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Abstract

Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of
nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward.
Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing
chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches re-
quire subjective manual user input. In this paper, the PORES algorithm (“POre REconstruction and Segmentation”)
is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous
nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific recon-
struction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation
algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the
remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS recon-
struction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate
individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on
both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials.

Keywords: Electron tomography, reconstruction, segmentation, nanoporous material, pore size distribution

1. Introduction

Although electron tomography provides valuable
three-dimensional visualizations of the sample un-
der interest, accurate quantification of pore sizes in
nanoporous materials remains a difficult problem, es-
pecially if the pores are irregularly shaped.

Quantification of nanoporous materials is important
in many applications in the field of sorption/separation
or catalysis, in which size selectivity often plays an im-
portant role [1, 2]. This makes a reliable and accurate
knowledge of the pore size distribution indispensable.

Microporous (d < 2nm) and mesoporous
(2nm < d < 50nm) materials are usually character-
ized by N2-sorption experiments at a temperature of
77K [3]. However, the quantification of the pore size
distribution based on these measurements is carried
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out using models that assume a regular pore size, i.e.,
cylindrical or slit-shaped pores. Unfortunately, no
model is available for materials with irregular pores. In
this publication, an alternative and reliable approach
to determine the pore size in nanoporous materials is
proposed.

Transmission electron microscopy (TEM) is an ideal
technique to investigate nanoporous materials at a lo-
cal scale, but conventional TEM is limited to pro-
viding two-dimensional (2D) projections of a three-
dimensional (3D) microscopy sample [4]. To measure
the pore size distribution, a 3D representation of the
sample is required, which can be obtained using elec-
tron tomography. This technique combines the infor-
mation of a tilt series of 2D TEM images in a 3D
voxel-based reconstruction [5]. The quality of the 3D
reconstruction is of critical importance, since it influ-
ences further quantification. Computing accurate recon-
structions from TEM projection images with classical
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analytical algorithms such as weighted back-projection
(WBP) [6] or algebraic algorithms like the simultaneous
iterative reconstruction technique (SIRT) [7] is a diffi-
cult task, mainly because of two issues. First, the lim-
ited tilt range of the sample (usually about ±75◦) causes
elongation of the 3D reconstruction and smearing of the
voxel values, often referred to as the ”missing wedge”
artifact. Secondly, the reconstruction quality also de-
pends on the number of TEM projection images, which
is often relatively small to avoid beam damage, espe-
cially for sensitive materials.

It has been shown recently that the quality of a 3D
reconstruction can be improved by incorporating prior
knowledge in the reconstruction process. Assuming that
the sample contains just a few a priori known com-
positions, each occurring in homogeneous regions, the
discrete algebraic reconstruction technique (DART) has
been able to strongly reduce missing wedge artifacts
[8, 9]. The partially discrete algebraic reconstruction
technique (PDART) exploits the existence of dense ho-
mogeneous particles of which the grey value is known
by incorporating this knowledge in the reconstruction
algorithm, resulting in more accurate reconstruction
quality [10]. Other methods minimize the total varia-
tion of the reconstruction, where the sample is assumed
to have a sparse gradient, i.e., the number of bound-
ary pixels in the sample is relatively small compared
to the total number of pixels [11, 12]. However, the
prior knowledge assumptions incorporated in the recon-
struction algorithms of the previous examples are not
always applicable to nanoporous materials, since the re-
construction may consist of a continuous range of grey
values with non-sparsity of the gradient image. In this
paper, we propose an approach that exploits a different
kind of prior knowledge, which is related uniquely to
porous materials: the existence of many local regions of
void space.

After the reconstruction step, individual pores can be
extracted. To that end, a segmentation step should be
applied to separate the pores from the material matrix.
Manually or automatically selecting global thresholds
can produce satisfactory results if there is a clear sepa-
ration between the background and the material matrix
[13]. However, due to reconstruction artifacts, this se-
paration is not straightforward in practice. In particular
for the segmentation of pores that are small compared
to the voxel size, this approach is error prone. It can
therefore be expected that further analysis of the pores
with individual pore statistics such as size, orientation,
eccentricity, etc. will be strongly influenced by the re-
sults of the two previous steps, i.e., reconstruction and
segmentation.

To overcome the limitations discussed above, we
present a tailor-made, integral approach, for the recon-
struction, segmentation, and quantification of porous
nanomaterials: the PORES (“POre REconstruction and
Segmentation”) algorithm. The PORES data process-
ing chain outperforms conventional approaches, since
it is optimized for nanoporous structures. The PORES
processing chain starts by calculating a porous sample
specific reconstruction with the new SUPPRESS (“Si-
multaneous Update of Pore Pixels by iterative REcon-
struction and Simple Segmentation”) algorithm. SUP-
PRESS reduces artifacts by exploiting prior knowledge
about the porous structure of the material, while au-
tomatically classifying the interior of the pores. The
PORES method continues by applying a watershed al-
gorithm directly to the reconstruction, resulting in accu-
rate segmentation of the pores. This segmentation per-
mits accurate quantification of individual pores, which
is employed to generate full sample pore statistics.

The PORES method is described in section 2. In sec-
tion 3, the method is validated with both simulation and
real experiments. The paper is concluded in section 4.

2. Method

This section describes the entire PORES algorithm,
which is displayed in the flowchart in Fig. 1. It consists
of two parts: the reconstruction algorithm (described in
section 2.1 and displayed in the uppermost part of the
flowchart in Fig. 1) and the segmentation and quantifi-
cation (described in section 2.2 and displayed in the bot-
tommost part of the flowchart in Fig. 1).

2.1. Reconstruction
In this section, a novel reconstruction technique is de-

scribed, which will be referred to as the SUPPRESS al-
gorithm (“Simultaneous Update of Pore Pixels by itera-
tive REconstruction and Simple Segmentation”). It ex-
ploits a prior that comes naturally for porous materials:
the existence of many local regions of void space.

Before elaborating on the proposed reconstruction al-
gorithm, a short introduction to the standard algebraic
SIRT algorithm is given, since it is utilized as a sub-
routine in SUPPRESS. In SIRT, starting from an ini-
tial estimate of the sample, the current estimate is re-
fined in each iteration by reducing the distance between
the measured TEM projection data and the projection
data simulated from the current estimate. It has been
proven in [7] that SIRT converges towards a weighted
least squares solution of

Wx = p , (1)
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Figure 1: Flowchart of the entire PORES algorithm, which consist of the SUPPRESS reconstruction algorithm and the segmentation protocol. Red
pixels indicate the estimate for void space, indicated by S in the flowchart. The SIRT update is calculated on the all pixels in the complement of S ,
i.e., on the green pixels in the illustration.

where x ∈ RN is the discretized object represented on a
grid of N voxels, p ∈ RM is the acquired projection data
with M the total number of acquired projection values
at each angle and each detector pixel and W is the linear
operator that models the projection process.

In SUPPRESS, iterative update steps are combined
with the prior knowledge that voxels inside void space,
i.e., pores and background, should be homogenous and
have a lower grey value than the support material. All
steps in SUPPRESS are displayed in the uppermost part
of the flowchart in Fig. 1. The algorithm starts by gen-
erating an initial SIRT reconstruction. Next, a conser-
vative set of void space voxels, S, is estimated with the
following two steps. First, the current reconstruction is
segmented by a global thresholding operation, i.e., all
pixels with a grey value smaller than a specified global
threshold τ are selected as possible candidates for the
S set. In our approach, τ was chosen as the grey value
halfway between the grey value of void space and the

smallest grey value of the support material. Next, this
set is eroded, removing voxels at the boundary. This re-
sults in the set S , which is a conservative estimate for
the void space voxels. The erosion operation reduces
the chance that voxels of the material matrix are incor-
rectly classified as void space voxels (misclassified vo-
xels are found typically on the edge between pore-space
and material-space), which is essential for the next step
in the algorithm. Based on the assumption that no ma-
terial is present in the region defined by S , the recon-
struction is then continued by applying a SIRT iteration
solely to the voxels that belong to the complement of
S , while keeping the voxels in S fixed at a grey level
of 0 (i.e., no material). This procedure of identifying
void space voxels and applying SIRT iterations to the
remaining voxels is repeated until a fixed number of it-
erations is reached.

The key strength of SUPPRESS lies in the fact that
the pores (and background) are identified during the re-
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construction process itself. This results in a more re-
fined estimate for void space at every iteration, which
in turn will also results in more accurate reconstruction
quality on the voxels not belonging to void space. This
is due to the fact that the fixing of all voxels in S to the
grey level of 0 actually decreases the number of vari-
ables in Eq. (1), while maintaining the same number of
equations as the original system, resulting in faster con-
vergence and more accurate reconstruction quality.

The erosion and threshold parameters of the SUP-
PRESS algorithm control how many voxels are included
in the S set. A large erosion size or a small thresh-
old will result in a smaller intermediate void space esti-
mate S , reducing the probability of falsely classifying
material-space voxels as void space voxels during it-
erations, thereby increasing the algorithm’s robustness.
On the other hand, it is beneficial to include as many
voxels into the S set as possible (without classifying
material-space voxels as void space voxels), because
this decreases the number of variables in Eq. (1) even
more, thereby giving faster convergence and more ac-
curate reconstruction quality. Selecting the optimal pa-
rameters can be done with automatic procedures such
as projection distance minimization schemes [14] or
by histogram-based clustering methods such as Otsu’s
method [15]. This is, however, out of the scope of
this paper, and therefore these parameters were selected
manually.

Also note that the void space estimate S will not con-
tain all voxels corresponding to the pores; it will typ-
ically contain fewer pixels due to the erosion opera-
tion. This conservative estimate for the pore-space vo-
xels is, however, not the final segmentation of the pores;
it rather serves as an input for the segmentation of the
individual pores in the next step which is described in
the next section.

2.2. Segmentation and quantification
In the approach we present here, we did not only

optimize the 3D reconstruction algorithm, but also the
segmentation process. Our segmentation methodology
is displayed in the bottommost part of the flowchart in
Fig. 1. First, a volume of interest (VOI) is manually in-
dicated. Next, an anisotropic diffusion filter [16, 17]
(with the diffusion constant function as it is proposed
in [17]) is applied to the reconstruction to reduce noise
without compromising the edges. Since the SUPPRESS
reconstruction contains little or no missing wedge arti-
facts, the pore-space can be segmented by global thresh-
olding. Extracting individual pores is a crucial step,
since the pore statistics depend strongly on a good inter-
pore separation. A well-known approach for the re-

moval of the artificially introduced connectivity in the
case of regularly shaped pores, consists of applying the
watershed algorithm to a distance transform of the seg-
mented image [18]. Since this method is inadequate for
irregularly shaped pores, it needs to be adapted. The
SUPPRESS reconstruction provides a conservative es-
timate of the set of voxels interior to the pores, i.e., the
subset of S that does not correspond to the background.
To separate individual pores, the watershed algorithm
can then be applied directly on the filtered SUPPRESS
reconstruction, by flooding regions starting at the grey
value corresponding to void space and stop flooding at
the global threshold value that was used for the pore-
space segmentation. In the last step of the segmentation
procedure all pores that coincide with the boundary of
the VOI are removed. Once the segmentation has been
computed, the equivalent spherical diameter [19] is de-
termined for each individual pore, providing a quantita-
tive measurement of the pore size distribution.

Note that the global threshold for final pore-space
segmentation should typically be chosen larger than
the threshold value in the SUPPRESS algorithm. The
threshold in SUPPRESS should be chosen smaller, to
prevent material space pixels to be classified as pore-
space pixels during reconstruction.

Also note that the size of the global threshold param-
eter affects the size of the pore-space. However, because
the SUPPRESS algorithm results in an accurate recon-
struction with a clear distinction between void space
and material-space, the associated pore-space segmen-
tation is less sensitive to changes in the global threshold
parameter (in comparison to other reconstruction algo-
rithms such as SIRT or WBP).

3. Experiments and results

In this section, a range of experiments to evaluate our
approach and their corresponding results are discussed.
First, in section 3.1, the TEM acquisition set-up for an
aluminosilicate sample is described. Next, various sim-
ulation experiments are reported in section 3.2. In sec-
tion 3.3, different figures of merit for the validation of
our approach are introduced. In section 3.4, the results
of all experiments are reported. Finally, the PORES al-
gorithm is applied to the real data in section 3.5.

3.1. Material and acquisition: aluminosilicate sample

The material under study is an amorphous meso-
porous aluminosilicate with a wormhole-like pore struc-
ture and irregularly shaped pores. The exact ex-
perimental conditions and material specifications have
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Figure 2: A central slice of reconstructions calculated with different algorithms. (a) WBP with small and large volume of interest (VOI) indicated.
(b) SIRT with 300 iterations and a positivity constraint. (c) SUPPRESS with 100 initial SIRT iterations, 200 SUPPRESS iterations and a disk with
a two pixel radius as morphological erosion operator.

been elaborated in a previous publication [20]. The
TEM samples were prepared by applying drops of
ethanol suspension of the powder sample on a car-
bon coated copper grid. The tomographic imaging
was performed using high-angular annular dark-field
scanning transmission electron microscopy (HAADF-
STEM) [21, 22]. A tilt series was acquired using a FEI
Tecnai G2 electron microscope operated at 200 kV in
combination with model 2020 Fischione Instruments to-
mography holder and the FEI XPlore3D software pack-
age. The HAADF STEM images were acquired at the
detector inner and outer collection angles of 72 mrad
and 227 mrad with convergence semi-angle of 10 mrad.
Each HAADF-STEM image contains 1024 × 1024 pi-
xels, which have a 2.06 nm inter-pixel distance. The
tilt series was collected over an angular range of ±74◦

with 2◦ increments and is displayed in Fig. 3. The
projection images were aligned with an iterative cross-
correlation algorithm together with a manual tilt axis ad-
justment implemented in FEI Inspect3D software [23].
The STEM image values were shifted in order to have
a zero grey value corresponding to void space. To this
end, a region where the electron beam clearly encoun-
tered void space was manually indicated in every STEM
projection image and subsequently the average of the
detector pixel values in this region was subtracted from
the STEM image values. Reconstructions were calcu-
lated on a 1024 × 1024 × 1024 voxel grid of voxel size
2.06 nm3 in a slice-by-slice manner. The WBP, SIRT
and SUPPRESS reconstructions are displayed in Fig. 2.

3.2. Material and acquisition: simulation phantoms

In this section, various simulation phantoms are de-
scribed, each of which was chosen specifically to vali-
date certain aspects of the SUPPRESS algorithm and the

Figure 3: Example HAADF-STEM projection image (at 0◦ tilt an-
gle) of the aluminosilicate sample. The tilt axis is indicated with the
dashed line.

complete PORES approach. A first experiment is a di-
rect validation of the SUPPRESS algorithm by a trans-
mission tomography experiment with various simula-
tion phantoms that contain different pore-space struc-
tures (section 3.2.1). In the second experiment, the
nanoporous aluminosilicate TEM sample is simulated
and the entire PORES processing chain is validated
(section 3.2.2). For the final simulation experiment
HAADF-STEM data was simulated using the CASINO
software package (section 3.2.3), thereby introducing
realistic noise into the experiment.
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3.2.1. First set of simulation phantoms
For validating the SUPPRESS algorithm for a series

of different pore-space structures, 100 phantoms simi-
lar to the 5 phantoms shown in Fig. 4 were generated.
Since these are 2D phantoms, mimicking a slice of a

Figure 4: Five examples of the 100 simulation phantoms yielding dif-
ferent pore concentrations.

3D object, their corresponding projections are 1D. The
100 phantoms were generated by introducing random
pores in a fixed material phantom of cylindrical shape.
The random pores were created by performing a global
thresholding operation on different instances of 2D Per-
lin noise [24]. In total, 70 equiangular projections be-
tween ±72◦ were simulated with a strip kernel [25] and
a higher resolution version of the phantom, i.e., on a
256×256 isotropic pixel grid. Poisson distributed noise
was applied to the simulated projection data, i.e., each
individual noise-free projection value was replaced by a
value sampled from the Poisson distribution defined by
an expectation value (and variance) equal to the noise-
free projection value. Reconstructions were calculated
on a 128 × 128 isotropic pixel grid and with a linear
projection model [25].

3.2.2. Second simulation phantom
Direct validation of the SUPPRESS reconstruction

algorithm and the subsequent segmentation and quan-
tification of the pore size distribution on the real TEM
data of the aluminosilicate is difficult, since no under-
lying accurate reference image is available. Therefore,
a simulation phantom similar to the aluminosilicate and
corresponding simulated projection data was created as
follows. First, from the HAADF-STEM series of the
aluminosilicate, a SUPPRESS reconstruction of one of
the more central slices was calculated on a 1024× 1024
pixel grid. The SUPPRESS reconstruction parameters
were 100 initial SIRT iterations, 200 SUPPRESS itera-
tions and a disk with a two pixel radius as morphologi-
cal erosion operator. This reconstruction is displayed in
Fig. 2(c). Starting from this reconstruction, void space
surrounding the sample was manually indicated and as-
signed a zero grey value. Subsequently, pores were
segmented using the watershed algorithm as described
above. The resulting pore-space pixels were also set
to zero. The resulting 1024 × 1024 reference image is

displayed in Fig. 7(a). Based on the reference image,
artificial projection data was generated along the same
75 projection angles as the real tilt series. Poisson dis-
tributed noise was applied to the projection data. With
this approach, a reference image is available, and hence
an elaborate validation can be performed.

3.2.3. Third simulation phantom
To validate the SUPPRESS algorithm under more re-

alistic noise conditions, HAADF-STEM projection data
was simulated with the CASINO Monte Carlo simula-
tion software [26, 27] over an angular range of ±90◦

with 2◦ increments. The created sample is displayed in
Fig. 5(a) and consists of pores of ellipsoid shape with
different lengths for the semi-principal axes. The mate-

(a)

0 50nm

(b)

Figure 5: (a) The third simulation phantom. The outer contours are
defined by an ellipsoid with semi-principal-axis lengths of 78 nm, 108
nm and 61.8 nm. (b) An example HAADF-STEM projection image
(at 0◦ tilt angle) that was generated from the third simulation phantom
with the CASINO software. The tilt axis is indicated by the dashed
line.

rial matrix was set to contain weight fractions of 0.6%
Al, 46.0% Si, 0.3% Na and 53.1% O. Reasonable val-
ues for these weight fractions were determined by ap-
plying an electron probe micro-analyzer (EPMA) to the
aluminosilicate sample (section 3.1). The experiment
was set up with a 200 keV-microscope with a high-
angular annular dark-field detector that collects elec-
trons scattered between 72 and 227 mrad. Furthermore,
a beam semi-angle of 10 mrad was assumed and 60000
electrons were simulated per detector pixel. Each sim-
ulated HAADF-STEM projection image was acquired
by probing the porous sample with a pixel size of 2.06
nm2 in a 116 × 116 grid. A simulated HAADF-STEM
projection image is displayed in Fig. 5(b). Reconstruc-
tions were calculated in a slice-by-slice fashion on a
116 × 116 × 116 isotropic voxel grid.

3.3. Figures of merit
For validation, we used two different measures. A

first figure of merit is the relative root mean square error
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(a) Simulation phantom (b) WBP (c) SIRT (d) SUPPRESS

Figure 6: A simulation phantom and several different reconstructions. The SUPPRESS reconstruction has less artifacts than the WBP and the SIRT
reconstruction.

(RRMSE). It is defined as

RRMS E =

√∑N
i=1(x̂(i) − x(i))2∑N

i=1(x(i))2
, (2)

where x̂ ∈ RN denotes the calculated reconstruction and
x ∈ RN denotes the phantom used to generate the data.

Finally, to validate the quality of the pore-space seg-
mentation, the Number of Misclassified Pixels (NMP)
was calculated, which is defined as the number of pixels
that were falsely classified (with respect to the reference
image) as either pore or material, reported in percentage
of the total number of image pixels.

These validation measures were calculated on the
pixel or voxel grid of the phantom, hence, whenever
necessary, the reconstructions were upsampled to the
resolution of the phantom.

3.4. Results of the simulation experiments

3.4.1. First set of simulation phantoms
The first set of simulation phantoms (of which 5 ex-

amples are displayed in Fig. 4) was reconstructed with
WBP, SIRT and SUPPRESS. The SIRT algorithm was
applied with 200 iterations and a positivity constraint.
The SUPPRESS algorithm performed 100 initial SIRT
iterations followed by 100 iterations of the main loop.
The erosion operator was chosen to be a disk of 1 pixel
radius. One particular instance of the simulation phan-
tom and a WBP, SIRT and SUPPRESS reconstruction
are shown in Fig. 6(a-d), respectively. Fig. 6 allows for a

first visual assessment of the reconstruction results. The
SUPPRESS has more detail and has little influence of
the limited angular range over which the projection data
was acquired, whereas the WBP and SIRT reconstruc-
tion clearly suffer from missing wedge artifacts, which
would hamper further analysis. In total, the experiment
was repeated 100 times, each time with a different phan-
tom instance. The average results over all experiments
are summarized in Table 1. Since the RRMSE assesses
the image quality directly and NMP assesses the seg-
mentation directly, it can be concluded from Table 1 that
SUPPRESS performs better than SIRT and WBP.

3.4.2. Second simulation phantom
From the simulated projections of the aluminosilicate

simulation phantom, WBP, SIRT and SUPPRESS re-
constructions were computed. The SUPPRESS recon-
struction was calculated with the same parameters as
described in section 3.2.2 and the SIRT reconstruction
was calculated using a positivity constraint and 300 it-
erations. The phantom and the SIRT and SUPPRESS
reconstruction are displayed in Fig. 7(a), 7(b) and 7(c),
respectively. It is clear that the SIRT reconstruction suf-
fers from missing wedge artifacts. This is especially
visible on the carbon grid, indicated by the green arrow
on top of the SIRT reconstruction in Fig. 7(b), which is
smeared out in the vertical direction. Furthermore, the
SIRT reconstruction has captured less details in compar-
ison to the SUPPRESS reconstruction, which is clearly
illustrated by observing the difference images with re-
spect to the reference image in Fig. 8. The experiment

WBP SIRT SUPPRESS
NMP 10.75% ± 0.67% 6.36% ± 0.91% 4.12% ± 0.88%
RRMSE 0.394 ± 0.010 0.303 ± 0.019 0.245 ± 0.019

Table 1: Validation measures for experiment with the first simulation phantom, reported as mean±std.
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Figure 7: Visual comparison between (a) the reference image, (b) the SIRT reconstruction and (c) the SUPPRESS reconstruction. The missing
wedge artifacts, indicated on the SIRT reconstruction by the green arrow, are less pronounced in the SUPPRESS reconstruction.
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Figure 8: Absolute difference images between the reference image
(displayed in Fig. 7(a)) and (a) the SIRT reconstruction and (b) the
SUPPRESS reconstruction (displayed in Fig. 7(b) and Fig. 7(c), re-
spectively). Because of missing wedge artifacts, more erroneous pi-
xels are observed in the SIRT reconstruction.

as described above was repeated 100 times (every time
with new instances of the Poisson distributed noise) and
the calculated statistics were averaged over all experi-
ments. The results are summarized in Table 2. These
quantitative results confirm the visual comparison that
was made in Fig. 8: The SUPPRESS reconstruction re-
sults in the lowest NMP, indicating its ability to accu-
rately capture pore-space, and the lowest RRMSE, in-
dicating that the reconstruction with the highest quality
is generated by the SUPPRESS algorithm. Also, the
full PORES procedure was applied and hence individual
pores were extracted with the procedure as described in
section 2.2. Again, after repeating the experiment 100
times, an average histogram of equivalent circular di-
ameter (being the 2D analog of the equivalent spherical

diameter) was composed, shown in Fig. 9. For this his-
togram, all pore-sizes were considered, even pores cor-
responding to one single pixel. In practice, these mea-
surements should not be considered, since they are in-
accurate because the size of the feature is comparable
to the pixel size. In this experiment, however, we were
able to compare all pore sizes because of the availabil-
ity of a ground truth reference image. The histogram
shows that the estimation of small pores based on a reg-
ular SIRT reconstruction performs significantly worse
than based on the SUPPRESS reconstruction.

3.4.3. Third simulation phantom
Tilt series with missing wedge were generated based

on the tilt series that was simulated over the full angular
range of ±90◦ with 2◦ increments. Subsets were taken
from the full angular range dataset, representing the an-
gular ranges ±(90 − ω)◦ with 2◦ increments, where ω
represents the size of the missing wedge. The SUP-
PRESS reconstructions were calculated with 100 ini-
tial SIRT iterations, 200 SUPPRESS iterations and a
four pixel radius disk as morphological erosion opera-
tor. SIRT reconstructions were calculated using a pos-
itivity constraint and 300 iterations. Calculating the
RRMSE and NMP as a function of ω results in Fig. 10.

From the RRMSE plot in Fig. 10, one can notice
that for a small missing wedge (i.e., ω < 4◦) the re-
construction quality of SIRT is slightly better than for
the SUPPRESS reconstruction. This can be contributed

WBP SIRT SUPPRESS
NMP 1.75% ± 0.02% 1.45% ± 0.03% 1.37% ± 0.03%
RRMSE 1.0900 ± 0.0016 0.2900 ± 0.0002 0.2280 ± 0.0002

Table 2: Validation measures for experiment with the second simulation phantom, reported as mean±std.
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procedure where the SIRT reconstruction was used as input for the segmentation processing steps. The green and red curves indicate the absolute
difference in relative frequency per bin, for the SIRT reconstruction and SUPPRESS reconstruction, respectively.
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Figure 10: RRMSE (left) and NMP (right) as a function of missing wedge size ω for the third simulation phantom. For this experiment, the
projections were simulated with the Monte Carlo method from the CASINO software package.
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Figure 11: RRMSE (left) and NMP (right) as a function of missing wedge size ω for the third simulation phantom. For this experiment, the
projections were simulated with a simple linear model and without noise.

to the fact that in SIRT the noise in the projection ima-
ges is redistributed over the entire reconstruction do-
main, whereas the SUPPRESS reconstruction has to
distribute it over the smaller set of voxels outside void
space, which can result in a slightly larger RRMSE
value in comparison to a SIRT reconstruction for small
missing wedge values. Indeed, if the same experiment

is repeated with projections generated from the phan-
tom with a simple linear model and without noise (see
Fig. 11), the SUPPRESS algorithm no longer suffers
from this problem and clearly outperforms SIRT for ev-
ery missing wedge size. Although, for the experiment
with the realistic Monte Carlo simulated projections,
the reconstruction quality of SIRT is slightly better in
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comparison to SUPPRESS for a small missing wedge
(which is quantified by the RRMSE plot in Fig. 10), the
segmentation quality (which is quantified by the NMP
in Fig. 10) is the same. If the missing wedge increases
(i.e., ω > 4◦) both reconstruction quality (RRMSE)
and pore-space segmentation (NMP) is better for the
SUPPRESS reconstruction than for SIRT reconstruc-
tion. With this increasing missing wedge size, the ad-
vantage of SUPPRESS in terms of reconstructing from
projection data containing a missing wedge becomes in-
creasingly apparent and the noise effects are no longer
dominating.

As an example, the result of the pore-space segmenta-
tion of SIRT and SUPPRESS reconstructions for a mis-

sing wedge of 28◦ is displayed in Fig. 12. To gener-
ate Fig. 12, the phantom (see Fig. 5(a)) was first vox-
elized onto the same 116 × 116 × 116 voxel grid as the
reconstructions. From the resulting phantom represen-
tation, the pore-space was compared to the segmented
pore-space based on the SIRT and SUPPRESS recon-
structions. Voxels that were misclassified in both seg-
mentations (a total amount of 0.85% of all voxels) are
not visualized, since they do not indicate the difference
between both segmentations. From Fig. 12, it becomes
clear that the difference in misclassified voxels is caused
primarily by the missing wedge artifacts, since the hori-
zontal smearing clearly has more influence on the SIRT-
based segmentation than on the SUPPRESS-based seg-

(a) The uniquely misclassified voxels (0.13%
of the total number of voxels) of the SIRT-
based segmentation interior to the sample’s
edge (i.e., near the pores).

(b) The uniquely misclassified voxels (0.08%
of the total number of voxels) of the
SUPPRESS-based segmentation interior to the
sample’s edge (i.e., near the pores).

(c) Uniquely misclassified voxels of (a) and
(b) in one visualization. The phantom of
Fig. 5(a) is superimposed to clearly indicate
where exactly the misclassifications are lo-
cated.

(d) The uniquely misclassified voxels (0.28%
of the total number of voxels) of the SIRT-
based segmentation near the sample’s edge and
in the background.

(e) The uniquely misclassified voxels (0.04%
of the total number of voxels) of the
SUPPRESS-based segmentation near the sam-
ple’s edge and in the background.

(f) Uniquely misclassified voxels of (d) and (e)
in one visualization. The phantom of Fig. 5(a)
is superimposed to clearly indicate where ex-
actly the misclassifications are located.

Figure 12: Visualization of misclassified voxels of both the SIRT-based segmentation (red) and the SUPPRESS-based segmentation (blue) for
the third simulation phantom with projection data containing a missing wedge of ω = 28◦. Voxels that were misclassified by both pore-space
segmentations (i.e., based on the SIRT and SUPPRESS reconstructions), representing a total amount of 0.85% of all 1163 voxels, are not visualized,
since they do not indicate the difference between the two methods. Red voxels refer to voxels that were misclassified uniquely by the segmentation
based on the SIRT reconstruction while blue voxels refer to voxels that were uniquely misclassified by the SUPPRESS reconstruction. From the
figures, it is obvious that the missing wedge (resulting in the horizontal smearing) has far more influence on the SIRT-based segmentation than on
the SUPPRESS-based segmentation.
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mentation.

3.5. Results for the aluminosilicate sample
The entire PORES 3D processing chain of recon-

struction, segmentation and quantification was also ap-
plied to the full HAADF-STEM tilt series, i.e., all slices
were reconstructed and the resulting 3D reconstruction
was used for further processing. The SIRT and SUP-
PRESS reconstruction were calculated with the same
parameters as for the second simulation phantom (sec-
tion 3.2.2 and 3.4.2). A visual comparison for the WBP,
SIRT and SUPPRESS reconstructions can be made in
Fig. 2 (a)-(c). In this figure, it is noticeable that the
carbon grid (on which the aluminosilicate sample was
mounted) is smeared out in the vertical direction due to
the missing wedge for the WBP and SIRT reconstruc-
tion, which is no longer the case in the SUPPRESS
reconstruction. Also, the SUPPRESS reconstruction
appears sharper in comparison to the SIRT and WBP
reconstruction. To assess the robustness of the entire
PORES processing chain, the equivalent spherical di-
ameters in both a larger VOI and a smaller VOI were
calculated. The shape of the VOI is indicated on top of
the WBP reconstruction of Fig. 2(a). Equivalent spher-
ical diameters corresponding to a single voxel volume
(i.e., an equivalent spherical diameter of 2.56 nm) were
discarded, because these measurements are inaccurate
in practice. The resulting histograms are displayed in
Fig. 13. It is obvious that the histograms for the small
VOI and the large VOI are highly similar. We can con-
clude that the quantification based on the segmentation
of the SUPPRESS reconstruction is robust. As an illus-
tration, the histogram obtained with a global threshold-
ing operation applied on a basic SIRT reconstruction (a
method that is employed often in practice) is displayed
in Fig. 14. The histograms in this figure were genera-
ted by calculating relative frequencies on bins placed

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

pore diameter (nm)

re
la

tiv
e 

fr
eq

ue
nc

y

conventional SIRT,
simple global thresholding
N2−sorption data
PORES method (larger VOI)

Figure 14: Comparison of histograms obtained with different meth-
ods: the red dashed curve is the histogram based on an estimate of
pore-space that was calculated by applying a global thresholding op-
eration to a conventional SIRT reconstruction, the blue curve is the
histogram obtained with a nitrogen sorption experiment and the black
dotted curve was calculated with the pores method.

around integer pore diameters and fitting a smooth curve
through it. Pore diameters corresponding to a single
voxel (i.e., pore diameters of 2.56 nm) were removed
from the results. It follows from all previous valida-
tion experiments (section 3) that the histogram obtained
from a globally thresholded SIRT reconstruction is less
accurate than the histogram obtained with the PORES
algorithm. Furthermore, a comparison to the pore size
distribution characterized by a nitrogen sorption experi-
ment can also be done in Fig. 14. This nitrogen sorption
measurement has been performed on a Quantachrome
Quadrasorb SI unit, after degassing the sample under
high vacuum conditions for a duration of 16 h at 473
K. Subsequently, the pore size distribution has been de-
termined by applying the Barret-Joyner-Halenda (BJH)
method on the desorption branch of the nitrogen sorp-
tion isotherm. It is clear that the PORES method is in
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Figure 13: Histogram of equivalent spherical diameter for a larger VOI and a smaller VOI obtained from with the PORES method (based on the
SUPPRESS reconstruction). The histograms have a large similarity, indicating the robustness of the quantification method.
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better agreement with the experimental nitrogen sorp-
tion data than the histogram obtained by a global thresh-
olding operation applied on a SIRT reconstruction, al-
though still a distinct discrepancy is detected between
the PORES and the N2 sorption method. This can be
appointed to the complicated unordered structure of the
porous sample. Indeed, the pore size distribution based
on the nitrogen sorption measurement has been calcu-
lated by the BJH model, assuming that the porous struc-
ture only contains cylindrical pores, which is not in full
accordance with the actual situation. Unfortunately, no
better alternative is possible, since no calculation model
has yet been developed to determine the pore size dis-
tribution based on nitrogen sorption measurements of an
unordered aluminosilicate structure.

4. Conclusions

In conclusion, the PORES algorithm was proposed; it
is an integral approach for the reconstruction, segmen-
tation and quantification of nanoporous materials. As
the proposed processing chain is tailored specifically for
nanoporous materials, accurate quantification becomes
possible. The first step, i.e., the SUPPRESS reconstruc-
tion, significantly reduced missing wedge artifacts in the
reconstruction by the incorporation of prior knowledge
in the reconstruction algorithm. Individual pores were
reliably extracted, allowing for quantification by calcu-
lating individual pore statistics. The SUPPRESS and
PORES algorithm were extensively validated with dif-
ferent experiments, varying in sample properties and the
way in which data was simulated. In contrast to the stan-
dard N2-sorption method for determination of the pore
size distribution, the PORES method does not assume
cylindrical or slit-shaped pores. Furthermore, besides
providing an overall pore size distribution (the result of
the N2-sorption experiment), our method also allows for
quantification of individual pores. Beside pore size, any
other quantification is also possible, e.g., eccentricity,
orientation, perimeter, etc. Furthermore, the informa-
tion about interconnectivity between nanopores can also
be extracted, which is important to improve mass trans-
port and catalytic effectiveness in nanomaterials.
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J. Sijbers, Accurate segmentation of dense nanoparticles by
partially discrete electron tomography, Ultramicroscopy 114
(2012) 96–105.

[11] B. Goris, W. Van den Broek, K. J. Batenburg, H. Heidari Mez-
erji, S. Bals, Electron tomography based on a total variation
minimization reconstruction technique, Ultramicroscopy 113
(2012) 120–130.

[12] R. Leary, Z. Saghi, P. A. Midgley, D. J. Holland, Compressed
sensing electron tomography., Ultramicroscopy 131 (2013) 70–
91.

[13] E. Biermans, L. Molina, K. Batenburg, S. Bals, G. Van Tende-
loo, Measuring porosity at the nanoscale by quantitative electron
tomography, Nano letters 10 (2010) 5014–5019.

[14] W. Van Aarle, K. Batenburg, J. Sijbers, Optimal threshold se-
lection for segmentation of dense homogeneous objects in to-
mographic reconstructions, IEEE Trans. Med. Imag. 30 (2011)
980–989.

[15] N. Otsu, A threshold selection method from gray-level his-
tograms, IEEE Trans. Syst., Man, Cybern. 9 (1979) 62–66.

[16] G. Gerig, O. Kubler, R. Kikinis, F. a. Jolesz, Nonlinear
anisotropic filtering of MRI data., IEEE Trans. Med. Imag. 11
(1992) 221–32.

[17] P. Perona, J. Malik, Scale-space and edge detection using
anisotropic diffusion, IEEE Trans. Pattern Anal. Machine In-
tell. 12 (1990) 629–639.

[18] F. Meyer, Topographic distance and watershed lines, Signal
processing 38 (1994) 113–125.

[19] B. Jennings, K. Parslow, Particle size measurement: the equiva-
lent spherical diameter, Proc. R. Soc. Lond. A 419 (1988) 137–
149.

12



[20] C. J. Van Oers, M. Kurttepeli, M. Mertens, S. Bals, V. Mey-
nen, P. Cool, Zeolite β nanoparticles based bimodal structures:
Mechanism and tuning of the porosity and zeolitic properties,
Micropor. Mesopor. Mat. 185 (2014) 204–212.

[21] P. Midgley, M. Weyland, 3d electron microscopy in the physical
sciences: the development of z-contrast and EFTEM tomogra-
phy, Ultramicroscopy 96 (2003) 413 – 431.

[22] S. Pennycook, Z-contrast transmission electron microscopy: di-
rect atomic imaging of materials, Annu. Rev. Mater. Sci. 22
(1992) 171–195.

[23] R. H. M. Schoenmakers, R. A. Perquin, T. F. Fliervoet,
W. Voorhout, High resolution, high throughput electron tomog-
raphy reconstruction, Microsc. Microanal. 11 (2005) 312–313.

[24] K. Perlin, Improving noise, in: ACM T. Graphic., volume 21,
ACM, 2002, pp. 681–682.

[25] A. C. Kak, M. Slaney, Principles of Computerized Tomographic
Imaging, SIAM, 2001.

[26] H. Demers, N. Poirier-Demers, D. Drouin, N. de Jonge, Simu-
lating stem imaging of nanoparticles in micrometers-thick sub-
strates, Microsc. Microanal. 16 (2010) 795.

[27] H. Demers, N. Poirier-Demers, A. R. Couture, D. Joly, M. Guil-
main, N. de Jonge, D. Drouin, Three-dimensional electron mi-
croscopy simulation with the CASINO Monte Carlo software,
Scanning 33 (2011) 135–46.

13


