toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lin, F.; Meng; Kukueva, E.; Mertens, M.; Van Doorslaer, S.; Bals, S.; Cool, P. url  doi
openurl 
  Title New insights into the mesophase transformation of ethane-bridged PMOs by the influence of different counterions under basic conditions Type A1 Journal article
  Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 5 Issue 5 Pages 5553-5562  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract The counterions are of crucial importance in determining the mesostructure and morphology of ethanebridged PMO materials synthesized under basic conditions. By using CTABr as the surfactant, the final PMO materials show a 2-D hexagonal (p6mm) mesophase, while PMO materials with cubic (Pm (3) over barn ) mesostructure are obtained when CTACl or CTA(SO4)(1)/(2) are used. With gradually replacing CTABr by CTACl or CTA(SO4) (1)/(2) while keeping the total surfactant concentration constant, a clear p6mm to Pm (3) over barn 3n mesophase evolution process is observed. For a given gel composition, the mesophase of ethanebridged PMO materials can also be adjusted by the addition of different sodium salts. In short, the effect of the counterions on the mesophase can be attributed to the binding strength of the ions on the surfactant micelles, which follows the Hofmeister series (SO42- < Cl- < Br-< NO3- < SCN-). Furthermore, it is found that the hydrolysis and condensation rate of the organosilica precursor also plays an important role in the formation of the final mesostructure  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347304900010 Publication Date 2014-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 6 Open Access Not_Open_Access  
  Notes ; The Erasmus Mundus CONNEC program is acknowledged for PhD funding of F. L. Furthermore, the authors acknowledge support by the GOA-BOF project 'Optimization of the structureactivity relation in nanoporous materials', funded by the University of Antwerp. ; Approved Most recent IF: 3.108; 2015 IF: 3.840  
  Call Number c:irua:123768 Serial 2317  
Permanent link to this record
 

 
Author Van Eyndhoven, G.; Kurttepeli, M.; van Oers, C.J.; Cool, P.; Bals, S.; Batenburg, K.J.; Sijbers, J. pdf  url
doi  openurl
  Title Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 148 Issue 148 Pages 10-19  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab; Laboratory of adsorption and catalysis (LADCA)  
  Abstract Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm POre REconstruction and Segmentation is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000345973000002 Publication Date 2014-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 7 Open Access OpenAccess  
  Notes Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:119083 Serial 2672  
Permanent link to this record
 

 
Author van Oers, C.J.; Kurttepeli, M.; Mertens, M.; Bals, S.; Meynen, V.; Cool, P. pdf  url
doi  openurl
  Title Zeolite \beta nanoparticles based bimodal structures : mechanism and tuning of the porosity and zeolitic properties Type A1 Journal article
  Year 2014 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 185 Issue Pages 204-212  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Despite great efforts in the research area of zeolite nanoparticles and their use in the synthesis of bimodal materials, still little is known about the impact of the synthesis conditions of the zeolite nanoparticles on its own characteristics, and on the properties and the formation mechanism of the final bimodal materials. A zeolite β nanoparticles solution is applied in a mesotemplate-free synthesis method, and the influence of the hydrothermal ageing temperature of the nanoparticles solution on both the zeolitic and porosity characteristics of the final bimodal material has been studied. Transmission electron microscopy in combination with 3-dimensional reconstructions obtained by electron tomography revealed that the zeolite β nanoparticles are connected by neck-like structures, thus creating a wormhole-like mesoporous material. Considering the zeolitic properties, a clear threshold is observed in the synthesis temperature series at 413 K. Below and at this threshold, the biporous materials show no apparent zeolitic characteristics, although these materials exhibit a more condensed and uniform SiOSi network in comparison to Al-MCF. Synthesis temperatures above the threshold lead to bimodal structures with defined zeolitic properties. Moreover, the dimensions of the nanoparticles are studied by TEM, revealing an increasing particle size with increasing temperature under the threshold of 413 K, which is in agreement with a sol-mechanism. This mechanism is disturbed after the threshold due to the start of the crystallisation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000330930400025 Publication Date 2013-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 10 Open Access OpenAccess  
  Notes 262348 Esmi Approved Most recent IF: 3.615; 2014 IF: 3.453  
  Call Number UA @ lucian @ c:irua:112501 Serial 3930  
Permanent link to this record
 

 
Author Linssen, T.; Cassiers, K.; Cool, P.; Lebedev, O.; Whittaker, A.; Vansant, E.F. doi  openurl
  Title Physicochemical and structural characterization of mesoporous aluminosilicates synthesized from leached saponite with additional aluminum incorporation Type A1 Journal article
  Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 15 Issue 25 Pages 4863-4873  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract A thorough investigation was performed on the physical (mechanical, thermal, and hydrothermal stability) and chemical (ion exchange capacity and silanol number) characteristics of aluminosilicate FSMs, synthesized via a new successful short-time synthesis route using leached saponite and a low concentration of CTAB. Moreover, the influence of an additional Al incorporation, utilizing different aluminum sources, on the structure of the FSM derived from saponite is studied. A mesoporous aluminosilicate with a low Si/Al ratio of 12.8 is synthesized, and still has a very large surface area of 1130 m(2)/g and pore volume of 0.92 cm(3)/g. The aluminum-containing samples all have a high cation exchange capacity of around 1 mmol/9 while they still have a silanol number of about 0.9 OH/nm(2); both characteristics being interesting for high-yield postsynthesis modification reactions. Finally, a study is performed on the transformation of the aluminosilicates into their Bronsted acid form via the exchange with ammonium ions and a consecutive heat treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000187250800026 Publication Date 2003-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 11 Open Access  
  Notes Approved Most recent IF: 9.466; 2003 IF: 4.374  
  Call Number UA @ lucian @ c:irua:103265 Serial 2618  
Permanent link to this record
 

 
Author Herregods, S.J.F.; Mertens, M.; Van Havenbergh, K.; Van Tendeloo, G.; Cool, P.; Buekenhoudt, A.; Meynen, V. pdf  doi
openurl 
  Title Controlling pore size and uniformity of mesoporous titania by early stage low temperature stabilization Type A1 Journal article
  Year 2013 Publication Journal of colloid and interface science Abbreviated Journal J Colloid Interf Sci  
  Volume 391 Issue Pages 36-44  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract The control of the formation process during and after self-assembly is of utmost importance to achieve well structured, controlled template-assisted mesoporous titania materials with the desired properties for various applications via the evaporation induced self-assembly method (EISA). The present paper reports on the large influence of the thermal stabilization and successive template removal on the pore structure of a mesostructured TiO2 material using the diblock copolymer Brij 58 as surfactant. A controlled thermal stabilization (temperature and duration) allows one to tailor the final pore size and uniformity much more precise by influencing the self-assembly of the template. Moreover, also the successive thermal template removal needs to be controlled in order to avoid a structural collapse. N2-sorption, TGA, TEM, FT-Raman spectroscopy, and small angle wide angle XRD have been used to follow the crystal growth and mesostructure organization after thermal stabilization and after thermal template removal, revealing its effect on the final pore structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000312039000006 Publication Date 2012-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.233 Times cited 12 Open Access  
  Notes Approved Most recent IF: 4.233; 2013 IF: 3.552  
  Call Number UA @ lucian @ c:irua:101757 Serial 506  
Permanent link to this record
 

 
Author Meynen, V.; Busuioc, A.M.; Beyers, E.; Cool, P.; Vansant, E.F.; Bilba, N.; Mertens, M.; Lebedev, O.; Van Tendeloo, G. openurl 
  Title Nanodesign of combined micro- and mesoporous materials for specific applications in adsorption and catalysis Type H3 Book chapter
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords H3 Book chapter; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Nova Place of Publication New York Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:63126 Serial 2251  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Lebedev, O.I.; Collart, O.; Cool, P.; Vansant, E.F. openurl 
  Title Structure of nanoscale mesoporous silica spheres? Type A1 Journal article
  Year 2003 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 15 Issue Pages S3037-S3046  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited Open Access  
  Notes Approved Most recent IF: 2.649; 2003 IF: 1.757  
  Call Number UA @ lucian @ c:irua:46265 Serial 3313  
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Berthelot, A.; Heijkers, S.; Wang, W.; Sun, S.; Van Laer, K.; Ramakers, M.; Michielsen, I.; Uytdenhouwen, Y.; Meynen, V.; Cool, P. pdf  openurl
  Title Plasma based co2 conversion: a combined modeling and experimental study Type P1 Proceeding
  Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years there is increased interest in plasma-based CO2 conversion. Several plasma setups are being investigated for this purpose, but the most commonly used ones are a dielectric barrier discharge (DBD), a microwave (MW) plasma and a gliding arc (GA) reactor. In this proceedings paper, we will show results from our experiments in a (packed bed) DBD reactor and in a vortex-flow GA reactor, as well as from our model calculations for the detailed plasma chemistry in a DBD, MW and GA, for pure CO2 as well as mixtures of CO2 with N-2, CH4 and H2O.  
  Address  
  Corporate Author Thesis  
  Publisher Masarykova univ Place of Publication Brno Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-80-210-8318-9 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:141553 Serial 4526  
Permanent link to this record
 

 
Author Van Eyndhoven, G.; Batenburg, K.J.; van Oers, C.; Kurttepeli, M.; Bals, S.; Cool, P.; Sijbers, J. openurl 
  Title Reliable pore-size measurements based on a procedure specifically designed for electron tomography measurements of nanoporous samples Type P3 Proceeding
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Electron microscopy for materials research (EMAT); Vision lab; Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:124548 Serial 2866  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: