

#### This item is the archived peer-reviewed author-version of:

Introducing novel electronic and magnetic properties in

#### **Reference:**

Bafekry Asadollah, Shayesteh Saber Farjami, Peeters François.- Introducing novel electronic and magnetic properties in  $C_3N$  nanosheets by defect engineering and atom substitution

Physical chemistry, chemical physics / Royal Society of Chemistry [London] - ISSN 1463-9076 - 21:37(2019), p. 21070-21083

Full text (Publisher's DOI): https://doi.org/10.1039/C9CP03853A

To cite this reference: https://hdl.handle.net/10067/1637320151162165141

uantwerpen.be

Institutional repository IRUA



# PCCP

Physical Chemistry Chemical Physics

# Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: A. Bafekry, S. Farjami Shayesteh and F. M. Peeters , *Phys. Chem. Chem. Phys.*, 2019, DOI: 10.1039/C9CP03853A.



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.





# Introducing Novel Electronic and Magnetic Properties in C<sub>3</sub>N Nanosheet by Defect Engineering and Atom Substitution

Asadollah Bafekry,\*<sup>,†,‡</sup> Saber Farjami Shayesteh,<sup>†</sup> and Francois M. Peeters<sup>‡</sup>

†Department of Physics, University of Guilan, 41335-1914 Rasht, Iran

Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

E-mail: Bafekry.asad@gmail.com

#### Abstract

Using first-principles calculations the effect of topological defects, vacancies, Stone-Wales and anti-site and substitution of atoms, on the structure and electronic properties of monolayer  $C_3N$  are investigated. Vacancy defects introduce localized states near the Fermi level and a local magnetic moment. While pristine  $C_3N$  is an indirect semiconductor with 0.4 eV band gap, with substitution of O, S and Si atoms for C, it remains a semiconductor with band gap in the range 0.25-0.75 eV, while it turns into a metal with H, Cl, B, P, Li, Na, K, Be and Mg substitution. With F substitution, it becomes a dilute-magnetic semiconductor, while with Ca substitution it is a ferromagnetic-metal. When replacing the N host atom,  $C_3N$  turns into: metal (H, O, S, C, Si, P, Li and Be), ferromagnetic-metal (Mg), half-metal (Ca) and spin-glass semiconductor (Na and K). Moreover, the effects of charging and strain on the electronic properties of Na atom substitution in  $C_3N$  are investigated. We found that the magnetic moment decrease or increase depending on the type and size of strain (tensile or compression). Our study shows how the band gap and magnetism in monolayer  $C_3N$  can be tuned by introducing defects and atom substitution. The so engineered  $C_3N$  can be a good candidate for future low dimensional devices.

#### Introduction

Graphene<sup>1</sup> as a two-dimensional material (2DM) with crystal lattice of carbon atoms, has recently attracted a lot of interest. 2DM forms a large family of materials involving various kinds of chemical elements showing unique properties quite distinct from their 3D bulk structures. Despite the fact that 2DM hold great potential for a wide range of applications, it will be necessary to modulate their intrinsic properties for real applications. Many approaches have been developed to modify the electronic and magnetic properties of 2DM. These methods involve substitution of atoms, defect engineering, surface functionalization and applying strain and/or electric field. Several computational studies have been conducted to investigate adatom and molecule adsorption on 2D monolayers<sup>2-11</sup> and substitution of atoms.<sup>12-14</sup> Substitution of atoms into 2DM is of fundamental importance in order to tailor their electronic and magnetic properties, which are useful for numerous applications such as energy storage and conversion,  $^{15-17}$  sensing  $^{18,19}$  and nanoelectronics devices.  $^{14,20-22}$ 

In recent years, a large subgroup of 2D crystals has attracted attention consisting of 2D conjugated polymer, which can be stabilized as monolayers by taking advantage of the chemistry of C and N. The strong C bonds give rise to the unique properties of graphene, while the ability of N to take many different positions enhances the option to form a strong covalent organic framework.  $^{23,23-33}$  A monolayer of C<sub>3</sub>N was recently successfully synthesized. <sup>34</sup> Due to its unique properties<sup>35</sup> several applications have been suggested including solar cell devices, electrolyte gating and doping of transistors, and anode material.<sup>36-38</sup> Monolayer C<sub>3</sub>N is an indirect band-gap semiconductor and its electronic structure has been computed <sup>34,39,40</sup> by DFT calculations. An important issue is to make the intrinsic band gap of  $C_3N$  tunable, in order to extend its properties. Previously, it was shown that the properties of  $C_3N$  can be

tuned by adsorption of adatoms and doping,  $^{5,41-46}$  adsorptions of molecules,  $^{29,47,48}$  defect as well as strain engineering  $^{5,46,47,49?}$ ,  $^{50}$  and other methods  $^{51-53}$  The substitution of atoms into carbon nitride materials is of fundamental importance, enabling a wide range of applications by tailoring the electronic and magnetic properties.  $^{54-56}$ 

Using first-principles calculations, we carried out a detailed investigation of how various point defects including vacancies (single and double vacancy), Stone-Wales (SW) and anti-site defects affect the structure of  $C_3N$  and its electronic and magnetic properties. We demonstrate the capability of defect engineering to alter the properties of  $C_3N$  from nonmagnetic semiconductor to a metal and/or a magnetic ground state. Furthermore, we present a detailed study of the effect of substitution of H, O, S, F, Cl, B, C, N, Si, P, Li, Na, K, Be, Mg, Ca and Al atoms on the electronic and magnetic properties of  $C_3N$ . We analyze the modification of the band structure of  $C_3N$  as the underlying mechanism for the changes in its properties. One of the goals is to show how introducing the above impurities turns the semiconductor. The effects of charging and strain on the substituted- $C_3N$  are studied and we show how the band gap and magnetism can be modulated. The important point here is that a wide variety of electronic and magnetic properties, differing from pristine  $C_3N$ , emerge using the above methods.

#### Method

In this paper, we performed calculations of the electronic structure with geometric optimization, using spin-polarized density functional theory (DFT) as implemented in OpenMX Package.<sup>57</sup> This code self-consistently finds the eigenvalues and eigenfunctions of the Kohn-Sham equations for the systems under study using norm-conserving pseudopotentials,<sup>58</sup> and pseudoatomic orbitals (PAOs).<sup>59,60</sup> In addition, we used the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA) for the exchange and correlation.<sup>61</sup> The K-points for sampling over the Brillouin zone (BZ) were generated using the Monkhorst-Pack scheme.<sup>62</sup> With a k-mesh grid of  $23 \times 23 \times 1$  for the primitive unit cell and scaled according to the size of the supercell. After convergence tests, we choose an energy cutoff 300 Ry so that the total-energy was converged with an accuracy below 1.0 meV/atom. The geometries were fully relaxed until the force acting on each atom was less than 1 meV/Å and we choose a large vacuum layer of 20 Å to avoid interaction between adjacent layers. The charge transfer was calculated using the Mulliken charge analysis.<sup>63</sup> In order to accurately describe the van der Waals (vdW) interaction in C<sub>3</sub>N, we adopted the empirical correction method presented by Grimme (DFT-D2),<sup>64</sup> which has been proven reliable for describing the long-range vdW interactions. Simulated scanning tunneling microscopy (STM) images were obtained using the Tersoff-Hamann theory,<sup>65</sup> as supplied in the OpenMX code with a bias of 2.0 V and were graphed using WSxM software.<sup>66</sup>

## Pristine C<sub>3</sub>N

Published on 09 September 2019. Downloaded by Carleton University on 9/9/2019 12:27:34 PM

The atomic structure of  $C_3N$  is a planar hexagonal lattice, shown in Fig. 1(a). The lattice constant of  $C_3N$  is 4.861 Å, which agrees well with the experimental value of 4.75 Å <sup>34</sup> with bond lengths of 1.404 and 1.403 Å which are in good agreement with previous theoretical studies.<sup>39,41,42,67</sup> The difference charge density shows a high charge density around the N atoms, indicating charge transfer from C to N atoms. In order to provide visible guidance for experimental observations, first-principles DFT calculations were performed to calculate the STM image which is shown in Fig. 1(b). To produce the calculated STM image, the Kohn-Sham charge density was integrated at a voltage of +2.0 V. The atoms around C-N bonds are shows as bright spots. To correlate the STM image with the corresponding atomistic structure, we overlayered it with the C<sub>3</sub>N lattice structure with the C (gray ball) and the N (blue ball) atoms. The orbital-projected electronic band structure of C<sub>3</sub>N with corresponding DOS and PDOS, are shown in Figs. 1(c,d). Notice the valence band maximum

(VBM) of C<sub>3</sub>N is dominated by N- $p_z$  orbitals and the Dirac-cone at the k=point below  $E_F$  is formed by C- $p_z$  orbitals. Our DFT calculations show that C<sub>3</sub>N is an indirect semiconductor with 0.4 eV band gap which is in agreement with previous results.<sup>41,42,67</sup> The valence band maximum (VBM) and the conduction band minimum (CBM) are located between the  $\Gamma$  and **M** points. The DOS and PDOS are shown in Fig. 1(d). Since in C<sub>3</sub>N two C atoms are replaced by N, the  $p_z$  orbital band is fully occupied by additional two electrons, leading to a semiconducting behavior. From PDOS, we see that the VBM is built up by N- $p_z$  orbitals, whereas the CBM is dominated by C- $p_z$  orbitals.

## **Topological defects**

Recently, many methods including defect engineering, <sup>53,68</sup> applying electric field, <sup>26</sup> strain, <sup>69,70</sup> edge state <sup>26,71</sup> and heterostructuring <sup>54,55</sup> was used to change the properties of the carbon nitride materials. We investigate different topological defects in monolayer C<sub>3</sub>N and in addition vacancies, Stone-Wales and anti-site defects. In order to investigate vacancies, we removed C and N atoms to produce single vacancy of the C atom  $SV_C$  or N atom  $SV_N$ , while for double vacancies, we remove C+C ( $DV_{CC}$ ), N+N ( $DV_{NN}$ ) and N+C ( $DV_{NC}$ ) atoms respectively. For the Stone-Wales (SW) defect, we rotate a single C-C ( $SW_{CC}$ ) or N-C ( $SW_{NC}$ ) bond in C<sub>3</sub>N by 90°, resulting in a structure with a pair of seven-membered and five-membered rings, respectively. For the anti-site defects, we replaced N with C atoms (i.e., exchanged the position of N and C atoms) ( $AS_{NC}$ ). Typical defects are schematically shown in Fig. 2. With fully structural optimization, where all atoms are relaxed in all directions and calculations are performed using  $2 \times 2 \times 1$  supercell of C<sub>3</sub>N which contains 32 atoms (24 C and 8 N atoms).

In Fig. 3, we present the optimized structures with corresponding bond lengths and bond angles of  $SV_C$  and  $SV_N$ . The C and N atoms around the vacancy in C<sub>3</sub>N undergo a Jahn-Teller distortion<sup>72</sup> and C and N atoms close to the vacancy site move towards each other to

form C-C or C-N bonds. For the reconstructed  $SV_C$  ( $SV_N$ ), two C atoms bond together to build a joint pentagonal and nonagonal (i.e., the 5-9 configurations). Two C atoms around the vacancy are approaching each other, so the C-C (N-C) bond lengths are changed to 1.597 (1.730) and 1.550 (1.560) Å, respectively, which differs from pristine  $C_3N$  (1.403 and 1.404 Å) (see Fig. 3). For  $SV_C$ , upon structural optimization the same symmetry and a planar structure of  $C_3N$  is found. In  $DV_{CC}$  case, we observed no deviation from the planar configuration upon structural relaxation and it exhibits a non-reconstructed structure, while  $DV_{NC}$  shows reconstructed structure and two C atoms bond together to build two pentagon and one heptagon (i.e. the 5-8-5 configurations) (see Fig. 3). The distance between dangling bonds in  $DV_{CC}$  is found to be about 1.404 Å and the bond lengths of C and N atoms around the vacancies become 2.041 and 1.404 Å. The bond lengths of  $DV_{NC}$  are 1.404 and 1.404 Å (see Fig. 3). The  $DV_{NN}$  shows a non-reconstructed structure and the bond lengths of C and N atoms around the vacancies become 1.44 and 1.43 Å. For  $AS_{NC}$  we see a negligible bond length elongation in the modified structure. The C-C bond length undergoes a small modification from 1.404 to 1.406 Å, and the N-C bond length is calculated to be 1.400 Å. As can be seen from Fig. 3, after the formation of SW defect, four neighboring hexagons of  $C_3N$ are transformed into one pentagon and two heptagons (the 55-77 configurations), and  $C_3N$ maintains its planer 2D structure. Through 90° rotation of a dimer, the C-C bond becomes stronger than the one in pristine  $C_3N$ , and its length decreases from 2.281 to 2.191 Å. Due to the shortening of bond lengths along the direction parallel to the pentagons, the lattice constant decreases from 23.212 to 23.041 Å.

The effect of SV defects on the electronic and magnetic properties of  $C_3N$ , are shown in Fig. 4. It is noticeable that the band structure of pristine  $C_3N$  is strongly disturbed by the vacancy defects. The  $SV_C$  and  $SV_N$  turns pristine  $C_3N$  into a metal and ferromagneticmetal, respectively. In addition,  $SV_N$  has  $0.3 \mu_B$  magnetic moment due to the dangling bond around the defect sites with an unpaired electron. For  $DV_{CC}$  and  $DV_{NC}$ , similar to what we have for the SV-defect, states appear near  $E_F$ , resulting in metallic characteristics in

the electronic structure. Our results show that  $DV_{NN}$ , becomes a ferromagnetic-metal and induces 3.5  $\mu_B$  magnetic moment to C<sub>3</sub>N. We see that  $AS_{NC}$ , is a semiconductor with 0.2 eV indirect band gap. After introducing the SW defects, the electronic states experience a shift due to the breaking of the hexagonal lattice symmetry by the SW defect. The SW-C<sub>3</sub>N, is an indirect semiconductor with 0.2 eV band gap due to the introduction of an energy level near the CB, which is related to some bonds of both C and N atoms around the defect. The VBM (CBM) is located at  $\Gamma$  (between M and  $\Gamma$  points). Moreover, the band becomes flatter which indicates a strongly localized charge around these defects.

It is also evident from the DOS and PDOS in the same panel, that the state at  $E_F$  of SV-C<sub>3</sub>N belongs to the C/N- $p_z$  orbital around the missing atom which confirms the metallic behavior of SV-C<sub>3</sub>N. By analyzing of PDOS it is clear that the magnetism in  $SV_N$  are derived from the C-p orbitals of the C atoms in  $SV_N$ . For the case of  $DV_{CC}$ , we found that the state at  $E_F$  belongs to the s and p-orbitals of C and N atoms locating around the missing atom which confirms the metallic behavior, whereas, for  $DV_{NC}$ , the state around  $E_F$  originates from C/N- $p_z$  orbitals. While the VB and CB of  $DV_{NN}$  belongs to the C/N-s,  $p_{x,y}$  orbital, the VB and CB of  $AS_{NC}$  belongs to the C/N- $p_z$  orbitals. The VB of  $SW_{CC}$  and  $SW_{NC}$  has N- $p_z$  orbital and the CB is build up of the C- $p_z$  orbital around the defect, which results in semiconducting behavior. To provide visible guidance for experiments, the simulated STM images of different defects, are shown in Fig. S1 (see supplementary information (SI)), where the bright and dark spots have been used for a more succinct demonstration. Difference spin density for  $SV_N$  and  $DV_{NN}$  are shown in Fig. 5 in the insets. The blue and yellow regions represent the  $\uparrow$  and  $\downarrow$  spin states, respectively. Notice that it is symmetrical and localized around the defect which is a consequence of the centrosymmetric structure of  $SV_N$ .

#### Atom substitution

To further shed light on the underlying mechanism of the electronic and magnetic properties, we investigate the spin-polarized band structures of atoms substituted in C<sub>3</sub>N. Recently, adsorption and substitution of atoms<sup>73–77</sup> and surface functionalizing with molecules<sup>78,79</sup> of C<sub>2</sub>N was studied. We found that the band structure of pristine C<sub>3</sub>N was strongly disturbed when atoms are substituted, thus the bonding between these atoms and the C<sub>3</sub>N lattice should be covalent. With fully structural optimization, where all atoms are relaxed in all directions and calculations are performed using  $2 \times 2 \times 1$  supercell of C<sub>3</sub>N which contains 32 atoms (24 C and 8 N atoms).

We consider two substitution sites: (1) the C host atom site  $(Sb_C)$  and (2) the N host atom site  $(Sb_N)$ . The change of lattice constant is shown in Fig. 6(a) and a schematic view of two substitution sites are shown in the inset. The substitution of foreign atoms with C (N) host atom of C<sub>3</sub>N, is labeled as  $Sb_C$ -C<sub>3</sub>N ( $Sb_N$ -C<sub>3</sub>N). For instance, substitution of H atom for C (N), is labeled as  $H_C$ -C<sub>3</sub>N ( $H_N$ -C<sub>3</sub>N). The induced strain to the lattice structure of the C<sub>3</sub>N can be estimated by calculating  $(a-a_0)/a_0$ , where  $a_0$  is the lattice constant of pristine C<sub>3</sub>N and a is the lattice constant of Sb-C<sub>3</sub>N. The induced strain is plotted in Figs. 6(b,c). Lattice deformation of the substituted-C<sub>3</sub>N structure exhibit an increase of induced distortion to the C<sub>3</sub>N lattice constant. From Figs. 6(b,c), we find that the strain for H, O, S, F, Cl, B, Si and P substitution for C and N sites varies between 0.5 to 5 %. For the Li, Na, K, Be, Mg, Ca and Al atoms the strain varies between 2.5 to 9 % which is significantly larger. Notice the increase in lattice constant with the atomic number which is present in both cases (see Fig. 6(a)). The energy band gap and magnetic moment for different species of atoms are shown in Figs. 6(d,e) and Figs. 6(f,g), respectively.

The interaction between the substituted atoms and the  $C_3N$  lattice can induce a charge redistribution. The Mulliken population analysis was performed to quantitatively analyze this effect. Positive (negative) charge transfer indicates a loss (gain) of electrons for each substituted atom to (from)  $C_3N$ . In pristine  $C_3N$  there is a charge transfer from C to N

atoms. However, those C and N atoms in the substituted  $C_3N$ , have different Mulliken charges because of the different arrangement of atoms. The redistribution of charge for substituted  $C_3N$  depends mainly on the incorporation of substituted atom into the C and N lattice. For example, substitution of C host atom with Li and P atoms, induce Mulliken charges of -0.48 e and +0.53 e, respectively, while substitution with Na and Al yield +0.14 e and +0.23 e, respectively. The C and N atoms bonded to the substitutional atoms have much larger Mulliken charges than those in pristine  $C_3N$ . This difference can be attributed to the different atomic radius, electro-negativities, and their bond length of C and N atom with the foreign atoms.

The optimized structures of H, O, S, F, Cl, B, C, Si, N and P substituted C<sub>3</sub>N on C or N sites with their corresponding structural parameters including atomic bond length and angles are shown in Figs. 7(a,b). In the case of reconstruction, the honeycomb structure is deformed locally and the host atoms are pushed away from its lattice position. It can be seen that for  $H_C$  and  $H_N$ , the H atom becomes bonded to the neighboring C atom and the resulting length of the H-C bond is 1.116 and 1.086 Å, respectively. The O and F atoms interact through  $sp^2$ -hybridization, resulting in the formation of two and three  $\sigma$  bonds with the neighboring C atoms of  $C_3N$ , respectively. The bond length of  $O_C$ ,  $O_N$  are 1.341 and 1.541 Å, and the C-O-C bond angles are 135° and 119°, respectively. For  $F_C$  and  $F_N$ , the F-C bond length is 1.582 and 1.712 Å, and the C-F-C bond angle is 145° and 119°, respectively. We can see a strong effect on the planar structure of  $C_3N$  for  $F_C$ . For  $B_C$  and  $B_N$ , the B atoms form one and three  $\sigma$  bonds with the neighboring N and C atoms, respectively. and the bond length with the nearest N atom is 1.441 Å, while for  $B_N$  the bond length with the nearest C atoms is 1.482 Å and the C-B-C bond angle is 120°, with a small in plane distortion of the  $C_3N$  lattice. The Si and P atomic radius is larger than that of C or N atom and as a consequence the Si and P atoms induce a structural deformation along the direction of the C<sub>3</sub>N plane, leading to an expansion of the lattice parameter with ~ 3.0%. The change in bond lengths and angles reflect the size of substituted atoms, and due to

changes in the optimized structure the charge transfer between the substituted atoms and the substrate are modified. The structural parameters for these atomic structures are given in the supplementary information (SI).

The electronic structure of H, O, S, F, Cl, B, C, Si, N and P atoms substituted C<sub>3</sub>N, are shown in Figs. 8(a,b). The blue-lines and red-dash lines represent up and down spin states, respectively. The electronic states of  $C_3N$  after substitution of different atoms are listed in Table1. The corresponding electronic states are specified as metal (M), half-metal (HM), ferromagnetic-metal (FM), spin-glass semiconductor (SG-SC), dilute-magnetic semiconductor (DM-SC) and semiconductor (SC) and are listed in Table I. The band gap and magnetic moment are indicated inside parentheses. In comparison with pristine  $C_3N$ , the shape of the electronic structure of Sb-C<sub>3</sub>N is significantly modified. The  $H_C$ ,  $Cl_C$ ,  $H_N$ ,  $O_N$  and  $S_N$ are metal, while  $O_C$  is a semiconductor with 0.6 eV direct band gap, where the VBM and CBM are located at the  $\Gamma$  point. We can see that  $S_C$  and  $Cl_N$  are indirect semiconductors with band gap of 0.33 eV and the VBM and CBM are located at the K point and between the M and  $\Gamma$  point, respectively. Moreover,  $S_C$  exhibit a p-type semiconductor, because these atoms gain electrons, resulting in a down shift of the  $E_F$  inside the VB edge.  $F_C$  is a dilute-magnetic semiconductor and the excess electron of the substituted F atom relative to C leads to spin-polarization and induces a magnetic moment of 1  $\mu_B$  in the ground state per F atom.  $B_C$  is a metal, while  $B_N$  is an indirect semiconductor with 0.5 eV band gap. Notice that the N atom has two extra electrons on the outer shell as compared to B which influences the VB and CB of  $C_3N$ . These excess electrons of the substituted N atom leads to a filling of the VB edge, similar to a p-type semiconductor and as a result  $B_N$  exhibit hole doping and thus causes a down shift of  $E_F$ . Also Si<sub>C</sub> is a direct semiconductor with 0.34 eV band gap, while  $Si_N$  becomes a metal and the impurity states appear near the VB and CB edge.

The electronic structure of H, O, S, F, Cl, B, C, Si, N and P atoms substituted  $C_3N$ , are shown in Figs. 9(a,b). We found no spin polarized band structure for  $N_C$ ,  $P_C$ ,  $C_N$ ,  $Si_N$ 

and  $P_N$  which exhibit metallic characteristics with their  $E_F$  crossing the electronic states. For  $Cl_C$  the electron states near  $E_F$  are mainly governed by the  $C/N-p_z$  orbitals and for  $Cl_N$ are governed by the  $C-p_{x,y}$ ,  $N-p_z$  and Cl-s orbitals. We found that the VBM of  $Cl_C$  is due to the hybridization of Cl-s with  $C-p_{x,y}$  and  $N-p_z$  orbitals of the nearest atoms and CBM of  $Cl_C$  originates from  $Cl-p_{x,y}$  with  $p_{x,y}$  orbitals of the nearest C atoms. The VBM of  $S_C$  is due to the hybridization of S-s,  $p_{x,y}$  with  $p_{x,y}$  orbitals of the nearest N atoms and the CBM of  $S_C N$  originates from  $S-p_z$  with  $p_z$  orbitals of the nearest C atoms. For  $F_C$  there is an asymmetric spin splitting around  $E_F$  and as a consequence the defected structure becomes a dilute-magnetic semiconductor with an induced magnetic moment.

The discussion of corresponding PDOS further reveals that these asymmetric impurity states in the band gap mainly originates from the hybridization of N/F-2p and the C-2p orbitals leading to a magnetic moment of 1  $\mu_B$ . However for F<sub>N</sub>, the hybridization is slightly different and the state near  $E_F$  mainly originates from the F-3s and C- $p_z$  orbital states. PDOS of B<sub>C</sub> shows that the CBM arises from the B- $p_z$  and C/N- $p_z$  orbitals. Also hybridization between the B- $p_z$  and C/N- $p_z$  orbitals mainly contributes to the VBM. For Si<sub>C</sub>, Si being in the same group as C in the periodic table with a larger atomic radius, distorts the planar structure of C<sub>3</sub>N and causes an increase in the bond length. VBM of C<sub>3</sub>N is not influenced much upon substitution, where the states originate from Si- $p_z$  orbitals. DOS and PDOS of P<sub>C</sub> and P<sub>N</sub>, show that both the CBM and VBM are composed of P- $p_z$ and C- $p_z$  orbitals. As expected, DOS of the B<sub>C</sub>, N<sub>C</sub>, P<sub>C</sub>, B<sub>C</sub>, C<sub>N</sub> and Si<sub>N</sub>, shows that the interaction between these atoms and C or N host atoms is responsible for the semiconductor to metal transition. Based on the calculated PDOS, both the CBM and VBM receive mainly contributions from the hybridization of the  $p_z$  orbitals.

The optimized atomic structures of Li, Na, K, Be, Mg, Ca and Al substituted C<sub>3</sub>N and corresponding structural parameters including atomic bond length and bond angles, are shown in Fig. S2. Figs. 10(a,b) show the electronic band structure of Li, Na, K, Be, Mg, Ca and Al substitution in C<sub>3</sub>N, while Na<sub>C</sub> is ferromagnetic-metal with 1.3  $\mu_B$  magnetic moment. Interestingly,  $Na_N$  and  $K_N$ , exhibit spin-glass semiconductor behavior with 1.9 and 2  $\mu_B$  magnetic moments, respectively. Namely, the  $\uparrow$  spin channel is gapless, while the  $\downarrow$  spin channel is a semiconductor and the VBM touches the Fermi level. Such spin-gapless semiconductors are of particular interest for e.g. spin photo-diodes, spin detectors and electromagnetic radiation generators for a wide range of wavelengths based on spin photoconductivity. We found that  $\operatorname{Be}_C$ ,  $\operatorname{Mg}_C$ ,  $\operatorname{Li}_N$ ,  $\operatorname{Li}_C$ ,  $\operatorname{K}_C$  and  $\operatorname{Be}_N$ , are metallic, while  $\operatorname{Ca}_C$  and  $Mg_N$  are ferromagnetic-metals with induced 1.3 and 0.7  $\mu_B$  magnetic moments, respectively.  $Al_N$  is a direct semiconductor with 0.43 eV band gap where the VBM and CBM are located at the  $\Gamma$  point. Unlike Ca<sub>C</sub>, we see that Ca<sub>N</sub> remains a direct semiconductor with a 1.0 eV band gap in the  $\downarrow$  spin channel, whereas the  $\uparrow$  spin channel is metallic, thus Ca<sub>N</sub> is a halfmetal with 1  $\mu_B$  magnetic moment. This suggests that the charge carriers within the energy bands in the vicinity of  $E_F$  are mobile, which is not only useful for electrical conduction but also for magnetic coupling. Notice that the half-metallic behavior of  $Ca_N$  can be useful in spintronics. Finally,  $Al_N$  is a direct semiconductor with band gap of 0.43 eV, while VBM and CBM are located at the  $\Gamma$  point. DOS and PDOS of Li, Na, K, Be, Mg, Ca and Al substituted  $C_3N$ , are shown in Fig. S3. Simulated STM images of  $C_3N$  substituted with Si, Na and Mg atoms, are plotted in Fig. S4.

#### Charging and strain effects

Published on 09 September 2019. Downloaded by Carleton University on 9/9/2019 12:27:34 PM

Now, we continue our exploration by considering the effects of charging and strain where we will limit ourselves to the investigation of  $Na_C$  and  $Na_N$  systems. A good starting point is to calculate the change of the magnetic moment with charging where we consider the case q = +1 e (when one electron is removed) and q = -1 e (when one electron is added). The corresponding electronic band structures are shown in Figs. 11(a,b) Our results show that  $Na_C$ -C<sub>3</sub>N and  $Na_N$ -C<sub>3</sub>N are ferromagnetic-metal and spin-glass semiconductor, which have 0.3 and 1.9  $\mu_B$  magnetic moments without charging. We see that the magnetic moment of

Na<sub>C</sub>-C<sub>3</sub>N increases to 0.48  $\mu_B$  for q = +1 e and preserve the ferromagnetic metal character. Whereas for the excess electronic charge of q = -1 e, the magnetic moment decreases to zero and it becomes a nonmagnetic semiconductor. In the case of Na<sub>N</sub>-C<sub>3</sub>N, the magnetic moment reaches 2.2  $\mu_B$  when 1 electron is removed (q = +1 e) and it transforms to a ferromagneticmetal. Under excess electronic charge (q = -1 e), the reverse situation is predicted where the magnetic moment decreases to 0.95  $\mu_B$ .

The tensile and compressive strain are defined as  $\varepsilon = (\frac{a\pm a_0}{a_0}) \times 100$ , where a and  $a_0$  are strained and non-strained lattice constants, respectively. The positive and negative values denotes tensile and compression states, respectively. Uniaxial strain is applied along zigzag directions and the atomic positions are optimized. Figs. 11(c-f) show the DOS of Na<sub>C</sub> and Na<sub>N</sub> for a strain of  $\varepsilon$  ( $\varepsilon$ = -8, -6, -4, -2, 0, +2, +4, +6 and +8 %). We see that the magnetic moment arises from orbital states near  $E_F$ , whose spin degeneracy is lifted by strain. The electronic structure of Na substituted on C<sub>3</sub>N as a function of uniaxial strain are shown in Figs. 12(a,b). The band structure changes with  $\varepsilon$  in  $\uparrow$  and  $\downarrow$  spin channels and the magnetic moment decreases with  $\varepsilon$  for tensile (from +2 to +8 %) and compression (from -2 to -8 %) strains. The magnetic moment as a function of uniaxial strain (tensile and compression), are shown in Fig. 13. Whereas for Na<sub>N</sub>, which is different with Na<sub>C</sub> and we can see that the magnetic moment decreases for tensile (from +2 to +8 %), while increases for compression strain (from -2 to -8 %). Moreover, both tensile and compression states changes the magnetic moment of Na<sub>C</sub> and Na<sub>N</sub> almost linearly with strain The magnetic moment changes with respect to  $\varepsilon$  and more rapidly when compressing the Na<sub>C</sub>- and Na<sub>N</sub> - C<sub>3</sub>N.

#### **Conclusion and Summary**

In summary by using first-principle calculations within the framework of DFT, a systematic investigation of the effect of topological defects including single and double vacancies, Stone-Wales and anti-site, on the structure and electronic properties of  $C_3N$  was presented. Our results show that for both single and double vacancies  $C_3N$  becomes a metal, except in the case of a single vacancy of N and double vacancy of N+N. C<sub>3</sub>N with anti-site defects when  $C_3N$  becomes a direct semiconductor with 0.2 eV band gap. With Stone-Wales defects,  $C_3N$ becomes an indirect semiconductor with the band gap of 0.2 eV. Furthermore, we studied the effects due to H, O, S, F, Cl, B, C, N, Si, P, Li, Na, K, Be, Mg, Ca and Al substitution on the electronic properties of  $C_3N$ . When the C site is substituted with O, S and Si atoms, the system remains a semiconductor with band gap in the range of 0.25-0.75 eV, while with H, Cl, B, P, Li, Na, K, Be and Mg atoms the system turns into a metal. Also, upon substitution of the native C with F atom, C<sub>3</sub>N becomes a dilute-magnetic semiconductor, while with Ca substitution it is a ferromagnetic-metal. Moreover, when N is replaced with H, O, S, C, Si, P, Li and Be atoms the system turns into a metal and with F, Cl, B and Al atoms becomes a semiconductor. With Mg and Ca atoms it becomes a ferromagnetic-metal and half-metal with induces magnetic moments of 0.3  $\mu_B$  and 2  $\mu_B$ , respectively. In addition, with Na and K shows spin-glass semiconductor. Moreover, we investigated the effect of charging and strain on the electronic structure of  $C_3N$ , in which native C and N atoms are substituted with Na atom. Our result shows that the magnetic moment with applied charging and strain can be tuned. It is possible to tune the magnetism by controlling the Fermi level via external fields such as by charging and strain. Our calculations predict that the introduction of typical topological defects or by substitution of atoms in  $C_3N$ , provides an interesting way to tune the electronic and magnetic properties which can be useful in a diversity of applications including solar cells, sensors, nanoelectronics, optoelectronics and spintronic devices.

#### Acknowledgment

Published on 09 September 2019. Downloaded by Carleton University on 9/9/2019 12:27:34 PM

This work was supported by the Flemish Science Foundation (FW0-Vl).

## References

- Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. *Science* 2004, *306*, 666–669.
- (2) Chan, K. T.; Neaton, J. B.; Cohen, M. L. First-Principles Study of Metal Adatom Adsorption on Graphene. *Phys. Rev. B* 2008, 77, 235430.
- (3) Sahin, H.; Peeters, F. M. Adsorption of Alkali, Alkaline-Earth, and 3d Transition Metal Atoms on Silicene. *Phys. Rev. B* 2013, 87, 085423.
- (4) Pang, Q.; Li, L.; Zhang, L.-L.; Zhang, C.; Song, Y.-L. Functionalization of Germanene by Metal Atoms Adsorption: A First-Principles Study. *Can. J. Phys.* 2015, *93*, 1310– 1318.
- (5) Bafekry, A.; Farjami Shayesteh, S.; Peeters, F. M. C<sub>3</sub>N Monolayer: Exploring the Emerging of Novel Electronic and Magnetic Properties with Adatom Adsorption, Functionalizations, Electric field, Charging and Strain. J. Phys. Chem. C. 2019, 123, 12485– 12499.
- (6) A. Bafekry, S. F. S., M. Ghergherehchi; Peeters, F. Adsorption of molecules on C<sub>3</sub>N nanosheet: A first-principles calculations. *Chem. Phys.* **2019**, *526*, 110442.
- (7) Kadioglu, Y.; Ersan, F.; GÃúkoħlu, G.; ÃIJzengi AktÃijrk, O.; AktÃijrk, E. Adsorption of Alkali and Alkaline-Earth Metal Atoms on Stanene: A First-Principles Study. Mater. Chem. Phys. 2016, 180, 326–331.
- (8) Li, Y.; Xia, C.; Du, J.; Xiong, W.; Li, X.; Wei, S. Influences of the Adsorption of Different Elements on the Electronic Structures of a Tin Sulfide Monolayer. *Phys. Chem. Chem. Phys.* **2017**, *19*, 5423–5429.

- (9) Lalitha, M.; Mahadevan, S. S.; Lakshmipathi, S. Improved Lithium Adsorption in Boron- and Nitrogen-Substituted Graphene Derivatives. J. Mater. Sci. 2017, 52, 815– 831.
- (10) Bafekry, A.; Ghergherehchi, M.; Farjami Shayesteh, S. Tuning the electronic and magnetic properties of antimonene nanosheets via point defects and external fields: firstprinciples calculations. *Phys. Chem. Chem. Phys.* **2019**, *21*, 10552–10566.
- (11) Wang, X.; Jiang, X.; Sharman, E.; Yang, L.; Li, X.; Zhang, G.; Zhao, J.; Luo, Y.; Jiang, J. Isolating Hydrogen from Oxygen in Photocatalytic Water Splitting with a Carbon-Quantum-dot/carbon-Nitride Hybrid. J. Mater. Chem. A 2019, 7, 6143–6148.
- (12) Sun, M.; Wang, S.; Du, Y.; Yu, J.; Tang, W. Transition Metal Doped Arsenene: A First-Principles Study. Appl. Surf. Sci. 2016, 389, 594 – 600.

- (13) Sun, M.; Ren, Q.; Wang, S.; Zhang, Y.; Du, Y.; Yu, J.; Tang, W. Magnetism in Transition-Metal-Doped Germanene: A First-Principles Study. *Comput. Mater. Sci.* 2016, 118, 112 – 116.
- (14) Cheng, Y. C.; Zhu, Z. Y.; Mi, W. B.; Guo, Z. B.; Schwingenschlögl, U. Prediction of Two-Dimensional Diluted Magnetic Semiconductors: Doped Monolayer MoS<sub>2</sub> Systems. *Phys. Rev. B* 2013, *87*, 100401.
- (15) AIJzengi AktAijrk, O.; Tomak, M. Lithium and Antimony Adsorbed on Graphene Studied by First-Principles Calculations. Appl. Surf. Sci. 2011, 258, 800 – 805.
- (16) Gao, S.; Ren, Z.; Wan, L.; Zheng, J.; Guo, P.; Zhou, Y. Density Functional Theory Prediction for Diffusion of Lithium on Boron-Doped Graphene Surface. *Appl. Surf. Sci.* 2011, 257, 7443 – 7446.
- (17) Roy-Mayhew, J. D.; Bozym, D. J.; Punckt, C.; Aksay, I. A. Functionalized Graphene

as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. ACS Nano **2010**, 4, 6203–6211.

- (18) Ganji, M. D.; Sharifi, N.; Ardjmand, M.; Ahangari, M. G. Pt-Decorated Graphene as Superior Media for H<sub>2</sub>S Adsorption: A First-Principles Study. *Appl. Surf. Sci.* 2012, 261, 697 – 704.
- (19) Lee, Y.; Lee, S.; Hwang, Y.; Chung, Y.-C. Modulating Magnetic Characteristics of Pt Embedded Graphene by Gas Adsorption (N<sub>2</sub>, O<sub>2</sub>, NO<sub>2</sub>, SO<sub>2</sub>). Appl. Surf. Sci. 2014, 289, 445 449.
- (20) Khan, I.; Hong, J. Manipulation of Magnetic State in Phosphorene Layer by Non-Magnetic Impurity Doping. New J. Phys. 2015, 17, 023056.
- (21) Seixas, L.; Carvalho, A.; Castro Neto, A. H. Atomically Thin Dilute Magnetism in Co-Doped Phosphorene. *Phys. Rev. B* 2015, *91*, 155138.
- (22) Ramasubramaniam, A.; Naveh, D. Mn-Doped Monolayer MoS<sub>2</sub>: An Atomically Thin Dilute Magnetic Semiconductor. *Phys. Rev. B* 2013, *87*, 195201.
- (23) SARIKURT, S.; ERSAN, F. Phononic Stability Analysis of Two-Dimensional Carbon Nitride Monolayers. Marmara Fen Bilimleri Dergisi 2018, 30, 383 – 387.
- (24) Shirazi, A.; Abadi, R.; Izadifar, M.; Alajlan, N.; Rabczuk, T. Mechanical Responses of Rristine and Defective C<sub>3</sub>N Nanosheets Studied by Molecular Dynamics Simulations. *Comput. Mater. Sci.* 2018, 147, 316 – 321.
- (25) Shi, L.-B.; Zhang, Y.-Y.; Xiu, X.-M.; Dong, H.-K. Structural Characteristics and Strain Behavior of Two-Dimensional C<sub>3</sub>NÂă: First Principles Calculations. *Carbon* 2018, 134, 103 – 111.
- (26) Wang, D.; Bao, Y.; Wu, T.; Gan, S.; Han, D.; Niu, L. First-Principles Study of the Role of Strain and Hydrogenation on C<sub>3</sub>N. *Carbon* **2018**, *134*, 22 – 28.

- (27) Zhou, X.; Feng, W.; Guan, S.; Fu, B.; Su, W.; Yao, Y. Computational characterization of monolayer C<sub>3</sub>N: A two-dimensional nitrogen-graphene crystal. J. Mater. Research 2017, 32, 2993âĂŞ3001.
- (28) Zhou, Y.; Gao, G.; Kang, J.; Chu, W.; Wang, L.-W. Transition metal-embedded twodimensional C<sub>3</sub>N as a highly active electrocatalyst for oxygen evolution and reduction reactions. J. Mater. Chem. A 2019, 7, 12050–12059.
- (29) Esrafili, M. D.; Heydari, S. B-doped C<sub>3</sub>N monolayer: a robust catalyst for oxidation of carbon monoxide. *Theoretical Chemistry Accounts* **2019**, *138*, 57.
- (30) Esrafili, M. D.; Heydari, S. An effective approach for tuning catalytic activity of C<sub>3</sub>N nanosheets: Chemical-doping with the Si atom. J. Molecular Graphics and Modelling 2019, 92, 320 328.

- (31) Abdullahi, Y. Z.; Yoon, T. L.; Halim, M. M.; Hashim, M. R.; Lim, T. L. Mechanical and electronic properties of graphitic carbon nitride sheet: First-principles calculations. *Solid State Communications* 2016, 248, 144 – 150.
- (32) Mortazavi, B.; Shahrokhi, M.; Raeisi, M.; Zhuang, X.; Pereira, L. F. C.; Rabczuk, T. Outstanding strength, optical characteristics and thermal conductivity of graphene-like BC<sub>3</sub> and BC<sub>6</sub>N semiconductors. *Carbon* 2019, 149, 733 742.
- (33) Mortazavi, B.; Shahrokhi, M.; Shapeev, A. V.; Rabczuk, T.; Zhuang, X. Prediction of C<sub>7</sub>N<sub>6</sub> and C<sub>9</sub>N<sub>4</sub>: stable and strong porous carbon-nitride nanosheets with attractive electronic and optical properties. J. Mater. Chem. C 2019, –.
- (34) Mahmood, J.; Lee, E. K.; Jung, M.; Shin, D.; Choi, H.-J.; Seo, J.-M.; Jung, S.-M.;
  Kim, D.; Li, F.; Lah, M. S.; Park, N.; Shin, H.-J.; Oh, J. H.; Baek, J.-B. Two-Dimensional Polyaniline (C<sub>3</sub>N) from Carbonized Organic Single Crystals in Solid State. *Proceedings of the National Academy of Sciences* 2016, 113, 7414–7419.

- (35) Hong, Y.; Zhang, J.; Zeng, X. C. Monolayer and bilayer polyaniline C<sub>3</sub>N: twodimensional semiconductors with high thermal conductivity. *Nanoscale* 2018, 10, 4301– 4310.
- (36) Chang, M.-Y.; Wu, C.-S.; Chen, Y.-F.; Hsieh, B.-Z.; Huang, W.-Y.; Ho, K.-S.;
  Hsieh, T.-H.; Han, Y.-K. Polymer Solar Cells Incorporating One-Dimensional Polyaniline Nanotubes. Organic Electronic. 2008, 9, 1136 – 1139.
- (37) Alam, M. M.; Wang, J.; Guo, Y.; Lee, S. P.; Tseng, H.-R. Electrolyte-Gated Transistors Based on Conducting Polymer Nanowire Junction Arrays. J. Phys. Chem. B 2005, 109, 12777–12784.
- (38) Jiantie, X.; Javeed, M.; Yuhai, D.; Shixue, D.; Feng, L.; Liming, D.; Beom, B. J. 2D Frameworks of C<sub>2</sub>N and C<sub>3</sub>N as New Anode Materials for LithiumâĂŘIon Batteries. Adv. Mater. 29, 1702007.
- (39) Mizuno, S.; Fujita, M.; Nakao, K. Electronic States of Graphitic Heterocompounds of Carbon, Boron and Nitrogen. Synthetic Metals 1995, 71, 1869 – 1870.
- (40) Qianku, H.; Qinghua, W.; Haiyan, W.; Julong, H.; Guanglei, Z. FirstâĂŘ-Principles Studies of Structural and Electronic Properties of Layered C<sub>3</sub>N Phases. *physica status solidi* (b) **2011**, 249, 784–788.
- (41) Makaremi, M.; Mortazavi, B.; Singh, C. V. Adsorption of Metallic, Metalloidic, and Nonmetallic Adatoms on Two-Dimensional C<sub>3</sub>N. J. Phys. Chem. C. 2017, 121, 18575 – 18583.
- (42) Pashangpour, M.; Peyghan, A. A. Adsorption of Carbon Monoxide on the Pristine, Band Al-Doped C<sub>3</sub>N Nanosheets. J. Molecular Model. 2015, 21, 116.
- (43) Tagani, M. B. Electrical and Mechanical Properties of a Fully Hydrogenated Two-Dimensional Polyaniline Sheet. *Comput. Mater. Sci.* 2018, 153, 126 – 133.

- (44) Yang, B.; Fu, Z. Comparative Study of C<sub>3</sub>N- and Graphene-Supported Single-Atom Pt.
  J. Phys. Chem. C 2019, 123, 5731–5735.
- (45) He, B.; Shen, J.; Ma, D.; Lu, Z.; Yang, Z. Boron-Doped C<sub>3</sub>N Monolayer as a Promising Metal-Free Oxygen Reduction Reaction Catalyst: A Theoretical Insight. J. Phys. Chem. C 2018, 122, 20312–20322.
- (46) Xie, L.; Yang, L.; Ge, W.; Wang, X.; Jiang, J. Bandgap tuning of C<sub>3</sub>N monolayer: A first-principles study. *Chem. Phys.* **2019**, *520*, 40 – 46.
- (47) Ma, D.; Zhang, J.; Tang, Y.; Fu, Z.; Yang, Z.; Lu, Z. Repairing Single and Double Atomic Vacancies in a C<sub>3</sub>N Monolayer with CO or NO Molecules: A First-Principles Study. *Phys. Chem. Chem. Phys.* **2018**, *20*, 13517–13527.

- (48) Rani, S.; Ray, S. Detection of gas molecule using C<sub>3</sub>N island single electron transistor.
   Carbon 2019, 144, 235 240.
- (49) Guo, G.-C.; Wang, R.-Z.; Ming, B.-M.; Wang, C.; Luo, S.-W.; Lai, C.; Zhang, M. Trap Effects on Vacancy Defect of C<sub>3</sub>N as Anode Material in Li-Ion Battery. *Appl. Surf. Sci.* 2019, 475, 102 108.
- (50) Ren, Y.; Cheng, F.; Zhou, X.; Chang, K.; Zhou, G. Tunable Mechanical, Electronic and Magnetic Properties of Monolayer C<sub>3</sub>N Nanoribbons by External Fields. *Carbon* **2019**, 143, 14 – 20.
- (51) Tagani, M. B.; Vishkayi, S. I. Polyaniline (C<sub>3</sub>N) Nanoribbons: Magnetic Metal, Semiconductor, and Half-Metal. J. Appl. Phys. 2018, 124, 084304.
- (52) Li, W.; Dai, X.; Morrone, J.; Zhang, G.; Zhou, R. Thickness Dependent Semiconductorto-Metal Transition of Two-Dimensional Polyaniline with Unique Work Functions. *Nanoscale* **2017**, *9*, 12025–12031.

- (53) Zhang, C.; Huang, H.; Ni, X.; Zhou, Y.; Kang, L.; Jiang, W.; Chen, H.; Zhong, J.; Liu, F. Band Gap Reduction in van der Waals layered 2D Materials via a De-Charge Transfer Mechanism. *Nanoscale* **2018**, *10*, 16759–16764.
- (54) Zheng, Z.; Wang, X.; Mi, W. Tunable Electronic Structure in Stained Two Dimensional van der Waals g-C<sub>2</sub>N/XSe<sub>2</sub> (X = Mo, W) Heterostructures. *Physica E: Low-dimensional* Systems and Nanostructures **2017**, *94*, 148 – 152.
- (55) Kumar, R.; Das, D.; Singh, A. K. C<sub>2</sub>N/WS<sub>2</sub> van der Waals type-II Heterostructure as a Promising Water Splitting Photocatalyst. J. Catalysis 2018, 359, 143 – 150.
- (56) Kishore, M. A.; Sjastad, A. O.; Ravindran, P. Influence of Hydrogen and Halogen Adsorption on the Photocatalytic Water Splitting Activity of C<sub>2</sub>N Monolayer: A First-Principles Study. *Carbon* 2019, 141, 50 – 58.
- (57) Ozaki, T.; Nishio, K.; Kino, H. Efficient Implementation of the Nonequilibrium Green Function Method for Electronic Transport Calculations. *Phys. Rev. B* 2010, *81*, 035116.
- (58) Troullier, N.; Martins, J. L. Efficient Pseudopotentials for Plane-Wave Calculations. *Phys. Rev. B* 1991, 43, 1993–2006.
- (59) Ozaki, T. Variationally Optimized Atomic Orbitals for Large-Scale Electronic Structures. Phys. Rev. B 2003, 67, 155108.
- (60) Ozaki, T.; Kino, H. Numerical Atomic Basis Orbitals from H to Kr. Phys. Rev. B 2004, 69, 195113.
- (61) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
- (62) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. *Phys. Rev.* B 1976, 13, 5188–5192.

- (63) Mulliken, R. S. Electronic Population Analysis on LCAOâĂRMO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence Bond Theories. J. Chem. Phys. 1955, 23, 2343–2346.
- (64) Bucko, T.; Hafner, J.; Lebegue, S.; Angyan, J. G. Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with van der Waals Corrections. J. Phys. Chem. A 2010, 114, 11814–11824.
- (65) Tersoff, J.; Hamann, D. R. Theory and Application for the Scanning Tunneling Microscope. Phys. Rev. Lett. 1983, 50, 1998–2001.
- (66) Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J. M.; Colchero, J.; GAşomez-Herrero, J.; Baro, A. M. WSxM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. *Rev. Sci. Inst.* 2007, 78, 013705.

- (67) Mortazavi, B. Ultra High Stiffness and Thermal Conductivity of Graphene Like C<sub>3</sub>N. Carbon 2017, 118, 25 – 34.
- (68) Yagmurcukardes, M.; Horzum, S.; Torun, E.; Peeters, F. M.; Tugrul Senger, R. Nitrogenated, Phosphorated and Arsenicated Monolayer Holey Graphenes. *Phys. Chem. Chem. Phys.* **2016**, *18*, 3144–3150.
- (69) Abdullahi, Y. Z.; Yoon, T. L.; Lim, T. L. Elastic and Electronic Properties of C<sub>2</sub>N Monolayer: First-Principles Calculation. *Materials Research Express* 2019, 6, 025601.
- (70) Guan, S.; Cheng, Y.; Liu, C.; Han, J.; Lu, Y.; Yang, S. A.; Yao, Y. Effects of Strain on Electronic and Optic Properties of Holey Two-Dimensional C<sub>2</sub>N Crystals. *Appl. Phys. Lett.* 2015, 107, 231904.
- (71) Yu, H.; Jiang, X.; Cai, M.; Feng, J.; Chen, X.; Yang, X.; Liu, Y. Electronic and Magnetic Properties of Zigzag C<sub>2</sub>N-h2D Nanoribbons: Edge and Width Effects. *Chem. Phys. Lett.* **2017**, 685, 363 – 370.

- (72) Jahn, H. A.; Teller, E. Stability of Polyatomic Molecules in Degenerate Electronic States - I—Orbital Degeneracy. Proc. Royal Soc. London A: Mathematical, Physical and Engineering Sciences 1937, 161, 220–235.
- Ma, D.; Wang, Q.; Yan, X.; Zhang, X.; He, C.; Zhou, D.; Tang, Y.; Lu, Z.; Yang, Z. 3d Transition Metal Embedded C<sub>2</sub>N Monolayers as Promising Single-Atom Catalysts: A First-Principles Study. *Carbon* 2016, 105, 463 – 473.
- (74) Zheng, Z.; Wang, X.; Mi, W. Tunable Electronic Structure of Monolayer Semiconductor g-C<sub>2</sub>N by Adsorbing Transition Metals: A First-Principles Study. *Carbon* 2016, 109, 764 – 770.
- (75) Yu, S.; Rao, Y.-C.; Duan, X.-M. Modulating the Properties of Monolayer C<sub>2</sub>N: A Promising Metal-Free Photocatalyst for Water Splitting. *Chin. Phys. B* 2017, 26, 087301.
- (76) Zheng, Z.; Wang, X.; Mi, W. Tunable Electronic Structure and Spin Splitting in Single and Multiple Fe-Adsorbed g-C<sub>2</sub>N with Different Layers: A First-Principles Study. J. Phys. Chem. Solid. 2018, 115, 221 – 227.
- (77) Sahin, H. Structural and Phononic Characteristics of Nitrogenated Holey Graphene. Phys. Rev. B 2015, 92, 085421.
- (78) Chakrabarty, S.; Das, T.; Banerjee, P.; Thapa, R.; Das, G. Electron Doped C<sub>2</sub>N Monolayer as Efficient Noble Metal-Free Catalysts for CO Oxidation. Appl. Surf. Sci. 2017, 418, 92 – 98.
- (79) Zhu, L.; Xue, Q.; Li, X.; Wu, T.; Jin, Y.; Xing, W. C<sub>2</sub>N: an Excellent Two-Dimensional Monolayer Membrane for He Separation. J. Mater. Chem. A 2015, 3, 21351–21356.

Table 1: Electronic states of atom substitution in  $C_3N$  are specified as metal (M), half-metal (HM), ferromagnetic-metal (FM), spin-glass semiconductor (SG-SC), dilute-magnetic semiconductor (DM-SC) and semiconductor (SC). Band gap of semiconductors and the magnetic moment per super cell, are indicated inside parentheses. Direct and indirect band gap are specified as -di and -ind, respectively.

| Substitution site | Н                | 0                         | S                          | F                          | Cl                          | В                  |
|-------------------|------------------|---------------------------|----------------------------|----------------------------|-----------------------------|--------------------|
| С                 | М                | SC $(0.6 \text{ eV}-di)$  | SC $(0.33 \text{ eV-}ind)$ | DM-SC $(1\mu_B)$           | М                           | М                  |
| N                 | М                | М                         | М                          | SC $(0.8 \text{ eV} - di)$ | SC $(0.75 \text{ eV-}ind)$  | SC(0.5  eV-ind)    |
| Substitution site | С                | Si                        | N                          | Р                          | Li                          | Na                 |
| С                 | -                | SC $(0.34 \text{ eV}-di)$ | М                          | М                          | М                           | FM(0.3)            |
| N                 | М                | М                         | -                          | М                          | М                           | SG-SC $(1.9\mu_B)$ |
| Substitution site | K                | Be                        | Mg                         | Ca                         | Al                          | -                  |
| С                 | М                | М                         | М                          | FM (1.3 $\mu_B$ )          | М                           | -                  |
| N                 | SG-SC $(2\mu_B)$ | М                         | FM $(0.7\mu_B)$            | HM $(1\mu_B)$              | SC $(0.43 \text{ eV} - di)$ | -                  |



Figure 1: (a) Optimized atomic structure of  $C_3N$ , with its hexagonal primitive unit cell indicated by the red parallelogram. Gray (blue) balls are C (N) atoms. The total (bottom) and difference (up) charge density are also shown in the same panel. (b) Simulated STM image of  $C_3N$  overlayered with the  $C_3N$  lattice. (c) The orbital-projected and (d) electronic structure, DOS and PDOS. The charge distribution for the VBM and CBM are shown in the insets. Blue and yellow regions represent charge accumulation and depletion, respectively. The zero energy is set to the Fermi level energy  $(E_F)$ .



Figure 2: Schematic view of the different topological defects considered in the present paper: single vacancy with missing one C atom  $(SV_C)$ , single vacancy with missing one N atom  $(SV_N)$ , double vacancy with missing a pair of C  $(DV_{CC})$ , double vacancy with missing a pair of N  $(DV_{NN})$ , double vacancy with missing a pair of N and C  $(DV_{NC})$ , Stone-Wales (SW) and anti-site with exchange of the position of N and C atoms  $(AS_{NC})$ .



Figure 3: Optimized structures with corresponding bond lengths and angles of  $SV_C$ , (b)  $SV_N$ , C+C  $(DV_{CC})$ , N+C  $(DV_{NC})$ , N+N  $(DV_{NN})$ , anti-site  $(AS_{NC})$ , C-C  $(SW_{CC})$  and N-C  $(SW_{NC})$  defects on C<sub>3</sub>N.



Figure 4: Effect  $SV_C$ ,  $SV_N$ , C+C  $(DV_{CC})$ , N+C  $(DV_{NC})$ , N+N  $(DV_{NN})$ , anti-site  $(AS_{NC})$ , C-C  $(SW_{CC})$  and N-C  $(SW_{NC})$  defects on the electronic structure of C<sub>3</sub>N. The dotted curves represent the electronic structure of pristine C<sub>3</sub>N. The zero of energy is set to  $E_F$ , shown by the green dash-point line.



Figure 5: DOS and PDOS  $SV_C$ ,  $SV_N$ , C+C  $(DV_{CC})$ , N+C  $(DV_{NC})$ , N+N  $(DV_{NN})$ , antisite  $(AS_{NC})$ , C-C  $(SW_{CC})$  and N-C  $(SW_{NC})$  defects on C<sub>3</sub>N. The charge distributions for the VBM and CBM are shown in the insets. Blue and yellow regions represent charge accumulation and depletion, respectively.



Figure 6: (a) Lattice constant of  $C_3N$  substituted with different atoms. Schematic model of two substitution sites is shown in the inset. (b,c) Effect of strain in lattice constant of  $C_3N$  substituted with different atoms. (d,e) Energy band gap and (f,g) magnetic moment due to substitution by difference species of atoms at respectively the, C and N host atom sites.



Figure 7: Optimized structures for substitution of (a) C or (b) N in the  $C_3N$  lattice with H, O, S, F, Cl, B, C, Si, N and P. Structural parameters including atomic bond length and angles are indicated. C, N and foreign atoms are shown by brown, blue and different colored balls, respectively.

#### Physical Chemistry Chemical Physics



Figure 8: Electronic structure for substitution of (a) C or (b) N in the C<sub>3</sub>N lattice with H, O, S, F, Cl, B, C, Si, N and P. The dotted curves represent the electronic structure of pristine C<sub>3</sub>N. The zero of energy is set to  $E_F$ , shown by the green dash-point line.



Figure 9: DOS and PDOS for substitution of (a) C or (b) N in the  $C_3N$  lattice with H, O, S, F, Cl, B, C, Si, N and P.



Figure 10: Electronic structure for substitution of (a) C or (b) N in the C<sub>3</sub>N lattice with Li, Na, K, Be, Mg, Ca and Al. The zero of energy is set to  $E_F$ , shown by the green dash-point line.



Figure 11: Electronic structure for two different values of the charging for Na substituted on (a) C and (b) N atom sites of C<sub>3</sub>N. The DOS of Na substituted on (c,d) C and (e,f) N atom sites of the C<sub>3</sub>N for different values of the uniaxial strain (tensile and compression). The q= +1 e and q= -1 e, corresponds to charging where one electron is removed from and add to the C<sub>3</sub>N, respectively. The zero of energy is set to  $E_F$ , shown by the green dash-point line.



Figure 12: Electronic structures of Na substituted on (a) C and (b) N atom sites of C<sub>3</sub>N for different values of strain. The zero of energy is set to  $E_F$ , shown by the green dash-point line.



Figure 13: Magnetic moment of Na substituted  $C_3N$  as a function of strain.



TOC