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Engineering and Atom Substitution
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†Department of Physics, University of Guilan, 41335-1914 Rasht, Iran

‡Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp,

Belgium

E-mail: Bafekry.asad@gmail.com

Abstract

Using first-principles calculations the effect of topological defects, vacancies, Stone-

Wales and anti-site and substitution of atoms, on the structure and electronic properties

of monolayer C3N are investigated. Vacancy defects introduce localized states near the

Fermi level and a local magnetic moment. While pristine C3N is an indirect semicon-

ductor with 0.4 eV band gap, with substitution of O, S and Si atoms for C, it remains

a semiconductor with band gap in the range 0.25-0.75 eV, while it turns into a metal

with H, Cl, B, P, Li, Na, K, Be and Mg substitution. With F substitution, it becomes a

dilute-magnetic semiconductor, while with Ca substitution it is a ferromagnetic-metal.

When replacing the N host atom, C3N turns into: metal (H, O, S, C, Si, P, Li and Be),

ferromagnetic-metal (Mg), half-metal (Ca) and spin-glass semiconductor (Na and K).

Moreover, the effects of charging and strain on the electronic properties of Na atom

substitution in C3N are investigated. We found that the magnetic moment decrease or

increase depending on the type and size of strain (tensile or compression). Our study
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shows how the band gap and magnetism in monolayer C3N can be tuned by introduc-

ing defects and atom substitution. The so engineered C3N can be a good candidate for

future low dimensional devices.

Introduction

Graphene1 as a two-dimensional material (2DM) with crystal lattice of carbon atoms, has

recently attracted a lot of interest. 2DM forms a large family of materials involving various

kinds of chemical elements showing unique properties quite distinct from their 3D bulk struc-

tures. Despite the fact that 2DM hold great potential for a wide range of applications, it will

be necessary to modulate their intrinsic properties for real applications. Many approaches

have been developed to modify the electronic and magnetic properties of 2DM. These meth-

ods involve substitution of atoms, defect engineering, surface functionalization and applying

strain and/or electric field. Several computational studies have been conducted to investi-

gate adatom and molecule adsorption on 2D monolayers2–11 and substitution of atoms.12–14

Substitution of atoms into 2DM is of fundamental importance in order to tailor their elec-

tronic and magnetic properties, which are useful for numerous applications such as energy

storage and conversion,15–17 sensing18,19 and nanoelectronics devices.14,20–22

In recent years, a large subgroup of 2D crystals has attracted attention consisting of 2D

conjugated polymer, which can be stabilized as monolayers by taking advantage of the chem-

istry of C and N. The strong C bonds give rise to the unique properties of graphene, while the

ability of N to take many different positions enhances the option to form a strong covalent

organic framework.23,23–33 A monolayer of C3N was recently successfully synthesized.34 Due

to its uniqe properties35 several applications have been suggested including solar cell devices,

electrolyte gating and doping of transistors, and anode material.36–38 Monolayer C3N is an

indirect band-gap semiconductor and its electronic structure has been computed34,39,40 by

DFT calculations. An important issue is to make the intrinsic band gap of C3N tunable, in

order to extend its properties. Previously, it was shown that the properties of C3N can be
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tuned by adsorption of adatoms and doping,5,41–46 adsorptions of molecules,29,47,48 defect as

well as strain engineering5,46,47,49? ,50 and other methods51–53 The substitution of atoms into

carbon nitride materials is of fundamental importance, enabling a wide range of applications

by tailoring the electronic and magnetic properties.54–56

Using first-principles calculations, we carried out a detailed investigation of how vari-

ous point defects including vacancies (single and double vacancy), Stone-Wales (SW) and

anti-site defects affect the structure of C3N and its electronic and magnetic properties. We

demonstrate the capability of defect engineering to alter the properties of C3N from nonmag-

netic semiconductor to a metal and/or a magnetic ground state. Furthermore, we present

a detailed study of the effect of substitution of H, O, S, F, Cl, B, C, N, Si, P, Li, Na, K,

Be, Mg, Ca and Al atoms on the electronic and magnetic properties of C3N. We analyze the

modification of the band structure of C3N as the underlying mechanism for the changes in

its properties. One of the goals is to show how introducing the above impurities turns the

semiconductor of C3N into a metal, half-metal, spin-glass semiconductor or dilute-magnetic

semiconductor. The effects of charging and strain on the substituted-C3N are studied and

we show how the band gap and magnetism can be modulated. The important point here is

that a wide variety of electronic and magnetic properties, differing from pristine C3N, emerge

using the above methods.

Method

In this paper, we performed calculations of the electronic structure with geometric opti-

mization, using spin-polarized density functional theory (DFT) as implemented in OpenMX

Package.57 This code self-consistently finds the eigenvalues and eigenfunctions of the Kohn-

Sham equations for the systems under study using norm-conserving pseudopotentials,58 and

pseudoatomic orbitals (PAOs).59,60 In addition, we used the Perdew-Burke-Ernzerhof gener-

alized gradient approximation (GGA) for the exchange and correlation.61 The K-points for

3
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sampling over the Brillouin zone (BZ) were generated using the Monkhorst-Pack scheme.62

With a k-mesh grid of 23 × 23 × 1 for the primitive unit cell and scaled according to the

size of the supercell. After convergence tests, we choose an energy cutoff 300 Ry so that

the total-energy was converged with an accuracy below 1.0 meV/atom. The geometries were

fully relaxed until the force acting on each atom was less than 1 meV/Å and we choose a

large vacuum layer of 20 Å to avoid interaction between adjacent layers. The charge transfer

was calculated using the Mulliken charge analysis.63 In order to accurately describe the van

der Waals (vdW) interaction in C3N, we adopted the empirical correction method presented

by Grimme (DFT-D2),64 which has been proven reliable for describing the long-range vdW

interactions. Simulated scanning tunneling microscopy (STM) images were obtained using

the Tersoff-Hamann theory,65 as supplied in the OpenMX code with a bias of 2.0 V and were

graphed using WSxM software.66

Pristine C3N

The atomic structure of C3N is a planar hexagonal lattice, shown in Fig. 1(a). The lattice

constant of C3N is 4.861 Å, which agrees well with the experimental value of 4.75 Å34 with

bond lengths of 1.404 and 1.403 Å which are in good agreement with previous theoretical

studies.39,41,42,67 The difference charge density shows a high charge density around the N

atoms, indicating charge transfer from C to N atoms. In order to provide visible guidance

for experimental observations, first-principles DFT calculations were performed to calculate

the STM image which is shown in Fig. 1(b). To produce the calculated STM image, the

Kohn-Sham charge density was integrated at a voltage of +2.0 V. The atoms around C-

N bonds are shows as bright spots. To correlate the STM image with the corresponding

atomistic structure, we overlayered it with the C3N lattice structure with the C (gray ball)

and the N (blue ball) atoms. The orbital-projected electronic band structure of C3N with

corresponding DOS and PDOS, are shown in Figs. 1(c,d). Notice the valence band maximum

4
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(VBM) of C3N is dominated by N-pz orbitals and the Dirac-cone at the k=point below EF is

formed by C-pz orbitals. Our DFT calculations show that C3N is an indirect semiconductor

with 0.4 eV band gap which is in agreement with previous results.41,42,67 The valence band

maximum (VBM) and the conduction band minimum (CBM) are located between the Γ and

M points. The DOS and PDOS are shown in Fig. 1(d). Since in C3N two C atoms are

replaced by N, the pz orbital band is fully occupied by additional two electrons, leading to

a semiconducting behavior. From PDOS, we see that the VBM is built up by N-pz orbitals,

whereas the CBM is dominated by C-pz orbitals.

Topological defects

Recently, many methods including defect engineering,53,68 applying electric field,26 strain,69,70

edge state26,71 and heterostructuring54,55 was used to change the properties of the carbon ni-

tride materials. We investigate different topological defects in monolayer C3N and in addition

vacancies, Stone-Wales and anti-site defects. In order to investigate vacancies, we removed C

and N atoms to produce single vacancy of the C atom SVC or N atom SVN , while for double

vacancies, we remove C+C (DVCC), N+N (DVNN) and N+C (DVNC) atoms respectively.

For the Stone-Wales (SW) defect, we rotate a single C-C (SWCC) or N-C (SWNC) bond

in C3N by 90◦, resulting in a structure with a pair of seven-membered and five-membered

rings, respectively. For the anti-site defects, we replaced N with C atoms (i.e., exchanged

the position of N and C atoms) (ASNC). Typical defects are schematically shown in Fig. 2.

With fully structural optimization, where all atoms are relaxed in all directions and calcu-

lations are performed using 2× 2× 1 supercell of C3N which contains 32 atoms (24 C and 8

N atoms).

In Fig. 3, we present the optimized structures with corresponding bond lengths and bond

angles of SVC and SVN . The C and N atoms around the vacancy in C3N undergo a Jahn-

Teller distortion72 and C and N atoms close to the vacancy site move towards each other to

5
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form C-C or C-N bonds. For the reconstructed SVC (SVN), two C atoms bond together to

build a joint pentagonal and nonagonal (i.e., the 5-9 configurations). Two C atoms around

the vacancy are approaching each other, so the C-C (N-C) bond lengths are changed to

1.597 (1.730) and 1.550 (1.560) Å, respectively, which differs from pristine C3N (1.403 and

1.404 Å) (see Fig. 3). For SVC , upon structural optimization the same symmetry and a

planar structure of C3N is found. In DVCC case, we observed no deviation from the planar

configuration upon structural relaxation and it exhibits a non-reconstructed structure, while

DVNC shows reconstructed structure and two C atoms bond together to build two pentagon

and one heptagon (i.e. the 5-8-5 configurations) (see Fig. 3). The distance between dangling

bonds in DVCC is found to be about 1.404 Å and the bond lengths of C and N atoms around

the vacancies become 2.041 and 1.404 Å. The bond lengths of DVNC are 1.404 and 1.404

Å (see Fig. 3). The DVNN shows a non-reconstructed structure and the bond lengths of C

and N atoms around the vacancies become 1.44 and 1.43 Å. For ASNC we see a negligible

bond length elongation in the modified structure. The C-C bond length undergoes a small

modification from 1.404 to 1.406 Å, and the N-C bond length is calculated to be 1.400 Å. As

can be seen from Fig. 3, after the formation of SW defect, four neighboring hexagons of C3N

are transformed into one pentagon and two heptagons (the 55-77 configurations), and C3N

maintains its planer 2D structure. Through 90◦ rotation of a dimer, the C-C bond becomes

stronger than the one in pristine C3N, and its length decreases from 2.281 to 2.191 Å. Due

to the shortening of bond lengths along the direction parallel to the pentagons, the lattice

constant decreases from 23.212 to 23.041 Å.

The effect of SV defects on the electronic and magnetic properties of C3N, are shown

in Fig. 4. It is noticeable that the band structure of pristine C3N is strongly disturbed by

the vacancy defects. The SVC and SVN turns pristine C3N into a metal and ferromagnetic-

metal, respectively. In addition, SVN has 0.3 µB magnetic moment due to the dangling bond

around the defect sites with an unpaired electron. For DVCC and DVNC , similar to what

we have for the SV-defect, states appear near EF , resulting in metallic characteristics in

6
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the electronic structure. Our results show that DVNN , becomes a ferromagnetic-metal and

induces 3.5 µB magnetic moment to C3N. We see that ASNC , is a semiconductor with 0.2 eV

indirect band gap. After introducing the SW defects, the electronic states experience a shift

due to the breaking of the hexagonal lattice symmetry by the SW defect. The SW-C3N, is

an indirect semiconductor with 0.2 eV band gap due to the introduction of an energy level

near the CB, which is related to some bonds of both C and N atoms around the defect. The

VBM (CBM) is located at Γ (between M and Γ points). Moreover, the band becomes flatter

which indicates a strongly localized charge around these defects.

It is also evident from the DOS and PDOS in the same panel, that the state at EF of

SV-C3N belongs to the C/N-pz orbital around the missing atom which confirms the metallic

behavior of SV-C3N. By analyzing of PDOS it is clear that the magnetism in SVN are derived

from the C-p orbitals of the C atoms in SVN . For the case of DVCC , we found that the state

at EF belongs to the s and p-orbitals of C and N atoms locating around the missing atom

which confirms the metallic behavior, whereas, for DVNC , the state around EF originates

from C/N-pz orbitals. While the VB and CB of DVNN belongs to the C/N-s,px,y orbital,

the VB and CB of ASNC belongs to the C/N-pz orbitals. The VB of SWCC and SWNC has

N-pz orbital and the CB is build up of the C-pz orbital around the defect, which results in

semiconducting behavior. To provide visible guidance for experiments, the simulated STM

images of different defects, are shown in Fig. S1 (see supplementary information (SI)), where

the bright and dark spots have been used for a more succinct demonstration. Difference spin

density for SVN and DVNN are shown in Fig. 5 in the insets. The blue and yellow regions

represent the ↑ and ↓ spin states, respectively. Notice that it is symmetrical and localized

around the defect which is a consequence of the centrosymmetric structure of SVN .

7
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Atom substitution

To further shed light on the underlying mechanism of the electronic and magnetic properties,

we investigate the spin-polarized band structures of atoms substituted in C3N. Recently,

adsorption and substitution of atoms73–77 and surface functionalizing with molecules78,79 of

C2N was studied. We found that the band structure of pristine C3N was strongly disturbed

when atoms are substituted, thus the bonding between these atoms and the C3N lattice

should be covalent. With fully structural optimization, where all atoms are relaxed in all

directions and calculations are performed using 2× 2× 1 supercell of C3N which contains 32

atoms (24 C and 8 N atoms).

We consider two substitution sites: (1) the C host atom site (SbC) and (2) the N host

atom site (SbN). The change of lattice constant is shown in Fig. 6(a) and a schematic view

of two substitution sites are shown in the inset. The substitution of foreign atoms with C

(N) host atom of C3N, is labeled as SbC-C3N (SbN -C3N). For instance, substitution of H

atom for C (N), is labeled as HC-C3N (HN -C3N). The induced strain to the lattice structure

of the C3N can be estimated by calculating (a-a0)/a0, where a0 is the lattice constant of

pristine C3N and a is the lattice constant of Sb-C3N. The induced strain is plotted in Figs.

6(b,c). Lattice deformation of the substituted-C3N structure exhibit an increase of induced

distortion to the C3N lattice constant. From Figs. 6(b,c), we find that the strain for H, O,

S, F, Cl, B, Si and P substitution for C and N sites varies between 0.5 to 5 %. For the Li,

Na, K, Be, Mg, Ca and Al atoms the strain varies between 2.5 to 9 % which is significantly

larger. Notice the increase in lattice constant with the atomic number which is present in

both cases (see Fig. 6(a)). The energy band gap and magnetic moment for different species

of atoms are shown in Figs. 6(d,e) and Figs. 6(f,g), respectively.

The interaction between the substituted atoms and the C3N lattice can induce a charge

redistribution. The Mulliken population analysis was performed to quantitatively analyze

this effect. Positive (negative) charge transfer indicates a loss (gain) of electrons for each

substituted atom to (from) C3N. In pristine C3N there is a charge transfer from C to N

8
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atoms. However, those C and N atoms in the substituted C3N, have different Mulliken

charges because of the different arrangement of atoms. The redistribution of charge for

substituted C3N depends mainly on the incorporation of substituted atom into the C and

N lattice. For example, substitution of C host atom with Li and P atoms, induce Mulliken

charges of -0.48 e and +0.53 e, respectively, while substitution with Na and Al yield +0.14

e and +0.23 e, respectively. The C and N atoms bonded to the substitutional atoms have

much larger Mulliken charges than those in pristine C3N. This difference can be attributed

to the different atomic radius, electro-negativities, and their bond length of C and N atom

with the foreign atoms.

The optimized structures of H, O, S, F, Cl, B, C, Si, N and P substituted C3N on C

or N sites with their corresponding structural parameters including atomic bond length and

angles are shown in Figs. 7(a,b). In the case of reconstruction, the honeycomb structure is

deformed locally and the host atoms are pushed away from its lattice position. It can be

seen that for HC and HN , the H atom becomes bonded to the neighboring C atom and the

resulting length of the H-C bond is 1.116 and 1.086 Å, respectively. The O and F atoms

interact through sp2-hybridization, resulting in the formation of two and three σ bonds with

the neighboring C atoms of C3N, respectively. The bond length of OC , ON are 1.341 and

1.541 Å, and the C-O-C bond angles are 135◦ and 119◦, respectively. For FC and FN , the F-C

bond length is 1.582 and 1.712 Å, and the C-F-C bond angle is 145◦ and 119◦, respectively.

We can see a strong effect on the planar structure of C3N for FC . For BC and BN , the B

atoms form one and three σ bonds with the neighboring N and C atoms, respectively. and

the bond length with the nearest N atom is 1.441 Å, while for BN the bond length with

the nearest C atoms is 1.482 Å and the C-B-C bond angle is 120◦, with a small in plane

distortion of the C3N lattice. The Si and P atomic radius is larger than that of C or N

atom and as a consequence the Si and P atoms induce a structural deformation along the

direction of the C3N plane, leading to an expansion of the lattice parameter with ∼ 3.0%.

The change in bond lengths and angles reflect the size of substituted atoms, and due to
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changes in the optimized structure the charge transfer between the substituted atoms and

the substrate are modified. The structural parameters for these atomic structures are given

in the supplementary information (SI).

The electronic structure of H, O, S, F, Cl, B, C, Si, N and P atoms substituted C3N, are

shown in Figs. 8(a,b). The blue-lines and red-dash lines represent up and down spin states,

respectively. The electronic states of C3N after substitution of different atoms are listed in

Table1. The corresponding electronic states are specified as metal (M), half-metal (HM),

ferromagnetic-metal (FM), spin-glass semiconductor (SG-SC), dilute-magnetic semiconduc-

tor (DM-SC) and semiconductor (SC) and are listed in Table I. The band gap and magnetic

moment are indicated inside parentheses. In comparison with pristine C3N, the shape of

the electronic structure of Sb-C3N is significantly modified. The HC , ClC , HN , ON and SN

are metal, while OC is a semiconductor with 0.6 eV direct band gap, where the VBM and

CBM are located at the Γ point. We can see that SC and ClN are indirect semiconductors

with band gap of 0.33 eV and the VBM and CBM are located at the K point and between

the M and Γ point, respectively. Moreover, SC exhibit a p-type semiconductor, because

these atoms gain electrons, resulting in a down shift of the EF inside the VB edge. FC is

a dilute-magnetic semiconductor and the excess electron of the substituted F atom relative

to C leads to spin-polarization and induces a magnetic moment of 1 µB in the ground state

per F atom. BC is a metal, while BN is an indirect semiconductor with 0.5 eV band gap.

Notice that the N atom has two extra electrons on the outer shell as compared to B which

influences the VB and CB of C3N. These excess electrons of the substituted N atom leads to

a filling of the VB edge, similar to a p-type semiconductor and as a result BN exhibit hole

doping and thus causes a down shift of EF . Also SiC is a direct semiconductor with 0.34 eV

band gap, while SiN becomes a metal and the impurity states appear near the VB and CB

edge.

The electronic structure of H, O, S, F, Cl, B, C, Si, N and P atoms substituted C3N,

are shown in Figs. 9(a,b). We found no spin polarized band structure for NC , PC , CN , SiN
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and PN which exhibit metallic characteristics with their EF crossing the electronic states.

For ClC the electron states near EF are mainly governed by the C/N-pz orbitals and for ClN

are governed by the C-px,y, N-pz and Cl-s orbitals. We found that the VBM of ClC is due

to the hybridization of Cl-s with C-px,y and N-pz orbitals of the nearest atoms and CBM

of ClC originates from Cl-px,y with px,y orbitals of the nearest C atoms. The VBM of SC is

due to the hybridization of S-s, px,y with px,y orbitals of the nearest N atoms and the CBM

of SCN originates from S-pz with pz orbitals of the nearest C atoms. For FC there is an

asymmetric spin splitting around EF and as a consequence the defected structure becomes

a dilute-magnetic semiconductor with an induced magnetic moment.

The discussion of corresponding PDOS further reveals that these asymmetric impurity

states in the band gap mainly originates from the hybridization of N/F-2p and the C-

2p orbitals leading to a magnetic moment of 1 µB. However for FN , the hybridization is

slightly different and the state near EF mainly originates from the F-3s and C-pz orbital

states. PDOS of BC shows that the CBM arises from the B-pz and C/N-pz orbitals. Also

hybridization between the B-pz and C/N-pz orbitals mainly contributes to the VBM. For

SiC , Si being in the same group as C in the periodic table with a larger atomic radius,

distorts the planar structure of C3N and causes an increase in the bond length. VBM of

C3N is not influenced much upon substitution, where the states originate from Si-pz orbitals.

DOS and PDOS of PC and PN , show that both the CBM and VBM are composed of P-pz

and C-pz orbitals. As expected, DOS of the BC , NC , PC , BC , CN and SiN , shows that the

interaction between these atoms and C or N host atoms is responsible for the semiconductor

to metal transition. Based on the calculated PDOS, both the CBM and VBM receive mainly

contributions from the hybridization of the pz orbitals.

The optimized atomic structures of Li, Na, K, Be, Mg, Ca and Al substituted C3N and

corresponding structural parameters including atomic bond length and bond angles, are

shown in Fig. S2. Figs. 10(a,b) show the electronic band structure of Li, Na, K, Be, Mg,

Ca and Al substitution in C3N, while NaC is ferromagnetic-metal with 1.3 µB magnetic
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moment. Interestingly, NaN and KN , exhibit spin-glass semiconductor behavior with 1.9

and 2 µB magnetic moments, respectively. Namely, the ↑ spin channel is gapless, while the

↓ spin channel is a semiconductor and the VBM touches the Fermi level. Such spin-gapless

semiconductors are of particular interest for e.g. spin photo-diodes, spin detectors and

electromagnetic radiation generators for a wide range of wavelengths based on spin photo-

conductivity. We found that BeC , MgC , LiN , LiC , KC and BeN , are metallic, while CaC and

MgN are ferromagnetic-metals with induced 1.3 and 0.7 µB magnetic moments, respectively.

AlN is a direct semiconductor with 0.43 eV band gap where the VBM and CBM are located

at the Γ point. Unlike CaC , we see that CaN remains a direct semiconductor with a 1.0 eV

band gap in the ↓ spin channel, whereas the ↑ spin channel is metallic, thus CaN is a half-

metal with 1 µB magnetic moment. This suggests that the charge carriers within the energy

bands in the vicinity of EF are mobile, which is not only useful for electrical conduction but

also for magnetic coupling. Notice that the half-metallic behavior of CaN can be useful in

spintronics. Finally, AlN is a direct semiconductor with band gap of 0.43 eV, while VBM

and CBM are located at the Γ point. DOS and PDOS of Li, Na, K, Be, Mg, Ca and Al

substituted C3N, are shown in Fig. S3. Simulated STM images of C3N substituted with Si,

Na and Mg atoms, are plotted in Fig. S4.

Charging and strain effects

Now, we continue our exploration by considering the effects of charging and strain where we

will limit ourselves to the investigation of NaC and NaN systems. A good starting point is

to calculate the change of the magnetic moment with charging where we consider the case

q = +1 e (when one electron is removed) and q = -1 e (when one electron is added). The

corresponding electronic band structures are shown in Figs. 11(a,b) Our results show that

NaC-C3N and NaN -C3N are ferromagnetic-metal and spin-glass semiconductor, which have

0.3 and 1.9 µB magnetic moments without charging. We see that the magnetic moment of
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NaC-C3N increases to 0.48 µB for q = +1 e and preserve the ferromagnetic metal character.

Whereas for the excess electronic charge of q = -1 e, the magnetic moment decreases to zero

and it becomes a nonmagnetic semiconductor. In the case of NaN -C3N, the magnetic moment

reaches 2.2 µB when 1 electron is removed (q = +1 e) and it transforms to a ferromagnetic-

metal. Under excess electronic charge (q = -1 e), the reverse situation is predicted where

the magnetic moment decreases to 0.95 µB.

The tensile and compressive strain are defined as ε = (a±a0
a0

) × 100, where a and a0 are

strained and non-strained lattice constants, respectively. The positive and negative values

denotes tensile and compression states, respectively. Uniaxial strain is applied along zigzag

directions and the atomic positions are optimized. Figs. 11(c-f) show the DOS of NaC and

NaN for a strain of ε (ε= -8, -6, -4, -2, 0, +2, +4, +6 and +8 %). We see that the magnetic

moment arises from orbital states near EF , whose spin degeneracy is lifted by strain. The

electronic structure of Na substituted on C3N as a function of uniaxial strain are shown in

Figs. 12(a,b) . The band structure changes with ε in ↑ and ↓ spin channels and the magnetic

moment decreases with ε for tensile (from +2 to +8 %) and compression (from -2 to -8 %)

strains. The magnetic moment as a function of uniaxial strain (tensile and compression),

are shown in Fig. 13. Whereas for NaN , which is different with NaC and we can see that the

magnetic moment decreases for tensile (from +2 to +8 %), while increases for compression

strain (from -2 to -8 %). Moreover, both tensile and compression states changes the magnetic

moment of NaC and NaN almost linearly with strain The magnetic moment changes with

respect to ε and more rapidly when compressing the NaC− and NaN − C3N .

Conclusion and Summary

In summary by using first-principle calculations within the framework of DFT, a systematic

investigation of the effect of topological defects including single and double vacancies, Stone-

Wales and anti-site, on the structure and electronic properties of C3N was presented. Our
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results show that for both single and double vacancies C3N becomes a metal, except in the

case of a single vacancy of N and double vacancy of N+N. C3N with anti-site defects when

C3N becomes a direct semiconductor with 0.2 eV band gap. With Stone-Wales defects, C3N

becomes an indirect semiconductor with the band gap of 0.2 eV. Furthermore, we studied

the effects due to H, O, S, F, Cl, B, C, N, Si, P, Li, Na, K, Be, Mg, Ca and Al substitution on

the electronic properties of C3N. When the C site is substituted with O, S and Si atoms, the

system remains a semiconductor with band gap in the range of 0.25-0.75 eV, while with H,

Cl, B, P, Li, Na, K, Be and Mg atoms the system turns into a metal. Also, upon substitution

of the native C with F atom, C3N becomes a dilute-magnetic semiconductor, while with Ca

substitution it is a ferromagnetic-metal. Moreover, when N is replaced with H, O, S, C, Si,

P, Li and Be atoms the system turns into a metal and with F, Cl, B and Al atoms becomes

a semiconductor. With Mg and Ca atoms it becomes a ferromagnetic-metal and half-metal

with induces magnetic moments of 0.3 µB and 2 µB, respectively. In addition, with Na and K

shows spin-glass semiconductor. Moreover, we investigated the effect of charging and strain

on the electronic structure of C3N, in which native C and N atoms are substituted with Na

atom. Our result shows that the magnetic moment with applied charging and strain can be

tuned. It is possible to tune the magnetism by controlling the Fermi level via external fields

such as by charging and strain. Our calculations predict that the introduction of typical

topological defects or by substitution of atoms in C3N, provides an interesting way to tune

the electronic and magnetic properties which can be useful in a diversity of applications

including solar cells, sensors, nanoelectronics, optoelectronics and spintronic devices.
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Table 1: Electronic states of atom substitution in C3N are specified as metal (M), half-metal
(HM), ferromagnetic-metal (FM), spin-glass semiconductor (SG-SC), dilute-magnetic semi-
conductor (DM-SC) and semiconductor (SC). Band gap of semiconductors and the magnetic
moment per super cell, are indicated inside parentheses. Direct and indirect band gap are
specified as −di and −ind, respectively.

Substitution site H O S F Cl B
C M SC (0.6 eV-di) SC (0.33 eV-ind) DM-SC (1µB) M M
N M M M SC (0.8 eV-di) SC (0.75 eV-ind) SC(0.5 eV-ind)

Substitution site C Si N P Li Na
C - SC (0.34 eV-di) M M M FM (0.3)
N M M - M M SG-SC (1.9µB)

Substitution site K Be Mg Ca Al -
C M M M FM (1.3 µB) M -
N SG-SC (2µB) M FM (0.7µB) HM (1µB) SC (0.43 eV-di) -
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(a)

Figure 1: (a) Optimized atomic structure of C3N, with its hexagonal primitive unit cell
indicated by the red parallelogram. Gray (blue) balls are C (N) atoms. The total (bottom)
and difference (up) charge density are also shown in the same panel. (b) Simulated STM
image of C3N overlayered with the C3N lattice. (c) The orbital-projected and (d) electronic
structure, DOS and PDOS. The charge distribution for the VBM and CBM are shown in the
insets. Blue and yellow regions represent charge accumulation and depletion, respectively.
The zero energy is set to the Fermi level energy (EF ).
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Figure 2: Schematic view of the different topological defects considered in the present paper:
single vacancy with missing one C atom (SVC), single vacancy with missing one N atom
(SVN), double vacancy with missing a pair of C (DVCC), double vacancy with missing a pair
of N (DVNN), double vacancy with missing a pair of N and C (DVNC), Stone-Wales (SW)
and anti-site with exchange of the position of N and C atoms (ASNC).
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Figure 3: Optimized structures with corresponding bond lengths and angles of SVC , (b)
SVN , C+C (DVCC), N+C (DVNC), N+N (DVNN), anti-site (ASNC), C-C (SWCC) and N-C
(SWNC) defects on C3N.
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site (ASNC), C-C (SWCC) and N-C (SWNC) defects on C3N. The charge distributions for
the VBM and CBM are shown in the insets. Blue and yellow regions represent charge
accumulation and depletion, respectively.
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substituted with different atoms. (d,e) Energy band gap and (f,g) magnetic moment due to
substitution by difference species of atoms at respectively the, C and N host atom sites.
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Figure 7: Optimized structures for substitution of (a) C or (b) N in the C3N lattice with
H, O, S, F, Cl, B, C, Si, N and P. Structural parameters including atomic bond length and
angles are indicated. C, N and foreign atoms are shown by brown, blue and different colored
balls, respectively.
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Figure 8: Electronic structure for substitution of (a) C or (b) N in the C3N lattice with H, O,
S, F, Cl, B, C, Si, N and P. The dotted curves represent the electronic structure of pristine
C3N. The zero of energy is set to EF , shown by the green dash-point line.
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Figure 9: DOS and PDOS for substitution of (a) C or (b) N in the C3N lattice with H, O,
S, F, Cl, B, C, Si, N and P.
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Figure 10: Electronic structure for substitution of (a) C or (b) N in the C3N lattice with Li,
Na, K, Be, Mg, Ca and Al. The zero of energy is set to EF , shown by the green dash-point
line.
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Figure 11: Electronic structure for two different values of the charging for Na substituted on
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Figure 12: Electronic structures of Na substituted on (a) C and (b) N atom sites of C3N for
different values of strain. The zero of energy is set to EF , shown by the green dash-point
line.
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Figure 13: Magnetic moment of Na substituted C3N as a function of strain.
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