|   | 
Details
   web
Records
Author Trenchev, G.; Bogaerts, A.
Title Dual-vortex plasmatron: A novel plasma source for CO2 conversion Type A1 Journal article
Year 2020 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util
Volume 39 Issue Pages 101152
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Atmospheric pressure gliding arc (GA) discharges are gaining increasing interest for CO2 conversion and other gas conversion applications, due to their simplicity and high energy efficiency. However, they are characterized by some drawbacks, such as non-uniform gas treatment, limiting the conversion, as well as the development of a hot cathode spot, resulting in severe electrode degradation. In this work, we built a dual-vortex plasmatron, which is a GA plasma reactor with innovative electrode configuration, to solve the above problems. The design aims to improve the CO2 conversion capability of the GA reactor by elongating the arc in two directions, to increase the residence time of the gas inside the arc, and to actively cool the cathode spot by rotation of the arc and gas convection. The measured CO2 conversion and corresponding energy efficiency indeed look very promising. In addition, we developed a fluid dynamics non-thermal plasma model with argon chemistry, to study the arc behavior in the reactor and to explain the experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000546648400008 Publication Date 2020-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 7.7 Times cited Open Access
Notes Fund for Scientific Research – Flanders, G.0383.16N 11U53.16N ; Hercules Foundation, the Flemish Government; UAntwerpen; We acknowledge financial support from the Fund for Scientific Research – Flanders (FWO); grant numbers G.0383.16N and 11U53.16N. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. We would also like to thank G. Van Loon from the University of Antwerp for building the DVP reactor. Approved Most recent IF: 7.7; 2020 IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:167593 Serial 6356
Permanent link to this record
 

 
Author Idrissi, H.; Samaee, V.; Lumbeeck, G.; Werf, T.; Pardoen, T.; Schryvers, D.; Cordier, P.
Title In Situ Quantitative Tensile Testing of Antigorite in a Transmission Electron Microscope Type A1 Journal article
Year 2020 Publication Journal Of Geophysical Research-Solid Earth Abbreviated Journal J Geophys Res-Sol Ea
Volume 125 Issue 3 Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The determination of the mechanical properties of serpentinites is essential toward the understanding of the mechanics of faulting and subduction. Here we present the first in situ tensile tests on antigorite in a transmission electron microscope. A push‐to‐pull deformation device is used to perform quantitative tensile tests, during which force and displacement are measured, while the evolving microstructure is imaged with the microscope. The experiments have been performed at room temperature on 2 × 1 × 0.2 μm3 beams prepared by focused ion beam. The specimens are not single crystals despite their small sizes. Orientation mapping indicated that several grains were well oriented for plastic slip. However, no dislocation activity has been observed even though the engineering tensile stress went up to 700 MPa. We show also that antigorite does not exhibit a purely elastic‐brittle behavior since, despite the presence of defects, the specimens accumulate permanent deformation and did not fail within the elastic regime. Instead, we observe that strain localizes at grain boundaries. All observations concur to show that under these experimental conditions, grain boundary sliding is the dominant deformation mechanism. This study sheds a new light on the mechanical properties of antigorite and calls for further studies on the structure and properties of grain boundaries in antigorite and more generally in phyllosilicates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000530895800023 Publication Date 2020-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9313 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes We thank S. Guillot for having kindly provided us with the two antigorite samples investigated in this study. We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program under Grant Agreement 787198—TimeMan. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR‐FNRS). We acknowledge fruitful discussions with A. Baronnet. We thank J. Gasc and an anonymous reviewer for their critical comments. Data (movies of the three in situ deformation experiments) can be downloaded (from https://doi.org/10.5281/zenodo.3583135). Approved Most recent IF: 3.9; 2020 IF: 3.35
Call Number EMAT @ emat @c:irua:167594 Serial 6355
Permanent link to this record
 

 
Author Spanoghe, J.; Grunert, O.; Wambacq, E.; Sakarika, M.; Papini, G.; Alloul, A.; Spiller, M.; Derycke, V.; Stragier, L.; Verstraete, H.; Fauconnier, K.; Verstraete, W.; Haesaert, G.; Vlaeminck, S.E.
Title Storage, fertilization and cost properties highlight the potential of dried microbial biomass as organic fertilizer Type A1 Journal article
Year 2020 Publication Microbial biotechnology Abbreviated Journal Microb. Biotechnol.
Volume Issue Pages 1-13
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The transition to sustainable agriculture and horticulture is a societal challenge of global importance. Fertilization with a minimum impact on the environment can facilitate this. Organic fertilizers can play an important role, given their typical release pattern and production through resource recovery. Microbial fertilizers (MFs) constitute an emerging class of organic fertilizers and consist of dried microbial biomass, for instance produced on effluents from the food and beverage industry. In this study, three groups of organisms were tested as MFs: a high-rate consortium aerobic bacteria (CAB), the microalga Arthrospira platensis (‘Spirulina’) and a purple non-sulfur bacterium (PNSB) Rhodobacter sp. During storage as dry products, the MFs showed light hygroscopic activity, but the mineral and organic fractions remained stable over a storage period of 91 days. For biological tests, a reference organic fertilizer (ROF) was used as positive control, and a commercial organic growing medium (GM) as substrate. The mineralization patterns without and with plants were similar for all MFs and ROF, with more than 70% of the organic nitrogen mineralized in 77 days. In a first fertilization trial with parsley, all MFs showed equal performance compared to ROF, and the plant fresh weight was even higher with CAB fertilization. CAB was subsequently used in a follow-up trial with petunia and resulted in elevated plant height, comparable chlorophyll content and a higher amount of flowers compared to ROF. Finally, a cost estimation for packed GM with supplemented fertilizer indicated that CAB and a blend of CAB/PNSB (85%/15%) were most cost competitive, with an increase of 6% and 7% in cost compared to ROF. In conclusion, as biobased fertilizers, MFs have the potential to contribute to sustainable plant nutrition, performing as good as a commercially available organic fertilizer, and to a circular economy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000563539700001 Publication Date 2020-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1751-7915 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 5.7 Times cited Open Access
Notes The authors would like to kindly acknowledge (i) the MIP i‐Cleantech Flanders (Milieu‐innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD) for financial support, (ii) the DOCPRO4 project ‘PurpleTech’, funded by the BOF (Bijzonder onderzoeksfonds; Special research fund) from the University of Antwerp for financially supporting J.S., (iii) all MicroNOD partners, including the University of Antwerp, Ghent University, AgrAqua, Greenyard Horticulture and Avecom; and (iv) all steering committee members, including Greenyard Frozen, Agristo, AVBS, Vlakwa, het Innovatiesteunpunt, VCM and OVAM. Approved Most recent IF: 5.7; 2020 IF: NA
Call Number DuEL @ duel @c:irua:167595 Serial 6357
Permanent link to this record
 

 
Author Wood, J.; Geerts, R.; Majean, L.; Coene, V.; Vanheeswijck, J.; de Smalen, D.; Ronda, T.; Keizer, K.
Title De combinatie werk-gezin en het gebruik van formele kinderopvang bij vrouwen met een migratieachtergrond : een mixed methods-benadering Type A1 Journal article
Year 2019 Publication Sociologos (Brussel) Abbreviated Journal
Volume 40 Issue 2-3-4 Pages 123-149
Keywords A1 Journal article; Sociology; Centre for Population, Family and Health; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2295-8150 ISBN Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:167658 Serial 7678
Permanent link to this record
 

 
Author Lavor, I.R.; da Costa, D.R.; Chaves, A.; Farias, G.A.; Macedo, R.; Peeters, F.M.
Title Magnetic field induced vortices in graphene quantum dots Type A1 Journal article
Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 32 Issue 15 Pages 155501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The energy spectrum and local current patterns in graphene quantum dots (QD) are investigated for different geometries in the presence of an external perpendicular magnetic field. Our results demonstrate that, for specific geometries and edge configurations, the QD exhibits vortex and anti-vortex patterns in the local current density, in close analogy to the vortex patterns observed in the probability density current of semiconductor QD, as well as in the order parameter of mesoscopic superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000520149200001 Publication Date 2019-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited 5 Open Access
Notes ; This work was financially supported by the CAPES foundation and CNPq (Science Without Borders, PQ and FUNCAP/PRONEX programs). ; Approved Most recent IF: 2.7; 2020 IF: 2.649
Call Number UA @ admin @ c:irua:167670 Serial 6558
Permanent link to this record
 

 
Author Anastasiou, I.; Van Velthoven, N.; Tomarelli, E.; Lombi, A.; Lanari, D.; Liu, P.; Bals, S.; De Vos, D.E.; Vaccaro, L.
Title C2-H arylation of indoles catalyzed by palladium-containing metal-organic-framework in γ-valerolactone Type A1 Journal article
Year 2020 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 13 Issue 10 Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract An efficient and selective procedure was developed for the direct C2-H arylation of indoles using a Pd-loaded metal-organic framework (MOF) as a heterogeneous catalyst and the nontoxic biomass-derived solvent gamma-valerolactone (GVL) as a reaction medium. The developed method allows for excellent yields and C-2 selectivity to be achieved and tolerates various substituents on the indole scaffold. The established conditions ensure the stability of the catalyst as well as recoverability, reusability, and low metal leaching into the solution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000520285700001 Publication Date 2020-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited 22 Open Access Not_Open_Access
Notes ; The research leading to these results has received funding from the NMBP-01-2016 Programme of the European Union's Horizon 2020 Framework Programme H2020/2014-2020/under grant agreement no [720996]. The Universit degli Studi di Perugia and MIUR are acknowledged for financial support to the project AMIS, through the program “Dipartimenti di Eccellenza -2018-2022”. The XAS experiments were performed on beamline BM26A at the European Synchrotron Radiation Facility (ESRF), Grenoble (France). We are grateful to D. Banerjee at the ESRF for providing assistance in using beamline BM26A. Niels Van Velthoven and Dirk E. De Vos also thank FWO for funding. ; Approved Most recent IF: 8.4; 2020 IF: 7.226
Call Number UA @ admin @ c:irua:167678 Serial 6465
Permanent link to this record
 

 
Author Van der Donck, M.; Zarenia, M.; Peeters, F.M.
Title Reply to “Comment on `Excitons, trions, and biexcitons in transition-metal dichalcogenides: Magnetic-field dependence'” Type Editorial
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue 12 Pages 127402
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract In the Comment, the authors state that the separation of the relative and center of mass variables in our work is not correct. Here we point out that there is a typographical error, i.e., qi instead of -e, in two of our equations which, when corrected, makes the Comment redundant. Within the ansatzes mentioned in our paper all our results are correct, in contrast to the claims of the Comment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000519990800011 Publication Date 2020-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access
Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:167680 Serial 6594
Permanent link to this record
 

 
Author Li, C.; Sanli, E.S.; Barragan-Yani, D.; Stange, H.; Heinemann, M.-D.; Greiner, D.; Sigle, W.; Mainz, R.; Albe, K.; Abou-Ras, D.; van Aken, P. A.
Title Secondary-Phase-Assisted Grain Boundary Migration in CuInSe2 Type A1 Journal article
Year 2020 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 124 Issue 9 Pages 095702
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Significant structural evolution occurs during the deposition of CuInSe2 solar materials when the Cu content increases. We use in situ heating in a scanning transmission electron microscope to directly observe how grain boundaries migrate during heating, causing nondefected grains to consume highly defected grains. Cu substitutes for In in the near grain boundary regions, turning them into a Cu-Se phase topotactic with the CuInSe2 grain interiors. Together with density functional theory and molecular dynamics calculations, we reveal how this Cu-Se phase makes the grain boundaries highly mobile.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000518464200009 Publication Date 2020-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 8.6 Times cited Open Access OpenAccess
Notes Horizon 2020 Framework Programme, 823717—ESTEEM3 ; Max-Planck-Gesellschaft; Helmholtz Virtual Institute; Approved Most recent IF: 8.6; 2020 IF: 8.462
Call Number UA @ lucian @c:irua:167699 Serial 6393
Permanent link to this record
 

 
Author Canossa, S.; Gonzalez-Nelson, A.; Shupletsov, L.; Carmen Martin, M.; Van der Veen, M.A.
Title Overcoming Crystallinity Limitations of Aluminium Metal-Organic Frameworks by Oxalic Acid Modulated Synthesis Type A1 Journal article
Year 2020 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J
Volume 26 Issue 16 Pages 3564-3570
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A modulated synthesis approach based on the chelating properties of oxalic acid (H2C2O4) is presented as a robust and versatile method to achieve highly crystalline Al‐based metal‐organic frameworks. A comparative study on this method and the already established modulation by hydrofluoric acid was conducted using MIL‐53 as test system. The superior performance of oxalic acid modulation in terms of crystallinity and absence of undesired impurities is explained by assessing the coordination modes of the two modulators and the structural features of the product. The validity of our approach was confirmed for a diverse set of Al‐MOFs, namely X‐MIL‐53 (X=OH, CH3O, Br, NO2), CAU‐10, MIL‐69, and Al(OH)ndc (ndc=1,4‐naphtalenedicarboxylate), highlighting the potential benefits of extending the use of this modulator to other coordination materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000517650300001 Publication Date 2020-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.3 Times cited Open Access OpenAccess
Notes The Elettra Synchrotron facility (CNR Trieste, Basovizza, Italy) is acknowledged for granting beamtime at the single-crystal diffraction beamline XRD1 (Proposal ID 20185483) and the beamline staff is gratefully thanked for the precious assistance. This work was funded by the European Research Council (grant number 759 212) within the Horizon 2020 Framework Programme (H2020-EU.1.1). The work by A.G.-N. forms part of the research programme of DPI, NEWPOL project 731.015.506. Approved Most recent IF: 4.3; 2020 IF: 5.317
Call Number EMAT @ emat @c:irua:167706 Serial 6388
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Qin, Y.; Ozen, S.; Sayyad, M.; Peeters, F.M.; Tongay, S.; Sahin, H.
Title Quantum properties and applications of 2D Janus crystals and their superlattices Type A1 Journal article
Year 2020 Publication Applied Physics Reviews Abbreviated Journal Appl Phys Rev
Volume 7 Issue 1 Pages 011311-11316
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) Janus materials are a new class of materials with unique physical, chemical, and quantum properties. The name “Janus” originates from the ancient Roman god which has two faces, one looking to the future while the other facing the past. Janus has been used to describe special types of materials which have two faces at the nanoscale. This unique atomic arrangement has been shown to present rather exotic properties with applications in biology, chemistry, energy conversion, and quantum sciences. This review article aims to offer a comprehensive review of the emergent quantum properties of Janus materials. The review starts by introducing 0D Janus nanoparticles and 1D Janus nanotubes, and highlights their difference from classical ones. The design principles, synthesis, and the properties of graphene-based and chalcogenide-based Janus layers are then discussed. A particular emphasis is given to colossal built-in potential in 2D Janus layers and resulting quantum phenomena such as Rashba splitting, skyrmionics, excitonics, and 2D magnetic ordering. More recent theoretical predictions are discussed in 2D Janus superlattices when Janus layers are stacked onto each other. Finally, we discuss the tunable quantum properties and newly predicted 2D Janus layers waiting to be experimentally realized. The review serves as a complete summary of the 2D Janus library and predicted quantum properties in 2D Janus layers and their superlattices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000519611500001 Publication Date 2020-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-9401 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited 107 Open Access
Notes ; S.T. acknowledges support from NSF Contract Nos. DMR 1552220, DMR 1904716, and NSF CMMI 1933214. H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. H.S. acknowledges support from the Turkish Academy of Sciences under the GEBIP program. M.Y. is supported by the Flemish Science Foundation (FWO-Vl) through a postdoctoral fellowship. Part of this work was supported by the FLAG-ERA project TRANS2D-TMD. ; Approved Most recent IF: 15; 2020 IF: 13.667
Call Number UA @ admin @ c:irua:167712 Serial 6591
Permanent link to this record
 

 
Author Bafekry, A.; Akgenc, B.; Shayesteh, S.F.; Mortazavi, B.
Title Tunable electronic and magnetic properties of graphene/carbon-nitride van der Waals heterostructures Type A1 Journal article
Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci
Volume 505 Issue Pages 144450-144459
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this paper, we explore the electronic properties of C3N, C3N4 and C4N3 and graphene (Gr) van der Waals heterostructures by conducing extensive first-principles calculations. The acquired results show that these heterostructures can show diverse electronic properties, such as the metal (Gr on C3N), semiconductor with narrow band gap (Gr on C3N4) and ferromagnetic-metal (Gr on C4N3). We furthermore explored the effect of vacancies, atom substitution, topological, antisite and Stone-Wales defects on the structural and electronic properties of considered heterostructures. Our results show that the vacancy defects introduce localized states near the Fermi level and create a local magnetic moment. The Gr/C3N heterostructures with the single and double vacancy defects exhibit a ferromagnetic-metal, while Stone-Wales defects show an indirect semiconductor with the band gap of 0.2 eV. The effects of adsorption and insertion of O, C, Be, Cr, Fe and Co atoms on the electronic properties of Gr/C3N have been also elaborately studied. Our results highlight that the electronic and magnetic properties of garphene/carbon-nitride lateral heterostructures can be effectively modified by point defects and impurities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000510846500052 Publication Date 2019-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 26 Open Access
Notes ; ; Approved Most recent IF: 6.7; 2020 IF: 3.387
Call Number UA @ admin @ c:irua:167732 Serial 6638
Permanent link to this record
 

 
Author Sozen, Y.; Eren, I.; Ozen, S.; Yagmurcukardes, M.; Sahin, H.
Title Interaction of Ge with single layer GaAs : from Ge-island nucleation to formation of novel stable monolayers Type A1 Journal article
Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci
Volume 505 Issue Pages 144218-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this study, reactivity of single-layer GaAs against Ge atoms is studied by means of ab initio density functional theory calculations. Firstly, it is shown that Ge atoms interact quite strongly with the GaAs layer which allows the formation of Ge islands while it hinders the growth of detached germanene monolayers. It is also predicted that adsorption of Ge atoms on GaAs single-layer lead to formation of two novel stable single-layer crystal structures, namely 1H-GaGeAs and 1H(A)-GaGeAs. Both the total energy optimizations and the calculated vibrational spectra indicate the dynamical stability of both single layer structures. Moreover, although both structures crystallize in 1H phase, 1H-GaGeAs and 1H(A)-GaGeAs exhibit distinctive vibrational features in their Raman spectra which is quite important for distinguishing the structures. In contrast to the semiconducting nature of single-layer GaAs, both polytypes of GaGeAs exhibit metallic behavior confirmed by the electronic band dispersions. Furthermore, the linear-elastic constants, in-plane stiffness and Poisson ratio, reveal the ultrasoft nature of the GaAs and GaGeAs structures and the rigidity of GaAs is found to be slightly enhanced via Ge adsorption. With their stable, ultra-thin and metallic properties, predicted single-layer GaGeAs structures can be promising candidates for nanoscale electronic and mechanical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000510846500026 Publication Date 2019-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 6.7 Times cited Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under the project number 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 6.7; 2020 IF: 3.387
Call Number UA @ admin @ c:irua:167733 Serial 6548
Permanent link to this record
 

 
Author Fret, J.; Roef, L.; Diels, L.; Tavernier, S.; Vyverman, W.; Michiels, M.
Title Combining medium recirculation with alternating the microalga production strain : a laboratory and pilot scale cultivation test Type A1 Journal article
Year 2020 Publication Algal Research-Biomass Biofuels And Bioproducts Abbreviated Journal Algal Res
Volume 46 Issue Pages 101763
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Reuse of growth medium after biomass harvesting is a cost-saving approach to improve the economic feasibility of algae mass cultivation. Algal exudates, cell debris and varying amounts of residual nutrients, impose challenges to the recycling of spent medium. In this study, the potential of combining reused medium from different algae species for growing monocultures of other algal strains was evaluated by making use of three successive cultivation setups with increasing volume; 400 mL in turbidostat mode, 2.6 L and 220 L in semi-continuous mode. Cultivation on replenished medium derived from Nannochloropsis sp. and Tisochrysis lutea, had no adverse effect on the productivity of either of the strains, regardless of whether they were grown in their own recycled medium or that of the other alga. Microfiltration of the reused medium proved to be sufficient to avoid cross-contamination. Moreover, a substantial average reduction in water footprint (77%) and nutrient cost (68% or 9 (sic).kg(-1) dry biomass) was achieved. Extension and validation of the medium recycling approach to other economically interesting algae species can contribute to improving the economic feasibility of large scale microalgae production systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000512364900013 Publication Date 2020-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-9264 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 5.1 Times cited 4 Open Access
Notes ; This work was financially supported by the Agency for Innovation by Science and Technology, Flanders (IWT Baekeland mandatory Jorien Fret, project no. 100678). We thank Kayawe Valentine Mubiana from the Systemic Physiological and Ecotoxicological Research group, University of Antwerp, for the assistance in the analysis of the trace elements. ; Approved Most recent IF: 5.1; 2020 IF: 3.994
Call Number UA @ admin @ c:irua:167742 Serial 6471
Permanent link to this record
 

 
Author Joao, S.M.; Andelkovic, M.; Covaci, L.; Rappoport, T.G.; Lopes, J.M.V.P.; Ferreira, A.
Title KITE : high-performance accurate modelling of electronic structure and response functions of large molecules, disordered crystals and heterostructures Type A1 Journal article
Year 2020 Publication Royal Society Open Science Abbreviated Journal Roy Soc Open Sci
Volume 7 Issue 2 Pages 191809-191832
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present KITE, a general purpose open-source tight-binding software for accurate real-space simulations of electronic structure and quantum transport properties of large-scale molecular and condensed systems with tens of billions of atomic orbitals (N similar to 10(10)). KITE's core is written in C++, with a versatile Python-based interface, and is fully optimized for shared memory multi-node CPU architectures, thus scalable, efficient and fast. At the core of KITE is a seamless spectral expansion of lattice Green's functions, which enables large-scale calculations of generic target functions with uniform convergence and fine control over energy resolution. Several functionalities are demonstrated, ranging from simulations of local density of states and photo-emission spectroscopy of disordered materials to large-scale computations of optical conductivity tensors and real-space wave-packet propagation in the presence of magneto-static fields and spin-orbit coupling. On-the-fly calculations of real-space Green's functions are carried out with an efficient domain decomposition technique, allowing KITE to achieve nearly ideal linear scaling in its multi-threading performance. Crystalline defects and disorder, including vacancies, adsorbates and charged impurity centres, can be easily set up with KITE's intuitive interface, paving the way to user-friendly large-scale quantum simulations of equilibrium and non-equilibrium properties of molecules, disordered crystals and heterostructures subject to a variety of perturbations and external conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000518020200001 Publication Date 2020-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2054-5703 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.5 Times cited 19 Open Access OpenAccess
Notes ; T.G.R. and A.F. acknowledge support from the Newton Fund and the Royal Society through the Newton Advanced Fellowship scheme (ref. no. NA150043). M.A. and L.C. acknowledge support from the Trans2DTMD FlagEra project and the VSC (Flemish Supercomputer Center). A.F. acknowledges support from the Royal Society through a University Research Fellowship (ref. nos. UF130385 and URF-R-191021) and an Enhancement Award (ref. no. RGF-EA-180276). T.G.R. acknowledges the support from the Brazilian agencies CNPq and FAPERJ and COMPETE2020, PORTUGAL2020, FEDER and the Portuguese Foundation for Science and Technology (FCT) through project POCI-01-0145-FEDER-028114. S.M.J. is supported by Fundacao para a Ciencia e Tecnologia (FCT) under the grant no. PD/BD/142798/ 2018. S.M.J. and J.M.V.P.L. acknowledge financial support from the FCT, COMPETE 2020 programme in FEDER component (European Union), through projects POCI-01-0145-FEDER028887 and UID/FIS/04650/2013. S.M.J. and J.M.V.P.L. further acknowledge financial support from FCT through national funds, co-financed by COMPETE-FEDER (grant no. M-ERANET2/0002/2016 -UltraGraf) under the Partnership Agreement PT2020. ; Approved Most recent IF: 3.5; 2020 IF: 2.243
Call Number UA @ admin @ c:irua:167751 Serial 6556
Permanent link to this record
 

 
Author Jorgensen, M.; Shea, P.T.; Tomich, A.W.; Varley, J.B.; Bercx, M.; Lovera, S.; Cerny, R.; Zhou, W.; Udovic, T.J.; Lavallo, V.; Jensen, T.R.; Wood, B.C.; Stavila, V.
Title Understanding superionic conductivity in lithium and sodium salts of weakly coordinating closo-hexahalocarbaborate anions Type A1 Journal article
Year 2020 Publication Chemistry of materials Abbreviated Journal
Volume 32 Issue 4 Pages 1475-1487
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Solid-state ion conductors based on closo-polyborate anions combine high ionic conductivity with a rich array of tunable properties. Cation mobility in these systems is intimately related to the strength of the interaction with the neighboring anionic network and the energy for reorganizing the coordination polyhedra. Here, we explore such factors in solid electrolytes with two anions of the weakest coordinating ability, [HCB11H5Cl6](-) and [HCB11H5Br6](-), and a total of 11 polymorphs are identified for their lithium and sodium salts. Our approach combines ab initio molecular dynamics, synchrotron X-ray powder diffraction, differential scanning calorimetry, and AC impedance measurements to investigate their structures, phase-transition behavior, anion orientational mobilities, and ionic conductivities. We find that M(HCB11H5X6) (M = Li, Na, X = Cl, Br) compounds exhibit order-disorder polymorphic transitions between 203 and 305 degrees C and display Li and Na superionic conductivity in the disordered state. Through detailed analysis, we illustrate how cation disordering in these compounds originates from a competitive interplay among the lattice symmetry, the anion reorientational mobility, the geometric and electronic asymmetry of the anion, and the polarizability of the halogen atoms. These factors are compared to other closo-polyborate-based ion conductors to suggest guidelines for optimizing the cation-anion interaction for fast ion mobility. This study expands the known solid-state poly(carba)borate-based materials capable of liquid-like ionic conductivities, unravels the mechanisms responsible for fast ion transport, and provides insights into the development of practical superionic solid electrolytes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000517351300014 Publication Date 2020-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 5 Open Access OpenAccess
Notes ; The authors gratefully acknowledge support from the Hydrogen Materials-Advanced Research Consortium (HyMARC), established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract no. AC04-94AL85000. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under Contract no. DE-NA-0003525. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract no. ACS2-07NA27344. We also gratefully thank Kyoung Kweon for useful discussions. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Neither the United States Government nor any agency thereof nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. The Danish council for independent research, technology and production, HyNanoBorN (4181-00462) and SOS-MagBat (9041-00226B) and NordForsk, The Nordic Neutron Science Program, project FunHy (81942), and the Carlsberg Foundation are acknowledged for funding. Affiliation with the Center for Integrated Materials Research (iMAT) at Aarhus University is gratefully acknowledged. V.L. acknowledges the NSF for partial support of this project (DMR-1508537). The authors would like to thank the Swiss-Norwegian beamlines (BM01) at the ESRF, Grenoble, for the help with the data collection, DESY for access to Petra III, at beamline P02.1, and Diamond for access to beamline I11. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:167754 Serial 6645
Permanent link to this record
 

 
Author Bafekry, A.; Neek-Amal, M.
Title Tuning the electronic properties of graphene-graphitic carbon nitride heterostructures and heterojunctions by using an electric field Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue 8 Pages 085417-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Integration of graphene-based two-dimensional materials is essential for nanoelectronics applications. Using density-functional theory, we systematically investigate the electronic properties of vertically stacked graphene-graphitic carbon nitrides (GE/GCN). We also studied the covalently lateral stitched graphene-graphitic carbon nitrides (GE-GCN heterojunctions). The effects of perpendicular electric field on the electronic properties of six different heterostructures, i.e., (i) one layer of GE on top of a layer of CnNm with (n, m) = (3,1), (3,4), and (4,3) and (ii) three heterostructures CnNm/Cn'Nm', where (n, m) not equal (n', m') are elucidated. The most important calculated features are (i) the systems GE/C3N4, C3N/C3N4, GE-C3N, GE-C4N3, and C3N-C3N4 exhibit semiconducting characteristics having small band gaps of Delta(0)=20, 250, 100, 100, 80 meV, respectively while (ii) the systems GE/C4N3, C3N/C4N3, and C3N-C4N3 show ferromagnetic-metallic properties. In particular, we found that, in semiconducting heterostructures, the band gap increases nontrivially with increasing the absolute value of the applied perpendicular electric field. This work is useful for designing heterojunctions and heterostructures made of graphene and other two-dimensional materials such as those proposed in recent experiments [X. Liu and M. C. Hersam Sci. Adv. 5, 6444 (2019)].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000515659700007 Publication Date 2020-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 24 Open Access
Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:167760 Serial 6640
Permanent link to this record
 

 
Author Agrawal, H.; Patra, B.K.; Altantzis, T.; De Backer, A.; Garnett, E.C.
Title Quantifying Strain and Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy Type A1 Journal article
Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 12 Issue 7 Pages 8788-8794
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Nanoparticle self-assembly and epitaxy are utilized extensively to make 1D and 2D structures with complex shapes. High-resolution transmission electron microscopy (HRTEM) has shown that single-crystalline interfaces can form, but little is known about the strain and dislocations at these interfaces. Such information is critically important for applications: drastically reducing

dislocation density was the key breakthrough enabling widespread implementation of light-emitting diodes, while strain engineering has been fundamental to modern high-performance transistors, solar cells, and thermoelectrics. In this work, the interfacial defect and strain formation after selfassembly and room temperature epitaxy of 7 nm Pd nanocubes capped with polyvinylpyrrolidone (PVP) is examined. It is observed that, during ligand removal, the cubes move over large distances on the substrate, leading to both spontaneous self-assembly and epitaxy to form single crystals. Subsequently, atomically resolved images are used to quantify the strain and dislocation density at the epitaxial interfaces between cubes with different lateral and angular misorientations. It is shown that dislocation- and strain-free interfaces form when the nanocubes align parallel to each other. Angular misalignment between adjacent cubes does not necessarily lead to grain boundaries but does cause dislocations, with higher densities associated with larger rotations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000515214300101 Publication Date 2020-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek; H2020 Research Infrastructures, 731019 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 14846 ; The work at AMOLF is part of the research program of the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek” (NWO). This work was supported by the NWO VIDI grant (project no. 14846). The authors would like to thank Reinout Jaarsma and Dr. Sven Askes for helping with the XPS measurements. A.D.B. acknowledges a postdoctoral grant from the research foundation Flanders (FWO). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement no. 731019 EUSMI. Approved Most recent IF: 9.5; 2020 IF: 7.504
Call Number EMAT @ emat @c:irua:167770 Serial 6398
Permanent link to this record
 

 
Author Ravindra, K.; Dirtu, A.C.; Mor, S.; Wauters, E.; Van Grieken, R.
Title Source apportionment and seasonal variation in particulate PAHs levels at a coastal site in Belgium Type A1 Journal article
Year 2020 Publication Environmental Science And Pollution Research Abbreviated Journal Environ Sci Pollut R
Volume Issue Pages
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In the present study, estimation of the atmospheric polycyclic aromatic hydrocarbons (PAHs) was done in particulate samples collected from De Haan, Belgium, during different seasons. The sampling site was situated very close to the north sea and far from the influence of local or industrial activities. The levels of PAHs depicted a distinct seasonal trend, being highest during the spring season. The observations of the study indicated a mean value of 2.6 ng m(-3) for concentration of all the 16 US EPA PAHs, thus being significantly lower when compared to results of previous studies focused on other sites. The dominating PAHs species reported were naphthalene, fluoranthene, benzo[a]anthracene, chrysene, and indeno[1,2,3c,d] pyrene. Assessment of the seasonal variation of the PAH levels was also done with respect to diagnostic ratio-based source identification, analysis of back trajectories, and principle component analysis. Burning of fossil fuels was observed to be the prominent source of atmospheric PAHs in the study area. Further, lifetime cancer risk assessment was performed to assess the detrimental health impacts on humans on being exposed to atmospheric PAHs. Particulate PAHs present in the ambient air of Belgium shows no carcinogenic health impacts. However, considering the industrial expansion in the region, efforts are required to prevent the environmental contamination of PAHs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000516395800002 Publication Date 2020-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0944-1344; 1614-7499 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 5.8 Times cited Open Access
Notes ; ; Approved Most recent IF: 5.8; 2020 IF: 2.741
Call Number UA @ admin @ c:irua:167778 Serial 6606
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Reith, P.; Halisdemir, U.; Jannis, D.; Spreitzer, M.; Huijben, M.; Abel, S.; Fompeyrine, J.; Verbeeck, J.; Hilgenkamp, H.; Rijnders, G.; Koster, G.
Title Thermal-strain-engineered ferromagnetism of LaMnO3/SrTiO3 heterostructures grown on silicon Type A1 Journal article
Year 2020 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials
Volume 4 Issue 2 Pages 024406
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The integration of oxides on Si remains challenging, which largely hampers the practical applications of oxide-based electronic devices with superior performance. Recently, LaMnO3/SrTiO3 (LMO/STO) heterostructures have gained renewed interest for the debating origin of the ferromagnetic-insulating ground state as well as for their spin-filter applications. Here we report on the structural and magnetic properties of high-quality LMO/STO heterostructures grown on silicon. The chemical abruptness across the interface was investigated by atomic-resolution scanning transmission electron microscopy. The difference in the thermal expansion coefficients between LMO and Si imposed a large biaxial tensile strain to the LMO film, resulting in a tetragonal structure with c/a∼ 0.983. Consequently, we observed a significantly suppressed ferromagnetism along with an enhanced coercive field, as compared to the less distorted LMO film (c/a∼1.004) grown on STO single crystal. The results are discussed in terms of tensile-strain enhanced antiferromagnetic instabilities. Moreover, the ferromagnetism of LMO on Si sharply disappeared below a thickness of 5 unit cells, in agreement with the LMO/STO case, pointing to a robust critical behavior irrespective of the strain state. Our results demonstrate that the growth of oxide films on Si can be a promising way to study the tensile-strain effects in correlated oxides, and also pave the way towards the integration of multifunctional oxides on Si with atomic-layer control.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000513552900003 Publication Date 2020-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited 6 Open Access Not_Open_Access
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Vlaamse regering; Fonds Wetenschappelijk Onderzoek, G093417N ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; European Commission, H2020-ICT-2016-1-732642 ; Approved Most recent IF: 3.4; 2020 IF: NA
Call Number EMAT @ emat @c:irua:167782 Serial 6375
Permanent link to this record
 

 
Author Araizi-Kanoutas, G.; Geessinck, J.; Gauquelin, N.; Smit, S.; Verbeek, X.H.; Mishra, S.K.; Bencok, P.; Schlueter, C.; Lee, T.-L.; Krishnan, D.; Fatermans, J.; Verbeeck, J.; Rijnders, G.; Koster, G.; Golden, M.S.
Title Co valence transformation in isopolar LaCoO3/LaTiO3 perovskite heterostructures via interfacial engineering Type A1 Journal article
Year 2020 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials
Volume 4 Issue 2 Pages 026001
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report charge transfer up to a single electron per interfacial unit cell across nonpolar heterointerfaces from the Mott insulator LaTiO3 to the charge transfer insulator LaCoO3. In high-quality bi- and trilayer systems grown using pulsed laser deposition, soft x-ray absorption, dichroism, and scanning transmission electron microscopy-electron energy loss spectroscopy are used to probe the cobalt-3d electron count and provide an element-specific investigation of the magnetic properties. The experiments show the cobalt valence conversion is active within 3 unit cells of the heterointerface, and able to generate full conversion to 3d7 divalent Co, which displays a paramagnetic ground state. The number of LaTiO3/LaCoO3 interfaces, the thickness of an additional, electronically insulating “break” layer between the LaTiO3 and LaCoO3, and the LaCoO3 film thickness itself in trilayers provide a trio of control knobs for average charge of the cobalt ions in LaCoO3, illustrating the efficacy of O−2p band alignment as a guiding principle for property design in complex oxide heterointerfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000513551200007 Publication Date 2020-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited 13 Open Access OpenAccess
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Horizon 2020, 730872 ; Department of Science and Technology, Ministry of Science and Technology, SR/NM/Z-07/2015 ; Jawaharlal Nehru Centre for Advanced Scientific Research; Approved Most recent IF: 3.4; 2020 IF: NA
Call Number EMAT @ emat @c:irua:167787 Serial 6376
Permanent link to this record
 

 
Author Vishwakarma, M.; Varandani, D.; Hendrickx, M.; Hadermann, J.; Mehta, B.R.
Title Nanoscale photovoltage mapping in CZTSe/CuxSe heterostructure by using kelvin probe force microscopy Type A1 Journal article
Year 2020 Publication Materials Research Express Abbreviated Journal
Volume 7 Issue 1 Pages 016418
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In the present work, kelvin probe force microscopy (KPFM) technique has been used to study the CZTSe/CuxSe bilayer interface prepared by multi-step deposition and selenization process of metal precursors. Transmission electron microscopy (TEM) confirmed the bilayer configuration of the CZTSe/CuxSe sample. Two configuration modes (surface mode and junction mode) in KPFM have been employed in order to measure the junction voltage under illumination conditions. The results show that CZTSe/CuxSe has small junction voltage of similar to 21 mV and the presence of CuxSe secondary phase in the CZTSe grain boundaries changes the workfunction of the local grain boundaries region. The negligible photovoltage difference between grain and grain boundaries in photovoltage image indicates that CuxSe phase deteriorates the higher photovoltage at grain boundaries normally observed in CZTSe based device. These results can be important for understanding the role of secondary phases in CZTSe based junction devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000520120900001 Publication Date 2019-12-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes ; Authors acknowledges support provided DST in the forms of InSOL and Indo-Swiss projects. We also acknowledge Joke Hadermann EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Belgium for helping in TEM measurements. M V Manoj Vishwakarma acknowledges IIT Delhi for MHRD fellowship. Prof B R Mehta acknowledges the support of the Schlumberger chair professorship. M V also acknowledges the support of DST-FIST Raman facility. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:167843 Serial 6567
Permanent link to this record
 

 
Author Litzius, K.; Leliaert, J.; Bassirian, P.; Rodrigues, D.; Kromin, S.; Lemesh, I.; Zazvorka, J.; Lee, K.-J.; Mulkers, J.; Kerber, N.; Heinze, D.; Keil, N.; Reeve, R.M.; Weigand, M.; Van Waeyenberge, B.; Schuetz, G.; Everschor-Sitte, K.; Beach, G.S.D.; Klaeui, M.
Title The role of temperature and drive current in skyrmion dynamics Type A1 Journal article
Year 2020 Publication Nature Electronics Abbreviated Journal
Volume 3 Issue 1 Pages 30-36
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnetic skyrmions are topologically stabilized nanoscale spin structures that could be of use in the development of future spintronic devices. When a skyrmion is driven by an electric current it propagates at an angle relative to the flow of current-known as the skyrmion Hall angle (SkHA)-that is a function of the drive current. This drive dependence, as well as thermal effects due to Joule heating, could be used to tailor skyrmion trajectories, but are not well understood. Here we report a study of skyrmion dynamics as a function of temperature and drive amplitude. We find that the skyrmion velocity depends strongly on temperature, while the SkHA does not and instead evolves differently in the low- and high-drive regimes. In particular, the maximum skyrmion velocity in ferromagnetic devices is limited by a mechanism based on skyrmion surface tension and deformation (where the skyrmion transitions into a stripe). Our mechanism provides a complete description of the SkHA in ferromagnetic multilayers across the full range of drive strengths, illustrating that skyrmion trajectories can be engineered for device applications. An analysis of skyrmion dynamics at different temperatures and electric drive currents is used to develop a complete description of the skyrmion Hall angle in ferromagnetic multilayers from the creep to the flow regime and illustrates that skyrmion trajectories can be engineered for device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000510860800012 Publication Date 2020-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 11 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:167863 Serial 6625
Permanent link to this record
 

 
Author Heijkers, S.
Title Plasma chemistry modelling for CO2 and CH4 conversion in various plasma types Type Doctoral thesis
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 316 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:168055 Serial 6582
Permanent link to this record
 

 
Author Heijkers, S.; Aghaei, M.; Bogaerts, A.
Title Plasma-Based CH4Conversion into Higher Hydrocarbons and H2: Modeling to Reveal the Reaction Mechanisms of Different Plasma Sources Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 13 Pages 7016-7030
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma is gaining interest for CH4 conversion into higher hydrocarbons and H2. However, the performance in terms of conversion and selectivity toward different hydrocarbons is different for different plasma types, and the underlying mechanisms are not yet fully understood. Therefore, we study here these mechanisms in different plasma sources, by means of a chemical kinetics model. The model is first validated by comparing the calculated conversions and hydrocarbon/H2 selectivities with experimental results in these different plasma types and over a wide range of specific energy input (SEI) values. Our model predicts that vibrational−translational nonequilibrium is negligible in all CH4 plasmas investigated, and instead, thermal conversion is important. Higher gas temperatures also lead to a more selective production of unsaturated hydrocarbons (mainly C2H2) due to neutral dissociation of CH4 and subsequent dehydrogenation processes, while three-body recombination reactions into saturated hydrocarbons (mainly C2H6, but also higher hydrocarbons) are dominant in low temperature plasmas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526328500007 Publication Date 2020-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Universiteit Antwerpen; Vlaamse regering; Fonds Wetenschappelijk Onderzoek, G.0383.16N ; H2020 European Research Council, 810182 ; We acknowledge financial support from the Fund for Scientific Research, Flanders (FWO; Grant No. G.0383.16N), the Methusalem Grant, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182 − SCOPE ERC Synergy project). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:168096 Serial 6358
Permanent link to this record
 

 
Author van ‘t Veer, K.; Reniers, F.; Bogaerts, A.
Title Zero-dimensional modeling of unpacked and packed bed dielectric barrier discharges: the role of vibrational kinetics in ammonia synthesis Type A1 Journal article
Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 29 Issue 4 Pages 045020
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present a zero-dimensional plasma kinetics model, including both surface and gas phase kinetics, to determine the role of vibrationally excited states in plasma-catalytic ammonia synthesis. We defined a new method to systematically capture the conditions of dielectric barrier discharges (DBDs), including those found in packed bed DBDs. We included the spatial and temporal nature of such discharges by special consideration of the number of micro-discharges in the model. We introduce a parameter that assigns only a part of the plasma power to the microdischarges, to scale the model conditions from filamentary to uniform plasma. Because of the spatial and temporal behaviour of the micro-discharges, not all micro-discharges occurring in the plasma reactor during a certain gas residence time are affecting the molecules. The fraction of power considered in the model ranges from 0.005 %, for filamentary plasma, to 100 %, for uniform plasma. If vibrational excitation is included in the plasma chemistry, these different conditions, however, yield an ammonia density that is only varying within one order of magnitude. At only 0.05 % of the power put into the uniform plasma component, a model neglecting vibrational excitation clearly does not result in adequate amounts of ammonia. Thus, our new model, which accounts for the concept in which not all the power is deposited by the micro-discharges, but some part may also be distributed in between them, suggests that vibrational kinetic processes are really important in (packed bed) DBDs. Indeed, vibrational excitation takes place in both the uniform plasma between the micro-discharges and in the strong micro-discharges, and is responsible for an increased N2 dissociation rate. This is shown here for plasma-catalytic ammonia synthesis, but might also be valid for other gas conversion applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000570241500001 Publication Date 2020-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Dr. Fatme Jardali for the discussions on plasma kinetic modelling and Dr. Jungmi Hong and Dr. Anthony B. Murphy for their aid in the calculation of the diffusion coefficients. Approved Most recent IF: 3.8; 2020 IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:168097 Serial 6359
Permanent link to this record
 

 
Author Shi, P.; Ratkowsky, D.A.; Gielis, J.
Title The generalized Gielis geometric equation and its application Type A1 Journal article
Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 12 Issue 4 Pages 645-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Many natural shapes exhibit surprising symmetry and can be described by the Gielis equation, which has several classical geometric equations (for example, the circle, ellipse and superellipse) as special cases. However, the original Gielis equation cannot reflect some diverse shapes due to limitations of its power-law hypothesis. In the present study, we propose a generalized version by introducing a link function. Thus, the original Gielis equation can be deemed to be a special case of the generalized Gielis equation (GGE) with a power-law link function. The link function can be based on the morphological features of different objects so that the GGE is more flexible in fitting the data of the shape than its original version. The GGE is shown to be valid in depicting the shapes of some starfish and plant leaves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000540222200156 Publication Date 2020-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited 4 Open Access
Notes ; This research was funded by the Jiangsu Government Scholarship for Overseas Studies (grant number: JS-2018-038). ; Approved Most recent IF: 2.7; 2020 IF: 1.457
Call Number UA @ admin @ c:irua:168141 Serial 6526
Permanent link to this record
 

 
Author Vicca, S.; Crabbé, A.; Van Passel, S.
Title Is het coronavirus goed nieuws voor het klimaat? = Is the coronavirus good news for the climate? Type Newspaper/Magazine/blog article
Year 2020 Publication globalchangeecology.blog Abbreviated Journal
Volume Issue Pages
Keywords Newspaper/Magazine/blog article; Sociology; Economics; Engineering Management (ENM); Plant and Ecosystems (PLECO) – Ecology in a time of change; Centre for Research on Environmental and Social Change
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.scientists4climate.be/is-the-coronavirus-good-news-for-the-climate/ Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record; https://www.scientists4climate.be/is-the-coronavirus-good-news-for-the-climate/; https://globalchangeecology.blog/2020/04/03/is-het-coronavirus-goed-nieuws-voor-het-klimaat/
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:168299 Serial 6934
Permanent link to this record
 

 
Author Saviuc, I.; Van Passel, S.; Peremans, H.
Title Integrating PV+battery residential microgrids in distribution networks : how is the point of common coupling agreed upon? Type H1 Book chapter
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 150-164
Keywords H1 Book chapter; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract The anticipated development of decentralized electricity generation is expected to strengthen the opportunities of prosumers in the residential areas of cities, in line with the predicted establishment of renewable energy generation and storage. Based on academic research and on successful case studies, the opportunity for residential prosumers to organize in microgrids emerges as a viable and promising solution. This paper focuses on microgrids that are planned to generate electricity with a PV unit and use a shared storage system, and that opt to have a connection with the main grid. However, the point of common coupling needs to be agreed first between the microgrid operator and the network operator, and this agreement is determined by several factors and conditions beyond the basic technical and regulatory requirements. A survey of academic literature on the determinant factors for such an agreement exposes the fact that current research either focuses on the integration of individual prosumers in the main grid, or regards the point of common coupling as a given component of microgrids. We argue that neither of the two approaches is helpful in the case of microgrids vs. main grid, seeing as the agreement is not self-evident under just any circumstances, nor can the microgrid be equated to a single, large prosumer. Therefore this short paper compiles a set of determinant factors for the microgrid integration, as they emerge from academic literature, with the aim to document further research needs and support the discussion on microgrid integration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-04-08
Series Editor Series Title Abbreviated Series Title Sustainable Energy for Smart Cities : First EAI International Conference, SESC 2019, Braga, Portugal, December 4–6, 2019: proceedings
Series Volume Series Issue Edition
ISSN ISBN 978-3-030-45693-1 Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:168515 Serial 6932
Permanent link to this record
 

 
Author Paul, S.; Bladt, E.; Richter, A.F.; Döblinger, M.; Tong, Y.; Huang, H.; Dey, A.; Bals, S.; Debnath, T.; Polavarapu, L.; Feldmann, J.
Title Manganese‐Doping‐Induced Quantum Confinement within Host Perovskite Nanocrystals through Ruddlesden–Popper Defects Type A1 Journal article
Year 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
Volume 59 Issue 17 Pages 6794-6799
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The concept of doping Mn2+ ions into II–VI semiconductor nanocrystals (NCs) was recently extended to perovskite NCs. To date, most studies on Mn2+ doped NCs focus on enhancing the emission related to the Mn2+ dopant via an energy transfer mechanism. Herein, we found that the doping of Mn2+ ions into CsPbCl3 NCs not only results in a Mn2+‐related orange emission, but also strongly influences the excitonic properties of the host NCs. We observe for the first time that Mn2+ doping leads to the formation of Ruddlesden–Popper (R.P.) defects and thus induces quantum confinement within the host NCs. We find that a slight doping with Mn2+ ions improves the size distribution of the NCs, which results in a prominent excitonic peak. However, with increasing the Mn2+ concentration, the number of R.P. planes increases leading to smaller single‐crystal domains. The thus enhanced confinement and crystal inhomogeneity cause a gradual blue shift and broadening of the excitonic transition, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000525279800024 Publication Date 2020-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 64 Open Access OpenAccess
Notes Deutsche Forschungsgemeinschaft, EXC 2089/1-390776260 ; H2020 European Research Council, 815128-REALNANO ; Horizon 2020 Framework Programme, 839042 731019 ; Alexander von Humboldt-Stiftung; We acknowledge financial support by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech)”, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy—EXC 2089/1‐390776260 (“e‐conversion”), the Alexander von Humboldt Foundation (A.D. and T.D.), the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska‐Curie grant agreement No. 839042 (H.H.). E.B. acknowledges a postdoctoral grant 12T2719N from the Research Foundation Flanders (FWO, Belgium). E.B. and S.B. acknowledge the financial support from the European Research Council ERC Consolidator Grants #815128‐REALNANO. L.P. thanks the EU Infrastructure Project EUSMI (European Union's Horizon 2020, grant No 731019). We thank local research center “Center for NanoScience (CeNS)” for providing communicative networking structure. We acknowledge the funding of Nanosystems Initiative Munich (NIM) for color figures.; sygma Approved Most recent IF: 16.6; 2020 IF: 11.994
Call Number EMAT @ emat @c:irua:168535 Serial 6399
Permanent link to this record
 

 
Author Delvaux, A.; Lumbeeck, G.; Idrissi, H.; Proost, J.
Title Effect of microstructure and internal stress on hydrogen absorption into Ni thin film electrodes during alkaline water electrolysis Type A1 Journal article
Year 2020 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta
Volume 340 Issue Pages 135970-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Efforts to improve the cell efficiency of hydrogen production by water electrolysis continue to address the electrochemical kinetics of the oxygen and hydrogen evolution reactions in detail. The objective of this work is to study a parasitic reaction occurring during the hydrogen evolution reaction (HER), namely the absorption of hydrogen atoms into the bulk electrode. Effects of the electrode microstructure and internal stress on this reaction have been addressed as well in this paper. Ni thin film samples were deposited on a Si substrate by sputter deposition with different deposition pressures, resulting in different microstructures and varying levels of internal stress. These microstructures were first analyzed in detail by Transmission Electron Microscopy (TEM). Cathodic chrono-amperometric measurements and cyclic voltammetries have then been performed in a homemade electrochemical cell. These tests were coupled to a multi-beam optical sensor (MOS) in order to obtain in-situ curvature measurements during hydrogen absorption. Indeed, since hydrogen absorption in the thin film geometry results in a constrained volume expansion, internal stress generation during HER can be monitored by means of curvature measurements. Our results show that different levels of internal stress, grain size and twin boundary density can be obtained by varying the deposition parameters. From an electrochemical point of view, this paper highlights the fact that the electrochemical surface mechanisms during HER are the same for all the electrodes, regardless of their microstructure. However it is shown that the absolute amount of hydrogen being absorbed into the Ni thin films increases when the grain size is reduced, due to a higher grain boundaries density which are favourite absorption sites for hydrogen. At the same time, it was concluded that H-2 evolution is favoured at electrodes having a more compressive (i.e. a less tensile) internal stress. Finally, the subtle effect of microstructure on the hydrogen absorption rate will be discussed as well. (C) 2020 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000521531800011 Publication Date 2020-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 6.6 Times cited 2 Open Access Not_Open_Access
Notes ; The authors gratefully acknowledge financial support of the Public Service of Wallonia e Department of Energy and Sustainable Building, through the project WallonHY. The ACOM-TEM work was supported by the Hercules Foundation [Grant No. AUHA13009], the Flemish Research Fund (FWO) [Grant No. G.0365.15 N], and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. We also like to cordially thank Ronny Santoro for carrying out the ICP-OES measurements. ; Approved Most recent IF: 6.6; 2020 IF: 4.798
Call Number UA @ admin @ c:irua:168536 Serial 6497
Permanent link to this record