge localization in core-shell QD Type A1 Journal article
  Year 2019 Publication Frontiers in materials Abbreviated Journal  
  Volume 6 Issue 6 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New hybrid materials-photosensitized nanocomposites containing nanocrystal heterostructures with spatial charge separation, show high response for practically important sub-ppm level NO2 detection at room temperature. Nanocomposites ZnO/CdSe, ZnO/(CdS@CdSe), and ZnO/(ZnSe@CdS) were obtained by the immobilization of nanocrystals-colloidal quantum dots (QDs), on the matrix of nanocrystalline ZnO. The formation of crystalline core-shell structure of QDs was confirmed by HAADF-STEM coupled with EELS mapping. Optical properties of photosensitizers have been investigated by optical absorption and luminescence spectroscopy combined with spectral dependences of photoconductivity, which proved different charge localization regimes. Photoelectrical and gas sensor properties of nanocomposites have been studied at room temperature under green light (max = 535 nm) illumination in the presence of 0.12-2 ppm NO2 in air. It has been demonstrated that sensitization with type II heterostructure ZnSe@CdS with staggered gap provides the rapid growth of effective photoresponse with the increase in the NO2 concentration in air and the highest sensor sensitivity toward NO2. We believe that the use of core-shell QDs with spatial charge separation opens new possibilities in the development of light-activated gas sensors working without thermal heating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487641600002 Publication Date 2019-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-8016 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes ; This work was financially supported by RFBR grant No. 1653-76001 (RFBR – ERA.Net FONSENS 096) and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 26520408). AC acknowledges support from the RFBR grant No. 18-33-01004. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163776 Serial 5390  
Permanent link to this record
 

 
Author Einhäupl, P.V.; Krook, J.; Svensson, N.; Van Acker, K.; Van Passel, S. pdf  url
doi  openurl
  Title Eliciting stakeholder needs : an anticipatory approach assessing enhanced landfill mining Type A1 Journal article
  Year 2019 Publication Waste Management Abbreviated Journal Waste Manage  
  Volume 98 Issue 98 Pages 113-125  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Landfill owners, governmental institutions, technology providers, academia and local communities are important stakeholders involved in Enhanced Landfill Mining (ELFM). This concept of excavating and processing historical waste streams to higher added values can be seen as a continuation of traditional landfill mining (LFM) and seems to be an innovative and promising idea for potential environmental and societal benefits. However, ELFM's profitability is still under debate, and environmental as well as societal impacts have to be further investigated. This study provides a first step towards an anticipatory approach, assessing ELFM through stakeholder integration. In the study, semi-structured interviews were conducted with various stakeholders, involved in a case study in Flanders, Belgium. Participants were selected across a quadruple helix (QH) framework, i.e. industrial, governmental, scientific, and local community actors. The research comprises 13 interviews conducted with an aim to elicit stakeholder needs for ELFM implementation using a general inductive approach. In total 18 different stakeholder needs were identified. The paper explains how the stakeholder needs refer to the different dimensions of sustainability, which groups of stakeholders they primarily affect, and what types of uncertainty could be influenced by their implementation. The stakeholder needs are structured into societal, environmental, regulatory and techno-economic needs. Results show additional economic, environmental, and societal aspects of ELFM to be integrated into ELFM research, as well as a need for the dynamic modeling of impacts. (C) 2019 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487175500012 Publication Date 2019-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-053x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.03 Times cited 3 Open Access  
  Notes ; This project has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 721185. ; Approved Most recent IF: 4.03  
  Call Number UA @ admin @ c:irua:163760 Serial 6193  
Permanent link to this record
 

 
Author Van Pottelberge, R.; Moldovan, D.; Milovanović, S.P.; Peeters, F.M. pdf  doi
openurl 
  Title Molecular collapse in monolayer graphene Type A1 Journal article
  Year 2019 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 6 Issue 4 Pages 045047  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomic collapse is a phenomenon inherent to relativistic quantum mechanics where electron states dive in the positron continuum for highly charged nuclei. This phenomenon was recently observed in graphene. Here we investigate a novel collapse phenomenon when multiple sub- and supercritical charges of equal strength are put close together as in a molecule. We construct a phase diagram which consists of three distinct regions: (1) subcritical, (2) frustrated atomic collapse, and (3) molecular collapse. We show that the single impurity atomic collapse resonances rearrange themselves to form molecular collapse resonances which exhibit a distinct bonding, anti-bonding and non-bonding character. Here we limit ourselves to systems consisting of two and three charges. We show that by tuning the distance between the charges and their strength a high degree of control over the molecular collapse resonances can be achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487692200003 Publication Date 2019-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 10 Open Access  
  Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Research Foundation of Flanders (FWO-V1) through an aspirant research Grant for RVP and a postdoctoral Grant for SPM. ; Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:163756 Serial 5422  
Permanent link to this record
 

 
Author Chaves, A.; Neilson, D. pdf  doi
openurl 
  Title Exotic state seen at high temperatures Type Editorial
  Year 2019 Publication Nature Abbreviated Journal Nature  
  Volume 574 Issue 7776 Pages 39-40  
  Keywords Editorial; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The phenomenon of Bose-Einstein condensation is typically limited to extremely low temperatures. The effect has now been spotted at much higher temperatures for particles called excitons in atomically thin semiconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488832500022 Publication Date 2019-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 40.137 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 40.137  
  Call Number UA @ admin @ c:irua:163739 Serial 5413  
Permanent link to this record
 

 
Author Bafekry, A.; Shayesteh, S.F.; Peeters, F.M. url  doi
openurl 
  Title Introducing novel electronic and magnetic properties in C3N nanosheets by defect engineering and atom substitution Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 37 Pages 21070-21083  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations the effect of topological defects, vacancies, Stone-Wales and anti-site and substitution of atoms, on the structure and electronic properties of monolayer C3N are investigated. Vacancy defects introduce localized states near the Fermi level and a local magnetic moment. While pristine C3N is an indirect semiconductor with a 0.4 eV band gap, with substitution of O, S and Si atoms for C, it remains a semiconductor with a band gap in the range 0.25-0.75 eV, while it turns into a metal with H, Cl, B, P, Li, Na, K, Be and Mg substitution. With F substitution, it becomes a dilute-magnetic semiconductor, while with Ca substitution it is a ferromagnetic-metal. When replacing the N host atom, C3N turns into: a metal (H, O, S, C, Si, P, Li and Be), ferromagnetic-metal (Mg), half-metal (Ca) and spin-glass semiconductor (Na and K). Moreover, the effects of charging and strain on the electronic properties of Na atom substitution in C3N are investigated. We found that the magnetic moment decreases or increases depending on the type and size of strain (tensile or compression). Our study shows how the band gap and magnetism in monolayer C3N can be tuned by introducing defects and atom substitution. The so engineered C3N can be a good candidate for future low dimensional devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489984200050 Publication Date 2019-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 59 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:163732 Serial 5418  
Permanent link to this record
 

 
Author Yu, S.; Sankaran, K.J.; Korneychuk, S.; Verbeeck, J.; Haenen, K.; Jiang, X.; Yang, N. url  doi
openurl 
  Title High-performance supercabatteries using graphite@diamond nano-needle capacitor electrodes and redox electrolytes Type A1 Journal article
  Year 2019 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 11 Issue 38 Pages 17939-17946  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Supercabatteries have the characteristics of supercapacitors and batteries, namely high power and energy densities as well as long cycle life. To construct them, capacitor electrodes with wide potential windows and/or redox electrolytes are required. Herein, graphite@diamond nano-needles and an aqueous solution of Fe(CN)(6)(3-/4-) are utilized as the capacitor electrode and the electrolyte, respectively. This diamond capacitor electrode has a nitrogen-doped diamond core and a nano-graphitic shell. In 0.05 M Fe(CN)(6)(3-/4-) + 1.0 M Na2SO4 aqueous solution, the fabricated supercabattery has a capacitance of 66.65 mF cm(-2) at a scan rate of 10 mV s(-1). It is stable over 10 000 charge/discharge cycles. The symmetric supercabattery device assembled using a two-electrode system possesses energy and power densities of 10.40 W h kg(-1) and 6.96 kW kg(-1), respectively. These values are comparable to those of other energy storage devices. Therefore, diamond supercabatteries are promising for many industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489646900036 Publication Date 2019-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 26 Open Access  
  Notes ; S. Yu and K. J. Sankaran contributed equally to this work. N. Yang acknowledges funding from the German Science Foundation under the project of YA344/1-1. J. Verbeeck and S. Korneychuk acknowledge the funding from the GOA project “Solarpaint” of the University of Antwerp. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. K. J. Sankaran and K. Haenen like to acknowledge the financial support of the Methusalem “NANO” network. S. Yu likes to acknowledge the financial support from fundamental research funds for the central universities (Grant No. SWU019001). ; Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:163723 Serial 5388  
Permanent link to this record
 

 
Author Schepens, T.; Janssens, K.; Maes, S.; Wildemeersch, D.; Vellinga, J.; Jorens, P.G.; Saldien, V. url  doi
openurl 
  Title Respiratory muscle activity after spontaneous, neostigmine- or sugammadex-enhanced recovery of neuromuscular blockade : a double blind prospective randomized controlled trial Type A1 Journal article
  Year 2019 Publication BMC anesthesiology Abbreviated Journal Bmc Anesthesiol  
  Volume 19 Issue 1 Pages 187  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Background The use of neostigmine after neuromuscular blockade (NMB) has been associated with postoperative respiratory complications. In previous studies, we found lower diaphragmatic activity after neostigmine reversal of NMB, compared to sugammadex. It is still unclear whether the adequate use of neostigmine guarantees normal respiratory muscle function after NMB. In this study, we wanted to assess the effect of commonly used degrees of NMB and their possible reversal strategies on respiratory muscle activity after the return of normal neuromuscular transmission. Methods This is a randomized, controlled, parallel-group, single-centre, double-blind study in patients scheduled for intracranial surgery at a tertiary academic hospital in Belgium. All participants received target controlled propofol/remifentanil anesthesia and were randomized into one of five groups, receiving either a shallow NMB with no reversal (shallow/saline), a shallow NMB with sugammadex reversal (shallow/sugammadex), a moderate NMB with neostigmine reversal (moderate/neostigmine), a moderate NMB with sugammadex reversal (moderate/sugammadex), or a deep NMB with sugammadex reversal (deep/sugammadex). Primary and secondary outcome parameters were diaphragm and intercostal electromyographic (EMG) activity at the moment of resumed spontaneous breathing activity, defined as a maximal interval of 10 min after the first spontaneous breath. Results For the five groups, a total of 55 patients could be included in the final analysis. Median time of spontaneous breathing analyzed was 5 min (IQR 3-9.5 min). Both the moderate/sugammadex and the moderate/neostigmine groups had lower levels of diaphragm EMG compared to the shallow/sugammadex group. The moderate/neostigmine group had lower levels of intercostal EMG activity compared to the shallow/saline group. Conclusions In this study, the depth of neuromuscular blockade and type of reversal strategy impacts respiratory muscle activity at the moment of resumed spontaneous breathing and recovery of neuromuscular blockade. Both groups that received moderate NMB had lower levels of diaphragm EMG, compared to the shallow NMB group with sugammadex reversal. Compared to the shallow NMB group with no reversal, the moderate NMB with neostigmine reversal group had lower intercostal EMG activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000490976800001 Publication Date 2019-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-2253 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.525 Times cited Open Access  
  Notes ; This work was supported by an investigator-initiated project grant from Merck & Co (IISP 50678). Merck & Co had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. ; Approved Most recent IF: 1.525  
  Call Number UA @ admin @ c:irua:163713 Serial 5816  
Permanent link to this record
 

 
Author Zhao, L.; Ding, L.; Soete, J.; Idrissi, H.; Kerckhofs, G.; Simar, A. pdf  url
doi  openurl
  Title Fostering crack deviation via local internal stresses in Al/NiTi composites and its correlation with fracture toughness Type A1 Journal article
  Year 2019 Publication Composites: part A: applied science and manufacturing Abbreviated Journal Compos Part A-Appl S  
  Volume 126 Issue 126 Pages 105617  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the framework of metal matrix composites, a research gap exists regarding tailoring damage mechanisms. The present work aims at developing an Al/NiTi composite incorporating internal stresses in the vicinity of reinforcements. The composite is manufactured by friction stir processing which allows a homogenous NiTi distribution and a good Al/NiTi interface bonding. The internal stresses are introduced via shape memory effect of the embedded NiTi particles. The induced internal strain field is confirmed by digital image correlation and the corresponding stress field is evaluated by finite element simulation. It is found that the damage mechanism is modified in the presence of internal stresses. The consequent enhancement of fracture toughness arises by the fact that the internal stresses foster discrete damages shifted from the fracture ligament line. These damages release the stress concentration at the main crack tip and lead to a deviated crack path when coalescing to accommodate fracture propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489350600025 Publication Date 2019-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-835x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.075 Times cited Open Access  
  Notes ; This research work has been exclusively supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no 716678). The X-ray computed,tomography facilities of the Department of Materials Engineering of the KU Leuven are financed by the Hercules Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). The authors acknowledge Professor F. Delannay from UCLouvain for fruitful discussions. ; Approved Most recent IF: 4.075  
  Call Number UA @ admin @ c:irua:163706 Serial 5387  
Permanent link to this record
 

 
Author Sharp, J.; Mueller, I.C.; Mandal, P.; Abbas, A.; Nord, M.; Doye, A.; Ehiasarian, A.; Hovsepian, P.; MacLaren, I.; Rainforth, W.M. url  doi
openurl 
  Title Characterisation of a high-power impulse magnetron sputtered C/Mo/W wear resistant coating by transmission electron microscopy Type A1 Journal article
  Year 2019 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech  
  Volume 377 Issue 377 Pages 124853  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Thin films of C/Mo/W deposited using combined UBM/HIPIMS sputtering show 2-8 nm clusters of material richer in Mo and W than the matrix (found by EDS microanalysis), with structures that resemble graphitic onions with the metal atoms arranged regularly within them. EELS microanalysis showed the clusters to be rich in W and Mo. As the time averaged power used in the pulsed HIPIMS magnetron was increased, the clusters became more defined, larger, and arranged into layers with amorphous matrix between them. Films deposited with average HIPIMS powers of 4 kW and 6 kW also showed a periodic modulation of the cluster density within the finer layers giving secondary, wider stripes in TEM. By analysing the ratio between the finer and coarser layers, it was found that this meta-layering is related to the substrate rotation in the deposition chamber but in a non-straightforward way. Reasons for this are proposed. The detailed structure of the clusters remains unknown and is the subject of further work. Fluctuation electron microscopy results indicated the presence of crystal planes with the graphite interlayer spacing, crystal planes in hexagonal WC perpendicular to the basal plane, and some plane spacings found in Mo2C. Other peaks in the FEM results suggested symmetry-related starting points for future determination of the structure of the clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488417800015 Publication Date 2019-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0257-8972 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.589 Times cited 1 Open Access  
  Notes ; J.S. thanks the Mercury Centre at the University of Sheffield for funding, which was part funded by the ERDF under grant MERCURY 904467. I.C.M. acknowledges support from CONACyT and RobertoRocca Education Fellowship. We gratefully acknowledge funding from EPSRC for the pixelated STEM detector and the software used in its operation for the fluctuation microscopy (EP/M009963/ 1, EP/K503903/1 & EP/R511705/1). AD was supported by the EPSRC CDT in Integrative Sensing and Measurement, Grant Number EP/L016753/1. Funding sources did not influence the planning or execution of this work except to enable it. ; Approved Most recent IF: 2.589  
  Call Number UA @ admin @ c:irua:163700 Serial 5383  
Permanent link to this record
 

 
Author Bafekry, A.; Mortazavic, B.; Shayesteh, S.F. pdf  doi
openurl 
  Title Band gap and magnetism engineering in Dirac half-metallic Na2C nanosheet via layer thickness, strain and point defects Type A1 Journal article
  Year 2019 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 491 Issue 491 Pages 165565  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Na2C is a novel two-dimensional material with Dirac Half-metal (DHM) characteristic, exhibiting a combination of single-spin massless Dirac fermions and half-semimetal. In this paper based on the first-principles calculations, we studied the mechanical, electronic, magnetic and optical properties of Na2C nanosheet. The elastic modulus of Na2C was measured to 18.5 N/m and isotropic, whereas it shows anisotropic tensile strengths of 2.85 and 2.04 N/m, for the loading along the zigzag and armchair directions, respectively. We found that Na2C, is a DHM with band gap of 0.7 eV in the up-spin channel and has 2 mu(B) magnetic moment per unit cell. In addition, we investigated the effects of number of atomic layers (thickness), electric field and strain on the possibility of further tuning of the electronic and magnetic properties of Na2C. Our calculations show that by increasing the number of layers from monolayer to bulk, a transition from DHM to ferromagnetic metal occurs with a high magnetic moments in the range of 16-30 mu(B). With applying an electric field on the Na2C bilayer (within the ferromagnetic and anti-ferromagnetic orders), energy band gap is slightly increased. In addition our results indicate that the electronic structure can be significantly modified by applying the mechanical straining. In this regard, under the biaxial strain (from 0% to – 8%) or large uniaxial strains (> – 6%), we observed the DHM to ferromagnetic-metal transition. Moreover, vacancy defects and atom substitutions can also effect the electronic and magnetic properties of Na2C nanosheet. Defective Na2C with single and double vacancies, was found to show the metallic response. With various atom substitutions this nanosheet exhibits; ferromagnetic-metal (Si and Be) with 5.2 and 3 mu(B); dilute-magnetic semiconductor (B and N) with 3 and 7 mu(B) magnetic moments, respectively. In the case of B or N atoms replacing the native C atom, the down-spin channel yields about 1 eV band gap. Interestingly, replacing the Na atoms in the native Na2C lattice with the Li can result in the formation of magnetic topological insulator phase with nontrivial band gap in the down-spin channel (25 meV and 0.15 eV) and up-spin channel (0.75 eV), in addition exhibit 8 mu(B) magnetic moment in the ground state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486396100010 Publication Date 2019-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 13 Open Access  
  Notes ; B. M. appreciates the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). We acknowledge OpenMX team for OpenMX code. ; Approved Most recent IF: 2.63  
  Call Number UA @ admin @ c:irua:163697 Serial 5408  
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C. pdf  doi
openurl 
  Title Direct methane conversion to methanol on M and MN4 embedded graphene (M = Ni and Si): a comparative DFT study Type A1 Journal article
  Year 2019 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 496 Issue 496 Pages 143618  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The ever increasing global production and dispersion of methane requires novel chemistry to transform it into easily condensable energy carriers that can be integrated into the chemical infrastructure. In this context, single atom catalysts have attracted considerable interest due to their outstanding catalytic activity. We here use density functional theory (DFT) computations to compare the reaction and activation energies of M and MN4 embedded graphene (M = Ni and Si) on the methane-to-methanol conversion near room temperature. Thermodynamically, conversion of methane to methanol is energetically favorable at ambient conditions. Both singlet and triplet spin state of the studied systems are considered in all of the calculations. The DFT results show that the barriers are significantly lower when the complexes are in the triplet state than in the singlet state. In particular, Si-G with the preferred spin multiplicity of triplet seems to be viable catalysts for methane oxidation thanks to the corresponding lower energy barriers and higher stability of the obtained configurations. Our results provide insights into the nature of methane conversion and may serve as guidance for fabricating cost-effective graphene-based single atom catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488957400004 Publication Date 2019-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 2 Open Access  
  Notes Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:163695 Serial 6294  
Permanent link to this record
 

 
Author Simoen, J.; De Meyer, S.; Vanmeert, F.; De Keyser, N.; Avranovich, E.; van der Snickt, G.; Van Loon, A.; Keune, K.; Janssens, K. url  doi
openurl 
  Title Combined Micro- and Macro scale X-ray powder diffraction mapping of degraded Orpiment paint in a 17th century still life painting by Martinus Nellius Type A1 Journal article
  Year 2019 Publication Heritage science Abbreviated Journal  
  Volume 7 Issue 1 Pages 83  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract The spontaneous chemical alteration of artists' pigment materials may be caused by several degradation processes. Some of these are well known while others are still in need of more detailed investigation and documentation. These changes often become apparent as color modifications, either caused by a change in the oxidation state in the original material or the formation of degradation products or salts, via simple or more complex, multistep reactions. Arsenic-based pigments such as orpiment (As2S3) or realgar (alpha-As4S4) are prone to such alterations and are often described as easily oxidizing upon exposure to light. Macroscopic X-ray powder diffraction (MA-XRPD) imaging on a sub area of a still life painting by the 17th century Dutch painter Martinus Nellius was employed in combination with microscopic (mu-) XRPD imaging of a paint cross section taken in the area imaged by MA-XRPD. In this way, the in situ formation of secondary metal arsenate and sulfate species and their migration through the paint layer stack they originate from could be visualized. In the areas originally painted with orpiment, it could be shown that several secondary minerals such as schultenite (PbHAsO4), mimetite (Pb-5(AsO4)(3)Cl), palmierite (K2Pb(SO4)(2)) and syngenite (K2Ca(SO4)(2)center dot H2O) have formed. Closer inspection of the cross-sectioned paint layer stack with mu-XRPD illustrates that the arsenate minerals schultenite and mimetite have precipitated at the interface between the orpiment layer and the layer below that is rich in lead white, i.e. close to the depth of formation of the arsenate ions. The sulfate palmierite has mostly precipitated at the surface and upper layers of the painting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000490592700001 Publication Date 2019-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes ; The authors acknowledge financial support from the NWO (The Hague) Science4Arts 'ReVisRembrandt' project (AvL, JD), the GOA Project Solarpaint (University of Antwerp Research Council) (SdM) and the METOX project (Belgian Federal Science Policy) (FvM). Special thanks go to the support received from FWO, Brussels via projects G056619 N and G054719 N (GvdS, KJ) and from NWO, The Hague via project NICAS/3D2P (KK, NdK). Parts of the MA-XRPD scanner could be purchased thanks to InterReg Project Smart*Light. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163693 Serial 5521  
Permanent link to this record
 

 
Author Mogg, L.; Hao, G.-P.; Zhang, S.; Bacaksiz, C.; Zou, Y.; Haigh, S.J.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M. url  doi
openurl 
  Title Atomically thin micas as proton-conducting membranes Type A1 Journal article
  Year 2019 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 14 Issue 10 Pages 962-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons1,2. For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially, so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons1. This seemed to suggest that only one-atom-thick crystals could be used as proton-conducting membranes. Here, we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one to two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials3, which extends from ∼100 °C to 500 °C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm−2 at 500 °C, well above the current requirements for the industry roadmap4. We attribute the fast proton permeation to ~5-Å-wide tubular channels that perforate micas’ crystal structure, which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals5 with similar nanometre-scale channels, which could help close the materials gap in proton-conducting applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488977100016 Publication Date 2019-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 44 Open Access  
  Notes ; The work was supported by the Lloyd's Register Foundation, the Engineering and Physical Sciences Research Council (EPSRC)-EP/N010345/1, EP/M010619/1 and EP/ P009050/1, the European Research Council, the Graphene Flagship and the Royal Society. M.L.-H. acknowledges a Leverhulme Early Career Fellowship, G.-P.H. acknowledges a Marie Curie International Incoming Fellowship, and L.M. acknowledges the EPSRC NOWNano programme for funding. Y.Z. acknowledges the assistance of Eric Prestat in TEM specimen preparation. Computational resources were provided by the TUBITAK ULAKBIM High Performance and Grid Computing Center (TR-Grid e-Infrastructure). ; Approved Most recent IF: 38.986  
  Call Number UA @ admin @ c:irua:163589 Serial 5407  
Permanent link to this record
 

 
Author Ma, X.; Beltran, V.; Ramer, G.; Pavlidis, G.; Parkinson, D.Y.; Thoury, M.; Meldrum, T.; Centrone, A.; Berrie, B.H. doi  openurl
  Title Revealing the distribution of metal carboxylates in oil paint from the micro- to nanoscale Type A1 Journal article
  Year 2019 Publication Angewandte Chemie: international edition in English Abbreviated Journal  
  Volume 58 Issue 34 Pages 11652-11656  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Oil paints comprise pigments, drying oils, and additives that together confer desirable properties, but can react to form metal carboxylates (soaps) that may damage artworks over time. To obtain information on soap formation and aggregation, we introduce a new tapping-mode measurement paradigm for the photothermal induced resonance (PTIR) technique that enables nanoscale IR spectroscopy and imaging on highly heterogenous and rough paint thin sections. PTIR is used in combination with mu-computed tomography and IR microscopy to determine the distribution of metal carboxylates in a 23-year old oil paint of known formulation. Results show that heterogeneous agglomerates of Al-stearate and a Zn-carboxylate complex with Zn-stearate nano-aggregates in proximity are distributed randomly in the paint. The gradients of zinc carboxylates are unrelated to the Al-stearate distribution. These measurements open a new chemically sensitive nanoscale observation window on the distribution of metal soaps that can bring insights for understanding soap formation in oil paint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000478409100001 Publication Date 2019-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:163573 Serial 8478  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: