|   | 
Details
   web
Records
Author Jafarzadeh, A.; Bal, K.M.; Bogaerts, A.; Neyts, E.C.
Title CO2 activation on TiO2-supported Cu5 and Ni5 nanoclusters : effect of plasma-induced surface charging Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 11 Pages 6516-6525
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Surface charging is an often overlooked factor in many plasma-surface interactions and in particular in plasma catalysis. In this study, we investigate the effect of excess electrons induced by a plasma on the adsorption properties of CO2 on titania-supported Cu-5 and Ni-5 clusters using spin-polarized and dispersion-corrected density functional theory calculations. The effect of excess electrons on the adsorption of Ni and Cu pentamers as well as on CO2 adsorption on a pristine anatase TiO2(101) slab is studied. Our results indicate that adding plasma-induced excess electrons to the system leads to further stabilization of the bent CO2 structure. Also, dissociation of CO2 on charged clusters is energetically more favorable than on neutral clusters. We hypothesize that surface charge is a plausible cause for the synergistic effects sometimes observed in plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000462260700024 Publication Date 2019-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:159422 Serial 5281
Permanent link to this record
 

 
Author Cassidy, S.J.; Pitcher, M.J.; Lim, J.J.K.; Hadermann, J.; Allen, J.P.; Watson, G.W.; Britto, S.; Chong, E.J.; Free, D.G.; Grey, C.P.; Clarke, S.J.
Title Layered CeSO and LiCeSO oxide chalcogenides obtained via topotactic oxidative and reductive transformations Type A1 Journal article
Year 2019 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 58 Issue 6 Pages 3838-3850
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The chemical accessibility of the Celv oxidation state enables redox chemistry to be performed on the naturally coinagemetal -deficient phases CeM1-xSO (M = Cu, Ag). A metastable black compound with the PbFC1 structure type (space group P4/nmm: a = 3.8396(1) angstrom, c = 6.607(4) angstrom, V = 97.40(6) angstrom(3)) and a composition approaching CeSO is obtained by deintercalation of Ag from CeAg0.8SO. High-resolution transmission electron microscopy reveals the presence of large defect-free regions in CeSO, but stacking faults are also evident which can be incorporated into a quantitative model to account for the severe peak anisotropy evident in all the highresolution X-ray and neutron diffractograms of bulk CeSO samples; these suggest that a few percent of residual Ag remains. A strawcolored compound with the filled PbFCI (i.e., ZrSiCuAs- or HfCuSi2type) structure (space group P4/nmm: a = 3.98171(1) angstrom, c = 8.70913(5) angstrom, V = 138.075(1) angstrom 3) and a composition close to LiCeSO, but with small amounts of residual Ag, is obtained by direct reductive lithiation of CeAga8S0 or by insertion of Li into CeSO using chemical or electrochemical means. Computation of the band structure of pure, stoichiometric CeSO predicts it to be a Ce' compound with the 4f-states lying approximately 1 eV above the sulfide-dominated valence band maximum. Accordingly, the effective magnetic moment per Ce ion measured in the CeSO samples is much reduced from the value found for the Ce3+-containing LiCeSO, and the residual paramagnetism corresponds to the Ce3+ ions remaining due to the presence of residual Ag, which presumably reflects the difficulty of stabilizing Ce' in the presence of sulfide (S2-). Comparison of the behavior of CeCu0.8SO with that of CeCu0.8SO reveals much slower reaction kinetics associated with the Cu,_xS layers, and this enables intermediate CeCui LixSO phases to be isolated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461978700036 Publication Date 2019-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited Open Access OpenAccess
Notes ; We thank the UK EPSRC (EP/M020517/1 and EP/P018874/1), the Leverhulme Trust (RPG-2014-221), and Science Foundation Ireland (Grant 12/IA/1414) for funding and the EPSRC for additional studentship support. We acknowledge the ISIS pulsed neutron and muon source and the Diamond Light Source Ltd. (EE13284 and EE18786) and the ESRF for the award of beam time. We thank Dr. R I. Smith for assistance on the neutron beamlines, Dr. A. Baker and Dr. C. Murray for support on III, and Dr. C. Curls for support on ID31. ; Approved Most recent IF: 4.857
Call Number UA @ admin @ c:irua:159426 Serial 5253
Permanent link to this record
 

 
Author Moro, G.; De Wael, K.; Moretto, L.M.
Title Challenges in the electrochemical (bio)sensing of non-electroactive food and environmental contaminants Type A1 Journal article
Year 2019 Publication Current opinion in electrochemistry Abbreviated Journal
Volume 16 Issue 16 Pages 57-65
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The electrochemical detection of non-electroactive contaminants can be successfully faced via the use of indirect detection strategies. These strategies can provide sensitive and selective responses often coupled with portable and user-friendly analytical tools. Indirect detection strategies are usually based on the change in the signal of an electroactive probe, induced by the presence of the target molecule at a modified electrode. This critical review aims at addressing the developments in indirect electro-sensing strategies for non-electroactive contaminants in food and environmental analysis in the last years (2017-2019). Emphasis is given to the strategy design, the electrode modifiers used and the feasibility of technological transfer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000485814400010 Publication Date 2019-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2451-9103; 2451-9111 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:159574 Serial 5498
Permanent link to this record
 

 
Author Saniz, R.; Sarmadian, N.; Partoens, B.; Batuk, M.; Hadermann, J.; Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Lamoen, D.
Title First-principles study of CO and OH adsorption on in-doped ZnO surfaces Type A1 Journal article
Year 2019 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids
Volume 132 Issue Pages 172-181
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present a first-principles computational study of CO and OH adsorption on non-polar ZnO (10¯10) surfaces doped with indium. The calculations were performed using a model ZnO slab. The position of the In dopants was varied from deep bulk-like layers to

the surface layers. It was established that the preferential location of the In atoms is at the surface by examining the dependence of

the defect formation energy as well as the surface energy on In location. The adsorption sites on the surface of ZnO and the energy

of adsorption of CO molecules and OH-species were determined in connection to In doping. It was found that OH has higher

bonding energy to the surface than CO. The presence of In atoms at the surface of ZnO is favorable for CO adsorption, resulting

in an elongation of the C-O bond and in charge transfer to the surface. The effect of CO and OH adsorption on the electronic

and conduction properties of surfaces was assessed. We conclude that In-doped ZnO surfaces should present a higher electronic

response upon adsorption of CO.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472124700023 Publication Date 2019-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3697 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.059 Times cited 7 Open Access Not_Open_Access: Available from 26.04.2021
Notes FWO-Vlaanderen, G0D6515N ; ERA.Net RUS Plus, 096 ; VSC; HPC infrastructure of the University of Antwerp; FWO-Vlaanderen; Flemish Government-department EWI; Approved Most recent IF: 2.059
Call Number EMAT @ emat @UA @ admin @ c:irua:159656 Serial 5170
Permanent link to this record
 

 
Author Heijkers, S.; Martini, L.M.; Dilecce, G.; Tosi, P.; Bogaerts, A.
Title Nanosecond Pulsed Discharge for CO2Conversion: Kinetic Modeling To Elucidate the Chemistry and Improve the Performance Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 19 Pages 12104-12116
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We study the mechanisms of CO2 conversion in a nanosecond repetitively pulsed (NRP) discharge, by means of a chemical kinetics model. The calculated conversions and energy efficiencies are in reasonable agreement with experimental results over a wide range of specific energy input values, and the same applies to the evolution of gas temperature and CO2 conversion as a function of time in the afterglow, indicating that our model provides a realistic picture of the underlying mechanisms in the NRP discharge and can be used to identify its limitations and thus to suggest further improvements. Our model predicts that vibrational excitation is very important in the NRP discharge, explaining why this type of plasma yields energy-efficient CO2 conversion. A significant part of the CO2 dissociation occurs by electronic excitation from the lower vibrational levels toward repulsive electronic states, thus resulting in dissociation. However, vibration−translation (VT) relaxation (depopulating the higher vibrational levels) and CO + O recombination (CO + O + M → CO2 + M), as well as mixing of the converted gas with fresh gas entering the plasma in between the pulses, are limiting factors for the conversion and energy efficiency. Our model predicts that extra cooling, slowing down the rate of VT relaxation and of the above recombination reaction, thus enhancing the contribution of the highest vibrational levels to the overall CO2 dissociation, can further improve the performance of the NRP discharge for energy-efficient CO2 conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000468368800009 Publication Date 2019-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 4 Open Access Not_Open_Access: Available from 26.04.2020
Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; The authors acknowledge financial support from the Fund for Scientific Research, Flanders (FWO; Grant no. G.0383.16N). Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159976 Serial 5174
Permanent link to this record
 

 
Author Bogaerts, A.; Yusupov, M.; Razzokov, J.; Van der Paal, J.
Title Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling Type A1 Journal article
Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma is gaining increasing interest for cancer

treatment, but the underlying mechanisms are not yet fully

understood. Using computer simulations at the molecular

level, we try to gain better insight in how plasma-generated

reactive oxygen and nitrogen species (RONS) can

penetrate through the cell membrane. Specifically, we

compare the permeability of various (hydrophilic and

hydrophobic) RONS across both oxidized and nonoxidized cell membranes. We also study pore formation,

and how it is hampered by higher concentrations of

cholesterol in the cell membrane, and we illustrate the

much higher permeability of H2O2 through aquaporin

channels. Both mechanisms may explain the selective

cytotoxic effect of plasma towards cancer cells. Finally, we

also discuss the synergistic effect of plasma-induced

oxidation and electric fields towards pore formation.

Keywords plasma medicine, cancer treatment, computer

modelling, cell membrane, reactive oxygen and nitrogen

species
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000468848400004 Publication Date 2019-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0179 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 1.712 Times cited 5 Open Access Not_Open_Access: Available from 23.05.2020
Notes We acknowledge financial support from the Research Foundation–Flanders (FWO; Grant Nos. 1200216N and 11U5416N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We are also very thankful to R. Cordeiro for the very interesting discussions. Approved Most recent IF: 1.712
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159977 Serial 5172
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Bal, Km.; Michielsen, I.; Neyts, Ec.; Meynen, V.; Cool, P.; Bogaerts, A.
Title How process parameters and packing materials tune chemical equilibrium and kinetics in plasma-based CO2 conversion Type A1 Journal article
Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 372 Issue Pages 1253-1264
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma (catalysis) reactors are increasingly being used for gas-based chemical conversions, providing an alternative method of energy delivery to the molecules. In this work we explore whether classical concepts such as

equilibrium constants, (overall) rate coefficients, and catalysis exist under plasma conditions. We specifically

investigate the existence of a so-called partial chemical equilibrium (PCE), and how process parameters and

packing properties influence this equilibrium, as well as the overall apparent rate coefficient, for CO2 splitting in

a DBD plasma reactor. The results show that a PCE can be reached, and that the position of the equilibrium, in

combination with the rate coefficient, greatly depends on the reactor parameters and operating conditions (i.e.,

power, pressure, and gap size). A higher power, higher pressure, or smaller gap size enhance both the equilibrium constant and the rate coefficient, although they cannot be independently tuned. Inserting a packing

material (non-porous SiO2 and ZrO2 spheres) in the reactor reveals interesting gap/material effects, where the

type of material dictates the position of the equilibrium and the rate (inhibition) independently. As a result, no

apparent synergistic effect or plasma-catalytic behaviour was observed for the non-porous packing materials

studied in this reaction. Within the investigated parameters, equilibrium conversions were obtained between 23

and 71%, while the rate coefficient varied between 0.027 s−1 and 0.17 s−1. This method of analysis can provide

a more fundamental insight in the overall reaction kinetics of (catalytic) plasma-based gas conversion, in order

to be able to distinguish plasma effects from true catalytic enhancement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000471670400116 Publication Date 2019-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 3 Open Access Not_Open_Access: Available from 05.05.2021
Notes European Fund for Regional Development; FWOFWO, G.0254.14N ; University of Antwerp; FWO-FlandersFWO-Flanders, 11V8915N ; The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; Grant Number: G.0254.14N), a TOP-BOF project and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. K. M. B. was funded as a PhD fellow (aspirant) of the FWOFlanders (Fund for Scientific Research-Flanders), Grant 11V8915N. Approved Most recent IF: 6.216
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159979 Serial 5171
Permanent link to this record
 

 
Author Florea, A.; Schram, J.; De Jong, M.; Eliaerts, J.; Van Durme, F.; Kaur, B.; Samyn, N.; De Wael, K.
Title Electrochemical strategies for adulterated heroin samples Type A1 Journal article
Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 91 Issue 12 Pages 7920-7928
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Electrochemical strategies to selectively detect heroin in street samples without the use of complicated electrode modifications were developed for the first time. For this purpose, heroin, mixing agents (adulterants, cutting agent, and impurities), and their binary mixtures were subjected to square wave voltammetry measurements at bare graphite electrodes at pH 7.0 and pH 12.0, in order to elucidate the unique electrochemical fingerprint of heroin and mixing agents as well as possible interferences or reciprocal influences. Adjusting the pH from pH 7.0 to pH 12.0 allowed a more accurate detection of heroin in the presence of most common mixing agents. Furthermore, the benefit of introducing a preconditioning step prior to running square wave voltammetry on the electrochemical fingerprint enrichment was explored. Mixtures of heroin with other drugs (cocaine, 3,4-methylenedioxymethamphetamine, and morphine) were also tested to explore the possibility of their discrimination and simultaneous detection. The feasibility of the proposed electrochemical strategies was tested on realistic heroin street samples from forensic cases, showing promising results for fast, on-site detection tools of drugs of abuse.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472682000056 Publication Date 2019-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 2 Open Access
Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223 Narcoreader. The authors also acknowledge IOF (UAntwerp) and Belspo for financial support. ; Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:160061 Serial 5596
Permanent link to this record
 

 
Author Vanmeert, F.; De Keyser, N.; van Loon, A.; Klaassen, L.; Noble, P.; Janssens, K.
Title Transmission and reflection mode macroscopic x-ray powder diffraction imaging for the noninvasive visualization of paint degradation in still life paintings by Jan Davidsz. de Heem Type A1 Journal article
Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 91 Issue 11 Pages 7153-7161
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The use of noninvasive chemical imaging techniques is becoming more widespread for the study of cultural heritage artifacts. Recently a mobile instrument for macroscopic X-ray powder diffraction (MA-XRPD) scanning was developed, which is capable of visualizing the distribution of crystalline (pigment) phases in quasi-flat-painted artifacts. In this study, MA-XRPD is used in both transmission and reflection mode for the analysis of three 17th century still life paintings, two paintings by Jan Davidsz. de Heem (1606-1684) and one copy painting after De Heem by an unknown artist. MA-XRPD allowed to reveal and map the presence of in situ-formed alteration products. In the works examined, two rare lead arsenate minerals, schultenite (PbHAsO4) and mimetite (Pb-5(AsO4)(3)Cl), were encountered, both at and below the paint surface; they are considered to be degradation products of the pigments realgar (alpha-As4S4) and orpiment (As2S3). In transmission mode, the depletion of lead white, present in the (second) ground layer, could be seen, illustrating the intrusive nature of this degradation process. In reflection mode, several sulfate salts, palmierite (K2Pb(SO4)(2)), syngenite (K2Ca(SO4)(2)center dot H2O), and gypsum (CaSO4 center dot 2H(2)O), could be detected, in particular, at the (top) surface of the copy painting. Estimates for the information depth and sensitivity of both transmission and reflection mode MA-XRPD for various pigments have been made. The possibility of MA-XRPD to allow for noninvasive identification and visualization of alteration products is considered a significant advantage and unique feature of this method. MA-XRPD can thus provide highly relevant information for assessing the conservation state of artworks and could guide possible future restoration treatments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000470793800031 Publication Date 2019-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 5 Open Access
Notes ; The authors acknowledge financial support from BELSPO (Brussels) S2-ART and METOX projects, the NWO (The Hague) Science4Arts “ReVisRembrandt” project, and the GOA Project Solarpaint (University of Antwerp Research Council). The authors thank the Rijksmuseum, the Royal Museum of Fine Arts Antwerp, and their staff for the collaborations. ; Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:160245 Serial 5882
Permanent link to this record
 

 
Author Neyts, E.C.
Title Special Issue on future directions in plasma nanoscience Type Editorial
Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
Volume 13 Issue 2 Pages 199-200
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000468848400001 Publication Date 2019-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0179 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 1.712 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 1.712
Call Number UA @ admin @ c:irua:160277 Serial 5280
Permanent link to this record
 

 
Author Brault, P.; Chamorro-Coral, W.; Chuon, S.; Caillard, A.; Bauchire, J.-M.; Baranton, S.; Coutanceau, C.; Neyts, E.
Title Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source Type A1 Journal article
Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
Volume 13 Issue 2 Pages 324-329
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics simulations are carried out for describing growth of Pd and PdO nanoclusters using the ReaxFF force field. The resulting nanocluster structures are successfully compared to those of nanoclusters experimentally grown in a gas aggregation source. The PdO structure is quasi-crystalline as revealed by high resolution transmission microscope analysis for experimental PdO nanoclusters. The role of the nanocluster temperature in the molecular dynamics simulated growth is highlighted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000468848400009 Publication Date 2019-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0179 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 1.712 Times cited 3 Open Access Not_Open_Access
Notes Approved Most recent IF: 1.712
Call Number UA @ admin @ c:irua:160278 Serial 5276
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Delville, R.; Neuville, D.R.; Hennet, L.; Thiaudiere, D.; Ouisse, T.; Hadermann, J.; Vleugels, J.; Lambrinou, K.
Title Synthesis and Characterization of Double Solid Solution (Zr,Ti)(2)(Al,Sn)C MAX Phase Ceramics Type A1 Journal article
Year 2019 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 58 Issue 10 Pages 6669-6683
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Quasi phase-pure (>98 wt %) MAX phase solid solution ceramics with the (ZryTi)(2)(Al-0.5,Sn-0.5)C stoichiometry and variable Zr/Ti ratios were synthesized by both reactive hot pressing and pressureless sintering of ZrH2, TiH2, Al, Sn, and C powder mixtures. The influence of the different processing parameters, such as applied pressure and sintering atmosphere, on phase purity and microstructure of the produced ceramics was investigated. The addition of Sn to the (Zr,Ti)(2)AlC system was the key to achieve phase purity. Its effect on the crystal structure of a 211-type MAX phase was assessed by calculating the distortions of the octahedral M6C and trigonal M(6)A prisms due to steric effects. The M(6)A prismatic distortion values were found to be smaller in Sn-containing double solid solutions than in the (Zr,Ti)(2)AlC MAX phases. The coefficients of thermal expansion along the < a > and < c > directions were measured by means of Rietveld refinement of high-temperature synchrotron X-ray diffraction data of (Zr1-x,Ti-x)(2)(Al-0.5,Sn-0.5)C MAX phase solid solutions with x = 0, 0.3, 0.7, and 1. The thermal expansion coefficient data of the Ti-2(Al-0.5,Sn-0.5)C solid solution were compared with those of the Ti2AlC and Ti2SnC ternary compounds. The thermal expansion anisotropy increased in the (Zr,Ti)(2)(Al-0.5,Sn-0.5)C double solid solution MAX phases as compared to the Zr-2(Al-0.5,Sn-0.5)C and Ti-2(Al-0.5,Sn-0.5)C end-members.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000469304700014 Publication Date 2019-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access
Notes ; H. Roussel and D. Pinek are acknowledged for the Ti<INF>2</INF>SnC single-crystal production and high-temperature XRD measurements performed at Grenoble INP-LMGP-CMTC. This research was funded partly by the European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 604862 (FP7MatISSE), and partly by the Euratom research and training programme 2014-2018 under Grant Agreement No. 740415 (H2020 IL TROVATORE). T.L. thanks the Agency for Innovation by Science and Technology (IWT), Flanders, Belgium, for Ph.D. Grant No. 131081. B.T. acknowledges the financial support of the SCK.CEN Academy for Nuclear Science and Technology. All authors gratefully acknowledge Synchrotron SOLEIL for the allocated time at the DIFFABS beamline in association with Project 20161410 entitled “Investigation of (Zr-Ti)-Al-C MAX phases with in-situ high-temperature XRD” and the Hercules Foundation for Project AKUL/1319 (CombiS(T)EM). ; Approved Most recent IF: 4.857
Call Number UA @ admin @ c:irua:160318 Serial 5261
Permanent link to this record
 

 
Author Bafekry, A.; Shayesteh, S.F.; Peeters, F.M.
Title C3N Monolayer: Exploring the Emerging of Novel Electronic and Magnetic Properties with Adatom Adsorption, Functionalizations, Electric Field, Charging, and Strain Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 19 Pages 12485-12499
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Two-dimensional polyaniline with structural unit C3N is an indirect semiconductor with 0.4 eV band gap, which has attracted a lot of interest because of its unusual electronic, optoelectronic, thermal, and mechanical properties useful for various applications. Adsorption of adatoms is an effective method to improve and tune the properties of C3N. Using first-principles calculations, we investigated the adsorption of adatoms, including H, O, S, F, Cl, B, C, Si, N, P, Al, Li, Na, K, Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn, on C3N. Depending on the adatom size and the number of valence electrons, they may induce metallic, half-metallic, semiconducting, and ferromagnetic-metallic behavior. In addition, we investigate the effects of an electrical field, charging, and strain on C3N and found how the electronic and magnetic properties are modified. Semi- and full hydrogenation are studied. From the mechanical and thermal stability of C3N monolayer, we found it to be a hard material that can withstand large strain. From our calculations, we gained novel insights into the properties of C3N demonstrating its unique electronic and magnetic properties that can be useful for semiconducting, nanosensor, and catalytic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000468368800053 Publication Date 2019-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 81 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FW0-V1). The authors thank Keyvan Nazifi from the Cluster Center of Faculty of Science, Guilan University, for his help. They acknowledge OpenMX team for OpenMX code. ; Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:160323 Serial 5196
Permanent link to this record
 

 
Author Attri, P.; Bogaerts, A.
Title Perspectives of Plasma-treated Solutions as Anticancer Drugs Type A1 Journal article
Year 2019 Publication Anti-cancer agents in medicinal chemistry Abbreviated Journal Anti-Cancer Agent Me
Volume 19 Issue 4 Pages 436-438
Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472726300001 Publication Date 2019-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1871-5206 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.598 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.598
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160694 Serial 5189
Permanent link to this record
 

 
Author Chin, C.-M.; Battle, P.D.; Hunter, E.C.; Avdeev, M.; Hendrickx, M.; Hadermann, J.
Title Stabilisation of magnetic ordering in La3Ni2-xCuxB'O9(B'=Sb,Ta,Nb) by the introduction of Cu2+ Type A1 Journal article
Year 2019 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 276 Issue 276 Pages 164-172
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract La3Ni2-xCuxB'O-9 (x = 0.25; B' = Sb, Ta, Nb: x = 0.5; B' = Nb) have been synthesized and characterised by transmission electron microscopy, neutron diffraction and magnetometry. Each adopts a perovskite-like structure (space group P2(1)/n) with two crystallographically-distinct six-coordinate sites, one occupied by a disordered arrangement of Ni2+ and Cu2+ and the other by a disordered similar to 1:2 distribution of Ni2+ and B'(5+), although some Cu2+ is found on the latter site when x = 0.5. Each composition undergoes a magnetic transition in the range 90 <= T/K <= 130 and shows a spontaneous magnetisation at 5 K; the transition temperature always exceeds that of the x = 0 composition by >= 30 K. A long-range ordered G-type ferrimagnetic structure is present in each composition, but small relaxor domains are also present. This contrasts with the pure relaxor and spin-glass behaviour of x = 0, B' = Ta, Nb, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000473372400023 Publication Date 2019-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 2 Open Access
Notes ; We thank EPSRC for funding through grant EP/M0189541. CMC thanks the Croucher Foundation and the University of Oxford for the award of a graduate scholarship. ; Approved Most recent IF: 2.299
Call Number UA @ admin @ c:irua:161199 Serial 5396
Permanent link to this record
 

 
Author Zankowski, S.P.; Van Hoecke, L.; Mattelaer, F.; de Raedt, M.; Richard, O.; Detavernier, C.; Vereecken, P.M.
Title Redox layer deposition of thin films of MnO2 on nanostructured substrates from aqueous solutions Type A1 Journal article
Year 2019 Publication Chemistry of materials Abbreviated Journal
Volume 31 Issue 13 Pages 4805-4816
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this work, we report a new method for depositing thin films of MnO2 on planar and complex nanostructured surfaces, with high precision and conformality. The method is based on repeating cycles of adsorption of an unsaturated alcohol on a surface, followed by its oxidation with aqueous KMnO4 and formation of thin, solid MnO2. The amount of manganese oxide formed in each cycle is limited by the quantity of the adsorbed alcohol; thus, the growth exhibits the self-limiting characteristics of atomic layer deposition (ALD). Contrary to the typical ALD, however, the new redox layer deposition is performed in air, at room temperature, using common chemicals and simple laboratory glassware, which greatly reduces its cost and complexity. We also demonstrate application of the method for the fabrication of a nanostructured MnO2/Ni electrode, which was not possible with thermal ALD because of the rapid decomposition of the gaseous precursor on the high surface-area substrate. Thanks to its simplicity, the conformal deposition of MnO2 can be easily upscaled and thus exploited for its numerous (electro)chemical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000475408400021 Publication Date 2019-06-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:161225 Serial 8465
Permanent link to this record
 

 
Author Heirman, P.; Van Boxem, W.; Bogaerts, A.
Title Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study Type A1 Journal article
Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 24 Pages 12881-12894
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-treated liquids have great potential for biomedical applications. However, insight into the underlying mechanisms and the exact chemistry is still scarce. In this study, we present the combination of a 0D chemical kinetics and a 2D fluid dynamics model to investigate the plasma treatment of a buffered water solution with the kINPen (R) plasma jet. Using this model, we calculated the gas and liquid flow profiles and the transport and chemistry of all species in the gas and the liquid phase. Moreover, we evaluated the stability of the reactive oxygen and nitrogen species after plasma treatment. We found that of all species, only H2O2, HNO2/NO2-, and HNO3/NO3- are stable in the buffered solution after plasma treatment. This is because both their production and loss processes in the liquid phase are dependent on short-lived radicals (e.g. OH, NO, and NO2). Apart from some discrepancy in the absolute values of the concentrations, which can be explained by the model, all general trends and observations in our model are in qualitative agreement with experimental data and literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472214000012 Publication Date 2019-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 7 Open Access
Notes Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:161314 Serial 6320
Permanent link to this record
 

 
Author Terzano, R.; Denecke, M.A.; Falkenberg, G.; Miller, B.; Paterson, D.; Janssens, K.
Title Recent advances in analysis of trace elements in environmental samples by X-ray based techniques (IUPAC Technical Report) Type A1 Journal article
Year 2019 Publication Pure and applied chemistry Abbreviated Journal Pure Appl Chem
Volume 91 Issue 6 Pages 1029-1063
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Trace elements analysis is a fundamental challenge in environmental sciences. Scientists measure trace elements in environmental media in order to assess the quality and safety of ecosystems and to quantify the burden of anthropogenic pollution. Among the available analytical techniques, X-ray based methods are particularly powerful, as they can quantify trace elements in situ. Chemical extraction is not required, as is the case for many other analytical techniques. In the last few years, the potential for X-ray techniques to be applied in the environmental sciences has dramatically increased due to developments in laboratory instruments and synchrotron radiation facilities with improved sensitivity and spatial resolution. In this report, we summarize the principles of the X-ray based analytical techniques most frequently employed to study trace elements in environmental samples. We report on the most recent developments in laboratory and synchrotron techniques, as well as advances in instrumentation, with a special attention on X-ray sources, detectors, and optics. Lastly, we inform readers on recent applications of X-ray based analysis to different environmental matrices, such as soil, sediments, waters, wastes, living organisms, geological samples, and atmospheric particulate, and we report examples of sample preparation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000471262400011 Publication Date 2019-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-4545 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.626 Times cited 3 Open Access
Notes ; This document was developed as a part of IUPAC, Funder Id: http://dx.doi.org/ 10.13039/100006987, Project #2016-019-2-600 “Trace elements analysis of environmental samples with X-rays: from synchrotron to lab and from lab to synchrotron” led by Roberto Terzano (Task Group Chair). Task Group Members for this project were: Melissa Anne Denecke, Gerald Falkenberg, Armin Gross, Koen Janssens, Bradley Miller, David Paterson, Ryan Tappero, Fang-Jie Zhao. Their contribution to the project is gratefully acknowledged. ; Approved Most recent IF: 2.626
Call Number UA @ admin @ c:irua:161369 Serial 5803
Permanent link to this record
 

 
Author de Aquino, B.R.H.; Ghorbanfekr-Kalashami, H.; Neek-Amal, M.; Peeters, F.M.
Title Ionized water confined in graphene nanochannels Type A1 Journal article
Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 18 Pages 9285-9295
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract When confined between graphene layers, water behaves differently from the bulk and exhibits unusual properties such as fast water flow and ordering into a crystal. The hydrogen-bonded network is affected by the limited space and by the characteristics of the confining walls. The presence of an extraordinary number of hydronium and hydroxide ions in narrow channels has the following effects: (i) they affect water permeation through the channel, (ii) they may interact with functional groups on the graphene oxide surface and on the edges, and (iii) they change the thermochemistry of water, which are fundamentally important to understand, especially when confined water is subjected to an external electric field. Here we study the physical properties of water when confined between two graphene sheets and containing hydronium and hydroxide. We found that: (i) there is a disruption in the solvation structure of the ions, which is also affected by the layered structure of confined water, (ii) hydronium and hydroxide occupy specific regions inside the nanochannel, with a prevalence of hydronium (hydroxide) ions at the edges (interior), and (iii) ions recombine more slowly in confined systems than in bulk water, with the recombination process depending on the channel height and commensurability between the size of the molecules and the nanochannel height – a decay of 20% (40%) in the number of ions in 8 ps is observed for a channel height of h = 7 angstrom (bulk water). Our work reveals distinctive properties of water confined in a nanocapillary in the presence of additional hydronium and hydroxide ions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472922500028 Publication Date 2019-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 10 Open Access
Notes ; This work was supported by the Fund for Scientific Research Flanders (FWO-Vl) and the Methusalem programe. ; Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:161377 Serial 5419
Permanent link to this record
 

 
Author De Beule, C.; Saniz, R.; Partoens, B.
Title Crystalline topological states at a topological insulator junction Type A1 Journal article
Year 2019 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids
Volume 128 Issue 128 Pages 144-151
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We consider an interface between two strong time-reversal invariant topological insulators having surface states with opposite spin chirality, or equivalently, opposite mirror Chern number. We show that such an interface supports gapless modes that are protected by mirror symmetry. The interface states are investigated with a continuum model for the Bi2Se3 class of topological insulators that takes into account terms up to third order in the crystal momentum, which ensures that the model has the correct symmetry. The model parameters are obtained from ab initio calculations. Finally, we consider the effect of rotational mismatch at the interface, which breaks the mirror symmetry and opens a gap in the interface spectrum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472693100013 Publication Date 2018-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3697 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 2.059 Times cited Open Access
Notes ; ; Approved Most recent IF: 2.059
Call Number UA @ admin @ c:irua:161391 Serial 5385
Permanent link to this record
 

 
Author Vermeiren, V.; Bogaerts, A.
Title Improving the Energy Efficiency of CO2Conversion in Nonequilibrium Plasmas through Pulsing Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 29 Pages 17650-17665
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nonequilibrium plasmas offer a pathway for energy-efficient CO2 conversion through vibrationally induced dissociation. However, the efficiency of this pathway is limited by a rise in gas temperature, which increases vibrational−translational (VT) relaxation and quenches the vibrational levels. Therefore, we investigate here the effect of plasma pulsing on the VT nonequilibrium and on the CO2 conversion by means of a zerodimensional chemical kinetics model, with self-consistent gas temperature calculation. Specifically, we show that higher energy efficiencies can be reached by correctly tuning the plasma pulse and interpulse times. The ideal plasma pulse time corresponds to the time needed to reach the highest vibrational temperature. In addition, the highest energy efficiencies are obtained with long interpulse times, that is, ≥0.1 s, in which the gas temperature can entirely drop to room temperature. Furthermore, additional cooling of the reactor walls can give higher energy efficiencies at shorter interpulse times of 1 ms. Finally, our model shows that plasma pulsing can significantly improve the energy efficiency at low reduced electric fields (50 and 100 Td, typical for microwave and gliding arc plasmas) and intermediate ionization degrees (5 × 10−7 and 10−6).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477785000003 Publication Date 2019-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 1 Open Access
Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; This research was supported by the FWO project (grant G.0383.16N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. We also like to thank N. Britun (ChIPS) for the interesting discussions. Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:161621 Serial 5289
Permanent link to this record
 

 
Author Moro, G.; Bottari, F.; Sleegers, N.; Florea, A.; Cowen, T.; Moretto, L.M.; Piletsky, S.; De Wael, K.
Title Conductive imprinted polymers for the direct electrochemical detection of beta-lactam antibiotics: The case of cefquinome Type A1 Journal article
Year 2019 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 297 Issue 297 Pages 126786
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A biomimetic sensor for cefquinome (CFQ) was designed at multi-walled carbon nanotubes modified graphite screen-printed electrodes (MWCNTs-G-SPEs) as a proof-of-concept for the creation of a sensors array for beta-lactam antibiotics detection in milk. The sensitive and selective detection of antibiotic residues in food and environment is a fundamental step in the elaboration of prevention strategies to fight the insurgence of antimicrobial resistance (AMR) as recommended by authorities around the world (EU, WHO, FDA). The detection strategy is based on the characteristic electrochemical fingerprint of the target antibiotic cefquinome. A conducive electropolymerized molecularly imprinted polymer (MIP) coupled with MWCNTs was found to be the optimal electrode modifier, able to provide an increased selectivity and sensitivity for CFQ detection. The design of CFQ-MIP was facilitated by the rational selection of the monomer, 4-aminobenzoic acid (4-ABA). The electropolymerization process of 4-ABA have not been fully elucidated yet; for this reason a thorough study and optimization of electropolymerization conditions was performed to obtain a conducive and stable poly(4-ABA) film. The modified electrodes were characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and cyclic voltammetry (CV). CFQ-MIP were synthesized at MWCNT-G-SPEs by electropolyrnerization in pH approximate to 1 (0.1 M sulphuric acid) with a monomer:template ratio of 5:1. Two different analytical protocols were tested (single and double step detection) to minimize unspecific adsorptions and improve the sensitivity. Under optimal conditions, the lowest CFQ concentration detectable by square wave voltammetry (SWV) at the modified sensor was 50 nM in 0.1 M phosphate buffer pH 2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000478562700020 Publication Date 2019-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 4 Open Access
Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223. This work was also supported by FWO. ; Approved Most recent IF: 5.401
Call Number UA @ admin @ c:irua:161777 Serial 5549
Permanent link to this record
 

 
Author Bafekry, A.; Ghergherehchi, M.; Shayesteh, S.F.; Peeters, F.M.
Title Adsorption of molecules on C3N nanosheet : a first-principles calculations Type A1 Journal article
Year 2019 Publication Chemical physics Abbreviated Journal Chem Phys
Volume 526 Issue 526 Pages 110442
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations we investigate the interaction of various molecules, including H-2, N-2, CO, CO2, H2O, H2S, NH3, CH4 with a C3N nanosheet. Due to the weaker interaction between H-2, N-2, CO, CO2, H2O, H2S, NH3, and CH4 molecules with C3N, the adsorption energy is small and does not yield any significant distortion of the C3N lattice and the molecules are physisorbed. Calculated charge transfer shows that these molecules act as weak donors. However, adsorption of O-2, NO, NO2 and SO2 molecules are chemisorbed, they receive electrons from C3N and act as a strong acceptor. They interact strongly through hybridizing its frontier orbitals with the p-orbital of C3N, modifying the electronic structure of C3N. Our theoretical studies indicate that C3N-based sensor has a high potential for O-2, NO, NO2 and SO2 molecules detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000481606000006 Publication Date 2019-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-0104 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 1.767 Times cited 52 Open Access
Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). In addition, this work was supported by the FLAG-ERA project 2DTRANS and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.767
Call Number UA @ admin @ c:irua:161779 Serial 5405
Permanent link to this record
 

 
Author Choudhary, K.; Bercx, M.; Jiang, J.; Pachter, R.; Lamoen, D.; Tavazza, F.
Title Accelerated Discovery of Efficient Solar Cell Materials Using Quantum and Machine-Learning Methods Type A1 Journal article
Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 31 Issue 15 Pages 5900-5908
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Solar energy plays an important role in solving serious environmental

problems and meeting the high energy demand. However, the lack of suitable

materials hinders further progress of this technology. Here, we present the largest

inorganic solar cell material search till date using density functional theory (DFT) and

machine-learning approaches. We calculated the spectroscopic limited maximum

efficiency (SLME) using the Tran−Blaha-modified Becke−Johnson potential for 5097

nonmetallic materials and identified 1997 candidates with an SLME higher than 10%,

including 934 candidates with a suitable convex-hull stability and an effective carrier

mass. Screening for two-dimensional-layered cases, we found 58 potential materials

and performed G0W0 calculations on a subset to estimate the prediction uncertainty. As the above DFT methods are still computationally expensive, we developed a high accuracy machine-learning model to prescreen efficient materials and applied it to over a million materials. Our results provide a general framework and universal strategy for the design of high-efficiency solar

cell materials. The data and tools are publicly distributed at: https://www.ctcms.nist.gov/~knc6/JVASP.html, https://www.

ctcms.nist.gov/jarvisml/, https://jarvis.nist.gov/, and https://github.com/usnistgov/jarvis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480826900060 Publication Date 2019-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 9.466
Call Number EMAT @ emat @c:irua:161814 Serial 5291
Permanent link to this record
 

 
Author Neven, L.; Thiruvottriyur Shanmugam, S.; Rahemi, V.; Trashin, S.; Sleegers, N.; Carrion, E.N.; Gorun, S.M.; De Wael, K.
Title Optimized photoelectrochemical detection of essential drugs bearing phenolic groups Type A1 Journal article
Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 91 Issue 15 Pages 9962-9969
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The World Health Organization (WHO) model “List of Essential Medicines” includes among indispensable medicines antibacterials and pain and migraine relievers. Monitoring their concentration in the environment, while challenging, is important in the context of antibiotic resistance as well as their production of highly toxic compounds via hydrolysis. Traditional detection methods such as high-performance liquid chromatography (HPLC) or LC combined with tandem mass spectrometry or UV-vis spectroscopy are time-consuming, have a high cost, require skilled operators and are difficult to adapt for field operations. In contrast, (electrochemical) sensors have elicited interest because of their rapid response, high selectivity, and sensitivity as well as potential for on-site detection. Previously, we reported a novel sensor system based on a type II photosensitizer, which combines the advantages of enzymatic sensors (high sensitivity) and photoelectrochemical sensors (easy baseline subtraction). Under red-light illumination, the photosensitizer produces singlet oxygen which oxidizes phenolic compounds present in the sample. The subsequent reduction of the oxidized phenolic compounds at the electrode surface gives rise to a quantifiable photocurrent and leads to the generation of a redox cycle. Herein we report the optimization in terms of pH and applied potential of the photoelectrochemical detection of the hydrolysis product of paracetamol, i.e., 4-aminophenol (4-AP), and two antibacterials, namely, cefadroxil (CFD, beta-lactam antibiotic) and doxycycline (DXC, tetracycline antibiotic). The optimized conditions resulted in a detection limit of 0.2 mu mol L-1 for DXC, but in a 10 times higher sensitivity, 20 nmol L-1, for CFD. An even higher sensitivity, 7 nmol L-1, was noted for 4-AP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480499200086 Publication Date 2019-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 2 Open Access
Notes ; FWO and UA-BOF are acknowledged for financial support. The Center for Functional Materials of Seton Hall University is thanked for support (S.M.G. and E.N.C.). Joren Van Loon is thanked for the graphical abstract. This research was supported by the medium scale research infrastructure funding Hercules funding (SEM). ; Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:161831 Serial 5763
Permanent link to this record
 

 
Author Nakhaee, M.; Yagmurcukardes, M.; Ketabi, S.A.; Peeters, F.M.
Title Single-layer structures of a100- and b010-Gallenene : a tight-binding approach Type A1 Journal article
Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 28 Pages 15798-15804
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the simplified linear combination of atomic orbitals (LCAO) method in combination with ab initio calculations, we construct a tight-binding (TB) model for two different crystal structures of monolayer gallium: a(100)- and b(010)-Gallenene. The analytical expression for the Hamiltonian and numerical results for the overlap matrix elements between different orbitals of the Ga atoms and for the Slater and Koster (SK) integrals are obtained. We find that the compaction of different structures affects significantly the formation of the orbitals. The results for a(100)-Gallenene can be very well explained with an orthogonal basis set, while for b(010)-Gallenene we have to assume a non-orthogonal basis set in order to construct the TB model. Moreover, the transmission properties of nanoribbons of both monolayers oriented along the AC and ZZ directions are also investigated and it is shown that both AC- and ZZ-b(010)-Gallenene nanoribbons exhibit semiconducting behavior with zero transmission while those of a(100)-Gallenene nanoribbons are metallic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476603700057 Publication Date 2019-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 14 Open Access
Notes ; This work is supported by the Methusalem program of the Flemish government and the FLAG-ERA project TRANS-2D-TMD. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (M. Y.). M. N. is partially supported by BFO (Uantwerpen). ; Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:161881 Serial 5427
Permanent link to this record
 

 
Author Smolders, S.; Willhammar, T.; Krajnc, A.; Şentosun, K.; Wharmby, M.T.; Lomachenko, K.A.; Bals, S.; Mali, G.; Roeffaers, M.B.J.; De Vos, D.E.; Bueken, B.
Title A titanium(IV)-based metal-organic framework featuring defect-rich Ti-O sheets as an oxidative desulfurization catalyst Type A1 Journal article
Year 2019 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 58 Issue 58 Pages 9160-9165
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract While titanium-based metal-organic frameworks (MOFs) have been widely studied for their (photo) catalytic potential, only a few Ti-IV MOFs have been reported owing to the high reactivity of the employed titanium precursors. The synthesis of COK-47 is now presented, the first Ti carboxylate MOF based on sheets of (TiO6)-O-IV octahedra, which can be synthesized with a range of different linkers. COK-47 can be synthesized as an inherently defective nanoparticulate material, rendering it a highly efficient catalyst for the oxidation of thiophenes. Its structure was determined by continuous rotation electron diffraction and studied in depth by X-ray total scattering, EXAFS, and solid-state NMR. Furthermore, its photoactivity was investigated by electron paramagnetic resonance and demonstrated by catalytic photodegradation of rhodamine 6G.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476691200034 Publication Date 2019-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 97 Open Access Not_Open_Access
Notes ; S.S., B.B., and D.E.D.V. gratefully acknowledge the FWO for funding (Aspirant grant, postdoctoral grant, project funding). T.W. acknowledges a grant from the Swedish research council (VR, 2014-06948). He acknowledges financial support from the Knut and Alice Wallenberg Foundation through the project grant 3DEM-NATUR (no. 2012.0112) as well as for purchasing the TEMs. A.K. and G.M. acknowledge the financial support from the Slovenian Research Agency (research core funding No. P1-0021 and project No. N1-0079). We thank beamline I15-1 (XPDF), Diamond Light Source, for collection of X-ray total scattering data as part of the in-house research program (M.T.W.). A. Venier and O. Mathon are kindly acknowledged for the help during the XAS experiment at BM23 beamline of ESRF. We thank C. Lamberti and L. Braglia for providing the reference EXAFS spectrum of anatase. ; Approved Most recent IF: 11.994
Call Number UA @ admin @ c:irua:161932 Serial 5382
Permanent link to this record
 

 
Author Bafekry, A.; Ghergherehchi, M.; Shayesteh, S.F.
Title Tuning the electronic and magnetic properties of antimonene nanosheets via point defects and external fields: first-principles calculations Type A1 Journal article
Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 20 Pages 10552-10566
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Defects are inevitably present in materials, and their existence in a material strongly affects its fundamental physical properties. We have systematically investigated the effects of surface adsorption, substitutional impurities, defect engineering, an electric field and strain engineering on the structural, electronic and magnetic properties of antimonene nanosheets, using spin-polarized density functional calculations based on first-principles. The adsorption or substitution of atoms can locally modify the atomic and electronic structures as well as induce a variety of electronic behaviors including metal, half-metal, ferromagnetic metal, dilute magnetic semiconductor and spin-glass semiconductor. Our calculations show that the presence of typical defects (vacancies and Stone-Wales defect) in antimonene affects the geometrical symmetry as well as the band gap in the electronic band structure and induces magnetism to antimonene. Moreover, by applying an external electric field and strain (uniaxial and biaxial), the electronic structure of antimonene can be easily modified. The calculation results presented in this paper provide a fundamental insight into the tunable nature of the electronic properties of antimonene, supporting its promise for use in future applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476561000031 Publication Date 2019-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 17 Open Access
Notes ; ; Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:161945 Serial 5430
Permanent link to this record
 

 
Author Ma, Z.; Perreault, P.; Pelegrin, D.C.; Boffito, D.C.; Patience, G.S.
Title Thermodynamically unconstrained forced concentration cycling of methane catalytic partial oxidation over CeO2FeCralloy catalysts Type A1 Journal article
Year 2020 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 380 Issue Pages 122470-11
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Converting waste associated natural gas from oil fields is uneconomic with current gas-to-liquid technology. Micro Gas-to-Liquids technology ( GtL) combines process intensification and numbering up economics to reduce capital costs to convert flared and vented natural gas to value-added synthetic fuel: Milli-second contact times in the catalytic partial oxidation of methane (CPOX) integrated with a tandem Fischer-Tropsch (FT) step meets the economic constraints together with remote process control. FeCralloy knitted fibres with high thermal conductivity and low pressure drop, resist thermal and mechanical stresses in the high pressure CPOX step. The FeCralloy catalysts are free of pre-reduction treatments. We deposited Pt and/or CeO2 over the fibre surface via solution combustion synthesis. Methane conversion was higher at ambient pressure compared to 2 MPa while the Pt/CeO2 FeCralloy was relatively inert from 0.1 MPa to 2 MPa. However, both catalysts demonstrated high activity in quasi-chemical looping partial oxidation of methane: during the reduction step while feeding methane, an on-line mass spectrometer only detected H2 while in the oxidation step it detected predominantly CO. Kinetic modeling of the oxidation-reduction cycles suggests that the reaction follows a direct mechanism to produce CO and H2 rather than an indirect mechanism that first produces CO2 and H2O followed by reforming.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links (up) UA library record
Impact Factor 15.1 Times cited Open Access
Notes Approved Most recent IF: 15.1; 2020 IF: 6.216
Call Number UA @ admin @ c:irua:162119 Serial 8665
Permanent link to this record
 

 
Author Vandewalle, L.A.; Gonzalez-Quiroga, A.; Perreault, P.; Van Geem, K.M.; Marin, G.B.
Title Process intensification in a gas–solid vortex unit : computational fluid dynamics model based analysis and design Type A1 Journal article
Year 2019 Publication Industrial and engineering chemistry research Abbreviated Journal
Volume 58 Issue 28 Pages 12751-12765
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The process intensification abilities of gas–solid vortex units (GSVU) are very promising for gas–solid processes. By working in a centrifugal force field, much higher gas–solid slip velocities can be obtained compared to gravitational fluidized beds, resulting in a significant increase in heat and mass transfer rates. In this work, local azimuthal and radial particle velocities for an experimental GSVU are simulated using the Euler–Euler framework in OpenFOAM and compared with particle image velocimetry measurements. With the validated model, the effect of the particle diameter, number of inlet slots and reactor length on the bed hydrodynamics is assessed. Starting from 1g-Geldart-B type particles, increasing the particle diameter or density, increasing the number of inlet slots or increasing the gas injection velocity leads to an increased bed stability and uniformity. However, a trade-off has to be made since increased bed stability and uniformity lead to higher shear stresses and attrition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476686000027 Publication Date 2019-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-5885; 1520-5045 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:162122 Serial 8416
Permanent link to this record