|   | 
Details
   web
Records
Author Craco, L.; Carara, S.S.; Barboza, E. da S.; Milošević, M.V.; Pereira, T.A.S.
Title Electronic and valleytronic properties of crystalline boron-arsenide tuned by strain and disorder Type A1 Journal article
Year 2023 Publication RSC advances Abbreviated Journal
Volume 13 Issue 26 Pages 17907-17913
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ab initio density functional theory (DFT) and DFT plus coherent potential approximation (DFT + CPA) are employed to reveal, respectively, the effect of in-plane strain and site-diagonal disorder on the electronic structure of cubic boron arsenide (BAs). It is demonstrated that tensile strain and static diagonal disorder both reduce the semiconducting one-particle band gap of BAs, and a V-shaped p-band electronic state emerges – enabling advanced valleytronics based on strained and disordered semiconducting bulk crystals. At biaxial tensile strains close to 15% the valence band lineshape relevant for optoelectronics is shown to coincide with one reported for GaAs at low energies. The role played by static disorder on the As sites is to promote p-type conductivity in the unstrained BAs bulk crystal, consistent with experimental observations. These findings illuminate the intricate and interdependent changes in crystal structure and lattice disorder on the electronic degrees of freedom of semiconductors and semimetals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001008414700001 Publication Date 2023-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.9; 2023 IF: 3.108
Call Number UA @ admin @ c:irua:197317 Serial 8861
Permanent link to this record
 

 
Author Cui, Z.; Jafarzadeh, A.; Hao, Y.; Liu, L.; Li, L.; Zheng, Y.
Title Prediction of the decomposition tendency of C5F10O on discharged metal surfaces Type A1 Journal article
Year 2023 Publication IEEE transactions on dielectrics and electrical insulation Abbreviated Journal
Volume 30 Issue 3 Pages 1365-1367
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this letter, a dipole sheet method is proposed to theoretically study the adsorption and decomposition of C5F10O over-discharged Cu (111) and Al (111) surfaces. A synergistic effect of external electric fields and surface excess charges shows up for jointly promoting the adsorption of C5F10O, accompanied by the enhancement of C-F bond elongation and charge transfer process. The decomposition of C5F10O is facilitated in the discharged region and the initial decomposition is found most likely to occur via the cleavage of the C-F single bond. The results indicate that the decomposition of C5F10O over the metal electrode surfaces is much accelerated when discharge faults occur and free F atoms could be generated from C5F10O before its carbon chain breakage. These findings help to elucidate the underlying decomposition tendency of C5F10O in discharged systems and provide a practical method for evaluating and designing new insulation gases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001000675800054 Publication Date 2023-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-9878 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.1 Times cited Open Access
Notes Approved Most recent IF: 3.1; 2023 IF: 2.115
Call Number UA @ admin @ c:irua:197319 Serial 9076
Permanent link to this record
 

 
Author Shevchenko, V.A.; Glazkova, I.S.; Novichkov, D.A.; Skvortsova, I.; V. Sobolev, A.; Abakumov, A.M.; Presniakov, I.A.; Drozhzhin, O.A.; V. Antipov, E.
Title Competition between the Ni and Fe redox in the O3-NaNi1/3Fe1/3Mn1/3O2 cathode material for Na-ion batteries Type A1 Journal article
Year 2023 Publication Chemistry of materials Abbreviated Journal
Volume 35 Issue 10 Pages 4015-4025
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sodium-ion batteries are attracting great attention due to their low cost and abundance of sodium. The O3-type NaNi1/3Fe1/3Mn1/3O2 layered oxide material is a promising candidate for positive electrodes (cathodes) in Na-ion batteries. However, its stable electrochemical performance is restricted by the upper voltage limit of 4.0 V (vs Na/Na+), which allows for reversibly removing 0.5-0.55 Na+ per formula unit, corresponding to the capacity of 120-130 mAh.g(-1). Further reduction of sodium content inevitably accelerates capacity degradation, and this issue calls for a detailed study of the redox reactions that accompany the electrochemical (de)intercalation of a large amount of sodium. Here, we present operando and ex situ studies using powder X-ray diffraction and X-ray absorption spectroscopy combined with Fe-57 Mossbauer spectroscopy. Our approach reveals the sequence of the redox transitions that occur during the charge and discharge of O3-NaNi1/3Fe1/3Mn1/3O2. Our data show that in addition to nickel and iron cations oxidizing to M+4, a part of iron transforms into the “3 + delta” state owing to the fast electron exchange Fe3+ + Fe4+ <-> Fe4+ + Fe3+. This process freezes upon cooling the material to 35 K, producing Fe4+ cations, some of which occupy tetrahedral positions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000985970200001 Publication Date 2023-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 8.6 Times cited Open Access
Notes Approved Most recent IF: 8.6; 2023 IF: 9.466
Call Number UA @ admin @ c:irua:197352 Serial 9013
Permanent link to this record
 

 
Author Foltyn, M.; Norowski, K.; Wyszynski, M.J.; De Arruda, A.S.; Milošević, M.V.; Zgirski, M.
Title Probing confined vortices with a superconducting nanobridge Type A1 Journal article
Year 2023 Publication Physical review applied Abbreviated Journal
Volume 19 Issue 4 Pages 044073-12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We realize a superconducting nanodevice in which vortex traps in the form of an aluminum square are integrated with a Dayem nanobridge. We perform field cooling of the traps arriving to different vortex configurations, dependent on the applied magnetic field, to demonstrate that the switching current of the bridge is highly sensitive to the presence and location of vortices in the trap. Our measurements exhibit unprecedented precision and ability to detect the first and successive vortex entries into all fabricated traps, from few hundred nm to 2 mu m in size. The experimental results are corroborated by Ginzburg-Landau simulations, which reveal the subtle yet crucial changes in the density of the superconducting condensate in the vicinity of the bridge with every additional vortex entry and relocation inside the trap. An ease of integration and simplicity make our design a convenient platform for studying dynamics of vortices in strongly confining geometries, involving a promise to manipulate vortex states electronically with simultaneous in situ control and monitoring.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000980861100007 Publication Date 2023-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 4.6 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.6; 2023 IF: 4.808
Call Number UA @ admin @ c:irua:197356 Serial 8918
Permanent link to this record
 

 
Author Bellizotti Souza, J.C.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A.
Title Spontaneous skyrmion conformal lattice and transverse motion during dc and ac compression Type A1 Journal article
Year 2023 Publication New journal of physics Abbreviated Journal
Volume 25 Issue 5 Pages 053020-15
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We use atomistic-based simulations to investigate the behavior of ferromagnetic skyrmions being continuously compressed against a rigid wall under dc and ac drives. The compressed skyrmions can be annihilated close to the wall and form a conformal crystal with both a size and a density gradient, making it distinct from conformal crystals observed previously for superconducting vortices and colloidal particles. For both dc and ac driving, the skyrmions can move transverse to the compression direction due to a combination of density and size gradients. Forces in the compression direction are converted by the Magnus force into transverse motion. Under ac driving, the amount of skyrmion annihilation is reduced and we find a skyrmion Magnus ratchet pump. We also observe shear banding in which skyrmions near the wall move up to twice as fast as skyrmions further from the wall. When we vary the magnitude of the applied drive, we find a critical current above which the skyrmions are completely annihilated during a time scale that depends on the magnitude of the drive. By varying the magnetic parameters, we find that the transverse motion is strongly dependent on the skyrmion size. Smaller skyrmions are more rigid, which interferes with the size gradient and destroys the transverse motion. We also confirm the role of the size gradient by comparing our atomistic simulations with a particle-based model, where we find that the transverse motion is only transient. Our results are relevant for applications where skyrmions encounter repulsive magnetic walls, domain walls, or interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000994003200001 Publication Date 2023-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.3; 2023 IF: 3.786
Call Number UA @ admin @ c:irua:197365 Serial 8934
Permanent link to this record
 

 
Author Borah, R.; Kumar, A.; Samantaray, M.; Desai, A.; Tseng, F.-G.
Title Photothermal heating of Au nanorods and nanospheres : temperature characteristics and strength of convective forces Type A1 Journal article
Year 2023 Publication Plasmonics Abbreviated Journal
Volume 18 Issue 4 Pages 1449-1465
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The nanoscale photothermal effect and the optofluidic convection around plasmonic nanoparticles drive the application of such nanoparticles in micro-environment. In this work, heat transfer and fluid flow around Au nanospheres and nanorods in water medium under continuous and pulsed wave laser irradiance was investigated using an FEM based numerical framework. Au nanospheres of a wide range of diameter: 40 nm = Diameter (D) = 180 nm and relatively large nanorods (diameter: 50 nm) with varying aspect ratio (1 = Aspect ratio (A) = 5) and orientation (0 degrees = ? = 90 degrees, ? = 0 degrees, 90 degrees) with respect to the incident EM radiation were investigated for continuous wave (CW) and pulsed wave laser. It was found that although nanorods can attain much higher temperature than nanospheres, orientation of a nanorod is an important factor to be carefully considered in applications. In micro-scale spherical and hemispherical confinements (diameter < 14.4 p.m), the convective velocity fields around nanoparticles is in the order of 10-9 m/s, with only a weak effect of the slip or no-slip boundary condition on the confining walls. Importantly, the size of the confinement has a strong effect leading to an order of magnitude stronger convection for 14.4 p.m (diameter) spherical confinement as compared to 3.6 p.m confinement. Additionally close proximity of the nanoparticles to the confining walls strongly reduces (by an order of magnitude) the convective currents. The results reported herein provides important insights for the use of photothermal nanoparticles in microscale confined space (e.g. cellular environment) for applications such as optical tweezers, photoporation, etc.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000985445100001 Publication Date 2023-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1955; 1557-1963 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3; 2023 IF: 2.139
Call Number UA @ admin @ c:irua:197380 Serial 8914
Permanent link to this record
 

 
Author Truta, F.; Cruz, A.G.; Tertis, M.; Zaleski, C.; Adamu, G.; Allcock, N.S.; Suciu, M.; Stefan, M.-G.; Kiss, B.; Piletska, E.; De Wael, K.; Piletsky, S.A.; Cristea, C.
Title NanoMIPs-based electrochemical sensors for selective detection of amphetamine Type A1 Journal article
Year 2023 Publication Microchemical journal Abbreviated Journal
Volume 191 Issue Pages 108821-10
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract A highly sensitive and portable electrochemical sensor based on molecularly imprinted nanoparticles (nanoMIPs) was developed. NanoMIPs were computationally designed for specific recognition of amphetamine, and then synthetized using solid phase synthesis. NanoMIPs were immobilized onto screen-printed carbon electrodes using a composite film comprising chitosan, nanoMIPs, and graphene oxide.Ferrocenylmethyl methacrylate was incorporated in nanoMIPs allowing electrochemical detection. The signal recorded for the electrochemical oxidation of ferrocene has proven to be dependent on the presence of amphetamine interacting with nanMIPs. The sensor was tested successfully with street samples, with high sensitivity and satisfactory recoveries (from 100.9% to 107.6%). These results were validated with UPL-MS/MS. The present technology is suitable for forensic applications in selective determination of amphetamine in street samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001008428600001 Publication Date 2023-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.8; 2023 IF: 3.034
Call Number UA @ admin @ c:irua:197397 Serial 8903
Permanent link to this record
 

 
Author Soltan, S.; Macke, S.; Ilse, S.E.; Pennycook, T.; Zhang, Z.L.; Christiani, G.; Benckiser, E.; Schuetz, G.; Goering, E.
Title Ferromagnetic order controlled by the magnetic interface of LaNiO3/La2/3Ca1/3MnO3 superlattices Type A1 Journal article
Year 2023 Publication Scientific reports Abbreviated Journal
Volume 13 Issue 1 Pages 1-9
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Interface engineering in complex oxide superlattices is a growing field, enabling manipulation of the exceptional properties of these materials, and also providing access to new phases and emergent physical phenomena. Here we demonstrate how interfacial interactions can induce a complex charge and spin structure in a bulk paramagnetic material. We investigate a superlattice (SLs) consisting of paramagnetic LaNiO3 (LNO) and highly spin-polarized ferromagnetic La2/3Ca1/3MnO3 (LCMO), grown on SrTiO3 (001) substrate. We observed emerging magnetism in LNO through an exchange bias mechanism at the interfaces in X-ray resonant magnetic reflectivity. We find non-symmetric interface induced magnetization profiles in LNO and LCMO which we relate to a periodic complex charge and spin superstructure. High resolution scanning transmission electron microscopy images reveal that the upper and lower interfaces exhibit no significant structural variations. The different long range magnetic order emerging in LNO layers demonstrates the enormous potential of interfacial reconstruction as a tool for tailored electronic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000985158100013 Publication Date 2023-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.6; 2023 IF: 4.259
Call Number UA @ admin @ c:irua:197426 Serial 8867
Permanent link to this record
 

 
Author Zhang, H.; Jin, Q.; Hu, T.; Liu, X.; Zhang, Z.; Hu, C.; Zhou, Y.; Han, Y.; Wang, X.
Title Electron-irradiation-facilitated production of chemically homogenized nanotwins in nanolaminated carbides Type A1 Journal article
Year 2023 Publication Journal of Advanced Ceramics Abbreviated Journal
Volume 12 Issue 6 Pages 1288-1297
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Twin boundaries have been exploited to stabilize ultrafine grains and improve mechanical properties of nanomaterials. The production of the twin boundaries and nanotwins is however prohibitively challenging in carbide ceramics. Using a scanning transmission electron microscope as a unique platform for atomic-scale structure engineering, we demonstrate that twin platelets could be produced in carbides by engineering antisite defects. The antisite defects at metal sites in various layered ternary carbides are collectively and controllably generated, and the metal elements are homogenized by electron irradiation, which transforms a twin-like lamellae into nanotwin platelets. Accompanying chemical homogenization, alpha-Ti3AlC2 transforms to unconventional beta-Ti3AlC2. The chemical homogeneity and the width of the twin platelets can be tuned by dose and energy of bombarding electrons. Chemically homogenized nanotwins can boost hardness by similar to 45%. Our results provide a new way to produce ultrathin (< 5 nm) nanotwin platelets in scientifically and technologically important carbide materials and showcase feasibility of defect engineering by an angstrom-sized electron probe.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001004930200012 Publication Date 2023-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2226-4108; 2227-8508 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 16.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 16.9; 2023 IF: 1.198
Call Number UA @ admin @ c:irua:197470 Serial 8860
Permanent link to this record
 

 
Author Campos, R.; Thiruvottriyur Shanmugam, S.; Daems, E.; Ribeiro, R.; De Wael, K.
Title Development of an electrochemiluminescent oligonucleotide-based assay for the quantification of prostate cancer associated miR-141-3p in human serum Type A1 Journal article
Year 2023 Publication Bioelectrochemistry: an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry Abbreviated Journal
Volume 153 Issue Pages 108495-108496
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract MicroRNAs (miRNAs) are small oligonucleotides (18–25 bases), biologically relevant for epigenetic regulation of key processes, particularly in association with cancer. Research effort has therefore been directed towards the monitoring and detection of miRNAs to progress (early) cancer diagnoses. Traditional detection strategies for miRNAs are expensive, with a lengthy time-to-result. In this study we develop an oligonucleotide-based assay using electrochemistry for the specific, selective and sensitive detection of a circulating miRNA (miR-141) associated with prostate cancer. In the assay, the excitation and readout of the signal are independent: an electrochemical stimulation followed by an optical readout. A ‘sandwich’ approach is incorporated, consisting of a biotinylated capture probe immobilised on streptavidin-functionalised surfaces and a detection probe labelled with digoxigenin. We show that the assay allows the detection of miR-141 in human serum, even in the presence of other miRNAs, with a LOD of 0.25 pM. The developed electrochemiluminescent assay has, therefore, the potential for efficient universal oligonucleotide target detection via the redesign of capture and detection probes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001031760700001 Publication Date 2023-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-5394 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 5 Times cited Open Access Not_Open_Access: Available from 01.01.2024
Notes Approved Most recent IF: 5; 2023 IF: 3.346
Call Number UA @ admin @ c:irua:197615 Serial 8849
Permanent link to this record
 

 
Author Gamon, J.; Bassat, J.-M.; Villesuzanne, A.; Duttine, M.; Batuk, M.; Vandemeulebroucke, D.; Hadermann, J.; Alassani, F.; Weill, F.; Durand, E.; Demourgues, A.
Title Impact of anionic ordering on the iron site distribution and valence states in oxyfluoride Sr2FeO3+xF1-x(x=0.08, 0.2) with a layered Perovskite network Type A1 Journal article
Year 2023 Publication Inorganic chemistry Abbreviated Journal
Volume 62 Issue 27 Pages 10822-10832
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sr2FeO3+x F1-x (x = 0.08, 0.2), an n = 1 Ruddlesden-Popperphase, was synthesized from the oxidationof Sr2FeO3F in air at high temperature followinga fluorine for oxygen substitution and Fe3+ to Fe4+ oxidation. A structural investigation of both compounds was performedusing complementary and high-resolution techniques (Synchrotron X-rayand electron diffraction, Mo''ssbauer spectroscopy, HR-STEM)coupled to DFT calculation. This study reveals that oxidation leadsto a high degree of apical anion disorder coupled to antiphase boundaries. Sr2FeO3F, an oxyfluoride compoundwith an n = 1 Ruddlesden-Popper structure,was identifiedas a potential interesting mixed ionic and electronic conductor (MIEC).The phase can be synthesized under a range of different pO(2) atmospheres, leading to various degrees of fluorinefor oxygen substitution and Fe4+ content. A structuralinvestigation and thorough comparison of both argon- and air-synthesizedcompounds were performed by combining high-resolution X-ray and electrondiffraction, high-resolution scanning transmission electron microscopy,Mo''ssbauer spectroscopy, and DFT calculations. While the argon-synthesizedphase shows a well-behaved O/F ordered structure, this study revealedthat oxidation leads to averaged large-scale anionic disorder on theapical site. In the more oxidized Sr2FeO3.2F0.8 oxyfluoride, containing 20% of Fe4+, two differentFe positions can be identified with a 32%/68% occupancy (P4/nmm space group). This originates due to the presenceof antiphase boundaries between ordered domains within the grains.Relations between site distortion and valence states as well as stabilityof apical anionic sites (O vs F) are discussed. This study paves theway for further studies on both ionic and electronic transport propertiesof Sr2FeO3.2F0.8 and its use in MIEC-baseddevices, such as solid oxide fuel cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001018974700001 Publication Date 2023-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 4.6 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.6; 2023 IF: 4.857
Call Number UA @ admin @ c:irua:197789 Serial 8881
Permanent link to this record
 

 
Author Wang, Y.-T.; Wu, S.-M.; Luo, G.-Q.; Tian, G.; Wang, L.-Y.; Xiao, S.-T.; Wu, J.-X.; Wu, A.; Wu, K.-J.; Lenaerts, S.; Yang, X.-Y.
Title A core-shell confined Pd@TS-1 @meso-SiO2 catalyst and its synergy effect on styrene oxidation Type A1 Journal article
Year 2023 Publication Applied catalysis : A : general Abbreviated Journal
Volume 650 Issue Pages 119016-6
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Dual active sites from acidic zeolite and Pd are not only capable of catalyzing multiple type of reactions, but could also generate unique functions owing to the synergy between metals and acidic sites. However, there are only a few reports on the investigation of the synergy of acid/Pd dual sites in TS-1. Herein, TS-1 confined Pd catalyst with mesoporous silica shell (Pd@TS-1 @meso-SiO2) has been successfully synthesized and its synergy effect contributes to the enhanced conversion rate (19.2%) and selectivity (74.7%) on styrene oxidation. The interaction between Pd and TS-1 has been investigated by EPR and 1H NMR techniques, the experimental measurements show an obvious change in the signal distribution of weakly acidic terminal hydroxyls and hydrogen-bonding silanols. The schematic illustration of selective styrene oxidation in the model of Pd@TS-1 @meso-SiO2 is proposed to clarify the synergistic effect on styrene oxidation between TS-1 and Pd nanoparticles at an atomic-/nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001015700000001 Publication Date 2022-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-860x ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 5.5; 2023 IF: 4.339
Call Number UA @ admin @ c:irua:197805 Serial 8826
Permanent link to this record
 

 
Author Zuniga-Puelles, E.; Levytskyi, V.; Özden, A.; Guerel, T.; Bulut, N.; Himcinschi, C.; Sevik, C.; Kortus, J.; Gumeniuk, R.
Title Thermoelectric properties and scattering mechanisms in natural PbS Type A1 Journal article
Year 2023 Publication Physical review B Abbreviated Journal
Volume 107 Issue 19 Pages 195203-195215
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract X-ray diffraction and energy dispersive x-ray spectroscopic analyses showed a natural galena (PbS) crystal from Freiberg in Saxony (Germany) to be a single phase specimen [rock salt (NaCl) structure type, space group Fm3m, a = 5.932(1) angstrom] with stoichiometric composition and an enhanced dislocation density (8 approximate to 1011 cm-2). The latter parameter leads to an increase of the electrical resistivity in the high-temperature regime, as well as to the appearance of phonon resonance with a characteristic frequency coPR = 3.8(1) THz. Being in the same range (i.e., 3-5.5 THz) with the sulfur optical modes of highest group velocities, it results in a drastic reduction (by similar to 75%) of thermal conductivity (K) at lower temperatures (i.e., < 100 K), as well as in the appearance of a characteristic minimum in K at T approximate to 30 K. Furthermore, the studied galena is characterized by phonon-drag behavior and by temperature dependent switch of the charge carrier scattering mechanism regime (i.e., scattering on dislocations for T < 100 K, on acoustic phonons for 100 K < T < 170 K and on both acoustic and optical phonons for 170 K < T < 300 K). The combined theoretical calculation and optical spectroscopic study confirm this mineral to be a direct gap degenerate semiconductor. The possible origins of the second-order Raman spectrum are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001009980400008 Publication Date 2023-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.7; 2023 IF: 3.836
Call Number UA @ admin @ c:irua:197808 Serial 8943
Permanent link to this record
 

 
Author Hofer, C.; Mustonen, K.; Skakalova, V.; Pennycook, T.J.
Title Picometer-precision few-tilt ptychotomography of 2D materials Type A1 Journal article
Year 2023 Publication 2D materials Abbreviated Journal
Volume 10 Issue 3 Pages 035029-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract From ripples to defects, edges and grain boundaries, the 3D atomic structure of 2D materials is critical to their properties. However the damage inflicted by conventional 3D analysis precludes its use with fragile 2D materials, particularly for the analysis of local defects. Here we dramatically increase the potential for precise local 3D atomic structure analysis of 2D materials, with both greatly improved dose efficiency and sensitivity to light elements. We demonstrate light atoms can now be located in complex 2D materials with picometer precision at doses 30 times lower than previously possible. Moreover we demonstrate this using WS2, in which the light atoms are practically invisible to conventional methods at low doses. The key advance is combining the concept of few tilt tomography with highly dose efficient ptychography in scanning transmission electron microscopy. We further demonstrate the method experimentally with the even more challenging and newly discovered 2D CuI, leveraging a new extremely high temporal resolution camera.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001013151600001 Publication Date 2023-06-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.5; 2023 IF: 6.937
Call Number UA @ admin @ c:irua:197809 Serial 8915
Permanent link to this record
 

 
Author Li, Q.; Niklas, K.J.J.; Niinemets, U.; Zhang, L.; Yu, K.; Gielis, J.; Gao, J.; Shi, P.
Title Stomatal shape described by a superellipse in four Magnoliaceae species Type A1 Journal article
Year 2023 Publication Botany letters Abbreviated Journal
Volume Issue Pages 1-9
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Stomata are essential for the exchange of water vapour and atmospheric gases between vascular plants and their external environments. The stomatal geometries of many plants appear to be elliptical. However, prior studies have not tested whether this is a mathematical reality, particularly since many natural shapes that appear to be ellipses are superellipses with greater or smaller edge curvature than predicted for an ellipse. Compared with the ellipse equation, the superellipse equation includes an additional parameter that allows generation of a larger range of shapes. We randomly selected 240 stomata from each of four Magnoliaceae species to test whether the stomatal geometries are superellipses or ellipses. The stomatal geometries for most stomata (943/960) were found to be described better using the superellipse equation. The traditional “elliptical stomata hypothesis” resulted in an underestimation of the area of stomata, whereas the superellipse equation accurately predicted stomatal area. This finding has important implications for the estimation of stomatal area in studies looking at stomatal shape, geometry, and function.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001024190300001 Publication Date 2023-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2381-8107; 2381-8115 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 1.5 Times cited Open Access Not_Open_Access: Available from 12.01.2024
Notes Approved Most recent IF: 1.5; 2023 IF: NA
Call Number UA @ admin @ c:irua:197847 Serial 8935
Permanent link to this record
 

 
Author Kummamuru, N.B.; Watson, G.; Ciocarlan, R.-G.; Verbruggen, S.W.; Cool, P.; Van Der Voort, P.; Perreault, P.
Title Accelerated methane storage in clathrate hydrates using mesoporous (Organo-) silica materials Type A1 Journal article
Year 2023 Publication Fuel Abbreviated Journal
Volume 354 Issue Pages 129403-129418
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)
Abstract Methane (CH4) clathrate hydrates have gained much attention in the ever-growing search for novel energy storage methods; however, they are currently limited due to their poor water-to-hydrate conversions and slow formation kinetics. To surmount these bottlenecks, significant research has been centered on the design of novel methods (porous media). In this vein, the present work explores two hydrophobic mesoporous solids, an alkyl-grafted mesoporous silica (SBA-15 C8) and a periodic mesoporous organosilica (Ring-PMO), in their ability to promote CH4 clathrates. Both materials have shown to facilitate CH4 clathrate formation at mild operating conditions (6 MPa and 269–276 K). The study revealed that the maximal CH4 storage capacities are strongly linked to the critical/optimal quantity of water in the system which was determined to be at 130% and 200% of the pore volume for SBA-15 C8 and Ring-PMO, respectively. Up to 90% and 95% of the maximum water-to-hydrate conversions were achieved in 90 min at the lowest experimental temperature and critical water content for SBA-15 C8 and Ring-PMO, respectively. At these conditions, SBA-15 C8 and Ring-PMO showed a maximum gas uptake of 98.2 and 101.2 mmol CH4/mol H2O, respectively. Both the materials exhibited no chemical or morphological changes post-clathrate formations (characterized using FT-IR, N2 sorption, XRD, and TEM), inferring their viability as clathrate promoters for multiple cycles. An integrated multistep model was considered adequate for representing the hydrate crystallization kinetics and fits well with the experimental kinetic data with a low average absolute deviation in water-to-hydrate conversions among the three distinct kinetic models analyzed. Overall, the results from this study demonstrate hydrophobic porous materials as effective promoters of CH4 clathrates, which could make clathrate-based CH4 storage and transport technology industrially viable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001059413200001 Publication Date 2023-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-2361 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access Not_Open_Access: Available from 07.02.2024
Notes Approved Most recent IF: 7.4; 2023 IF: 4.601
Call Number UA @ admin @ c:irua:197987 Serial 8829
Permanent link to this record
 

 
Author Gielis, J.
Title Simon Stevin as a central figure in the development of abstract algebra and generic programming Type A1 Journal article
Year 2023 Publication Symmetry : culture and science Abbreviated Journal
Volume 34 Issue 2 Pages 155-168
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Simon Stevin (1548-1620) is mainly known for the decimal system and his Clootkrans proof. His influence is also profound in infinitesimal calculus, mechanics, and even in abstract algebra and today’s conception of polynomials, algorithms, and generic programming. Here we review his influence as assessed in generic programming. According to Dr. Stepanov, one of the most influential researchers in generic programming, Stevin’s work on polynomials can be regarded as the essence of generic programming: an algorithm from one domain can be applied in another similar domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001068714100003 Publication Date 2023-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0865-4824 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access: Available from 08.02.2024
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198000 Serial 8929
Permanent link to this record
 

 
Author Wang, L.; Shi, P.; Chen, L.; Gielis, J.; Niklas, K.J.
Title Evidence that Chinese white olive (Canarium album(Lour.) DC.) fruits are solids of revolution Type A1 Journal article
Year 2023 Publication Botany letters Abbreviated Journal
Volume Issue Pages 1-7
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Although many fruit geometries resemble a solid of revolution, this assumption has rarely been rigorously examined. To test this assumption, 574 fruits of Canarium album (Lour.) DC. which appear to have an ellipsoidal shape, were examined to determine the validity of a general avian-based egg-shape equation, referred to as the explicit Preston equation (EPE). The assumption that the C. album fruit geometry is a solid of revolution is tested by applying the volume formula for a solid of revolution using the EPE. The goodness of fit of the EPE was assessed using the adjusted root-mean-square error (RMSEadj). The relationship between the observed volume (Vobs) of each fruit, as measured by water displacement in a graduated cylinder, and the predicted volumes (Vpre) based on the EPE was also evaluated using the equation Vpre = slope * Vobs. All the RMSEadj values were smaller than 0.05, which demonstrated the validity of the EPE based on C. album fruit profiles. The 95% confidence interval of the slope of Vpre vs. Vobs included 1.0, indicating that there was no significant difference between Vpre and Vobs. The data confirm that C. album fruits are solids of revolution. This study provides a new approach for calculating the volume and surface area of geometrically similar fruits, which can be extended to other species with similar fruit geometries to further explore the ontogeny and evolution of angiosperm reproductive organs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033135400001 Publication Date 2023-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2381-8107; 2381-8115 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 1.5 Times cited Open Access Not_Open_Access: Available from 24.01.2024
Notes Approved Most recent IF: 1.5; 2023 IF: NA
Call Number UA @ admin @ c:irua:198001 Serial 8864
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Niklas, K.J.; Niinemets, Ü.; Schrader, J.
Title Leaf functional traits : ecological and evolutionary implications Type ME3 Book as editor
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 185 p.
Keywords ME3 Book as editor; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-04-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-2-8325-2086-4; 1664-8714 Additional Links (up) UA library record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198002 Serial 8894
Permanent link to this record
 

 
Author Vizarim, N.P.
Title Dynamic behavior of Skyrmions under the influence of periodic pinning in chiral magnetic infinite thin films Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 212 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract The miniaturization of transistors for application in new processors and logic devices poses a significant challenge in the field of materials. Spintronics, which relies on controlled movement of magnetic nanostructures, offers a promising solution. Among the candidates, magnetic skyrmions are considered one of the most promising. These chiral spin structures, characterized by topological protection and enhanced stability compared to vortices or magnetic bubbles, have been extensively studied. To advance in the control of skyrmion motion, essential for practical applications, we investigated their dynamic behavior in a two-dimensional chiral magnet at zero temperature. Our study focused on the influence of periodic arrays of pinning centers. The simulations considered skyrmions as point-like particles considering the following interactions: skyrmion-skyrmion interactions, interactions with pinning center arrays, a current of polarized spins, and the Magnus force. We conducted calculations for scenarios involving a single skyrmion as well as different skyrmion density values in the material. The aim was to explore possibilities for controlled skyrmion motion, investigate different dynamic regimes, and examine collective effects. The results demonstrate that by adjusting the size, strength, and density of the pinning centers, we can effectively control the motion of individual skyrmions and manage the flow of multiple skyrmions. Furthermore, we discovered that periodic arrays of pinning centers can facilitate topological selection when different species of skyrmions with distinct Magnus components are present. Employing alternating currents, we observed the significant role of the ratchet effect in the skyrmion dynamics. By fine-tuning the amplitudes of the alternating currents, we achieved direct and controlled motion of skyrmions in specific directions. These findings hold potential for advancing our understanding of skyrmion dynamics and can inspire future technological applications involving these quasi-particles. Overall, we anticipate that our results will be valuable to the scientific community, contributing to a deeper comprehension of skyrmion dynamics and paving the way for future technological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198101 Serial 8852
Permanent link to this record
 

 
Author Marchetti, A.; Beltran, V.; Storme, P.; Nuyts, G.; Van Der Meeren, L.; Skirtach, A.; Otten, E.; Debulpaep, M.; Watteeuw, L.; De Wael, K.
Title All that glitters is not gold : unraveling the material secrets behind the preservation of historical brass Type A1 Journal article
Year 2023 Publication Journal of cultural heritage Abbreviated Journal
Volume 63 Issue Pages 179-186
Keywords A1 Journal article; Engineering sciences. Technology; Art; History; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Brass is a relatively stable alloy but it tends to tarnish over time due to the interaction with the atmosphere. Thus, it is rare to observe centuries-old brass objects untouched by the passing of time. For this reason, the pristine appearance of hundreds of brass sequins in the Enclosed Gardens of Mechelen (reliquary altarpieces produced between 1530 and 1550) is remarkable. In this study, the chemical and metallographic characterization of such unexpectedly well-preserved objects is presented. The results revealed the reason for their stability to be a combination of high-quality materials (i.e. medium Zn content, low impurities) and optimal surface properties (i.e. high homogeneity, low roughness), indicating the high level of expertise of the craftsmen who produced them. Novel fundamental insights on the historical manufacturing method of metallic sequins were also obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001058894000001 Publication Date 2023-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1296-2074 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.1 Times cited Open Access Not_Open_Access: Available from 15.08.2024
Notes Approved Most recent IF: 3.1; 2023 IF: 1.838
Call Number UA @ admin @ c:irua:198113 Serial 8830
Permanent link to this record
 

 
Author Hassani, H.
Title First-principles study of polarons in WO₃ Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 181 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract Polarons are quasiparticles emerging in materials from the interaction of extra charge carriers with the surrounding atomic lattice. They appear in a wide va- riety of compounds and can have a profound impact on their properties, making the concept of a polaron a central and ubiquitous topic in material science. Al- though the concept is known for about 75 years, the origin of polarons is not yet fully elucidated. This thesis focuses on WO 3 as a well-known prototypical system for studying polarons, which inherent polaronic nature is linked to its remark- able electrical and chromic properties. The primary objective of this research is to provide a comprehensive atomistic description and understanding of polaron formation in WO 3 using first-principles density functional theory (DFT) calcula- tions. Additionally, the investigation explores the interactions between polarons and the possibility of bipolaron formation. Following a systematic strategy, we first extensively analyze the dielectric and lattice dynamical properties of WO 3 in both the room-temperature P 2 1 /n and ground-state P 2 1 /c phases. Our specific focus is on characterizing the zone-center phonons, which serve as the founda- tion for identifying the phonon modes involved in the polaron formation and charge localization process. Subsequently, we examine the impact of structural distortions on the electronic structure of WO 3 to elucidate the interplay between structural distortions and electronic properties, thereby laying the groundwork for understanding electron-phonon couplings. By incorporating these critical fac- tors, we address our primary research goals. The most common explanation for the polaron formation is associated with the electrostatic screening of the extra charge by the polarizable lattice. Here, we show that, even in ionic crystals, this is not necessarily the case. We demonstrate that polarons in this compound arise primarily from non-polar atomic distortions. We then unveil that this unexpected behavior originates from the undoing of distortive atomic motions, which lowers the bandgap. As such, we coin the name of anti-distortive polaron and validate its appearance through a simple quantum-dot model, in which charge localization is the result of balancing structural, electronic, and confinement energy costs. Then, we also study the polaron-polaron interaction and present the formation of the antiferromagnetic W 4+ bipolaronic state with relatively large formation energy. Our analysis of the W 4+ bipolaronic distortions on the global structure reveals the same behavior as in experiments where the highly distorted monoclinic phase transforms into a tetragonal phase as a function of doping. Additionally, leveraging our previous findings on asymmetric polaronic distortion and examin- ing different merging orientations, we stabilize the antiferromagnetic W 5+ -W 5+ bipolaronic state with an energy lower than the W 4+ state. This thesis clari- fies the formation of unusual medium-size 2D polarons and bipolarons in WO3,which might be relevant to the whole family of ABO 3 perovskites, to which WO 3 is closely related. The simplicity of the concept provides also obvious guidelines for tracking similar behavior in other families of compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198169 Serial 8868
Permanent link to this record
 

 
Author Truta, F.; Drăgan, A.-M.; Tertis, M.; Parrilla, M.; Slosse, A.; Van Durme, F.; De Wael, K.; Cristea, C.
Title Electrochemical rapid detection of methamphetamine from confiscated samples using a graphene-based printed platform Type A1 Journal article
Year 2023 Publication Sensors Abbreviated Journal
Volume 23 Issue 13 Pages 6193-18
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Methamphetamine (MAP) is a highly addictive and illegal stimulant drug that has a significant impact on the central nervous system. Its detection in biological and street samples is crucial for various organizations involved in forensic medicine, anti-drug efforts, and clinical diagnosis. In recent years, nanotechnology and nanomaterials have played a significant role in the development of analytical sensors for MAP detection. In this study, a fast, simple, and cost-effective electrochemical sensor is presented that is used for the sensitive detection of MAP in confiscated street samples with a complex matrix. The optimized screen-printed sensor based on a carbon working electrode modified with graphene demonstrated an excellent limit of detection, good sensitivity, and a wide dynamic range (1–500 μM) for the target illicit drug both for standard solutions and real samples (seized samples, tap water, and wastewater samples). It can detect MAP at concentrations as low as 300 nM in real samples. This limit of detection is suitable for the rapid preliminary screening of suspicious samples in customs, ports, airports, and on the street. Furthermore, the sensor exhibits a good recovery rate, indicating its reliability and repeatability. This quality is crucial for ensuring consistent and accurate results during screening processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033277900001 Publication Date 2023-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198181 Serial 8857
Permanent link to this record
 

 
Author Drăgan, A.-M.; Parrilla, M.; Cambré, S.; Domínguez-Robles, J.; Detamornrat, U.; Donnelly, R.F.; Oprean, R.; Cristea, C.; De Wael, K.
Title Microneedle array-based electrochemical sensor functionalized with SWCNTs for the highly sensitive monitoring of MDMA in interstitial fluid Type A1 Journal article
Year 2023 Publication Microchemical journal Abbreviated Journal
Volume 193 Issue Pages 109257-11
Keywords A1 Journal article; Pharmacology. Therapy; Nanostructured and organic optical and electronic materials (NANOrOPT); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Illicit drug consumption constitutes a great concern worldwide due to its increased spread and abuse, and the negative consequences exerted on society. For instance, 3,4-methylenedioxymethamphetamine (MDMA), a synthetic amphetamine-type substance, was abused by 20 million people worldwide in 2020. This psychoactive substance exerts a myriad of effects on the human body being dangerous for the consumer’s health. Besides, MDMA has been used in the treatment of some psychiatric conditions. Therefore, the development of wearable devices for MDMA sensing in biological fluids is of great importance for forensic toxicology (e.g., monitoring of patients with suspected or known MDMA consumption) as well as for therapeutic management of patients. Herein, we report the development of a wearable electrochemical platform based on a hollow microneedle (MN) array sensor for the monitoring of MDMA in the interstitial fluid by square-wave voltammetry. First, the holes of the MN array were modified with conductive pastes to devise a MN patch with a three-electrode system. Subsequently, the functionalization of the working electrode with nanomaterials enhanced MDMA detection. Thereafter, analytical parameters were evaluated exhibiting a slope of 0.05 µA µM−1 within a linear range from 1 to 50 µM and a limit of detection of 0.75 µM in artificial interstitial fluid. Importantly, critical parameters such as selectivity, piercing capability, temperature, reversibility and stability were assessed. Overall, the obtained MN sensor exhibited excellent analytical performance, making it a promising tool for MDMA tracking in interstitial fluid for individuals on probation or under therapeutic treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001067945900001 Publication Date 2023-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access Not_Open_Access: Available from 27.02.2024
Notes Approved Most recent IF: 4.8; 2023 IF: 3.034
Call Number UA @ admin @ c:irua:198183 Serial 8898
Permanent link to this record
 

 
Author Janssens, K.
Title EXRS2022 : the 2022 edition of the European X-ray Spectrometry conference, held in Bruges, Belgium Type Editorial
Year 2023 Publication X-ray spectrometry Abbreviated Journal
Volume 52 Issue 6 Pages 276-278
Keywords Editorial; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001043528400001 Publication Date 2023-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 1.2 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 1.2; 2023 IF: 1.298
Call Number UA @ admin @ c:irua:198217 Serial 8865
Permanent link to this record
 

 
Author Maes, R.R.; Potters, G.; Fransen, E.; Geuens, J.; Van Schaeren, R.; Lenaerts, S.
Title Can we find an optimal fatty acid composition of biodiesel in order to improve oxidation stability? Type A1 Journal article
Year 2023 Publication Sustainability Abbreviated Journal
Volume 15 Issue 13 Pages 10310-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Medical Genetics (MEDGEN)
Abstract Air quality currently poses a major risk for human health. Currently, diesel is widely used as fuel and is a significant source of nitrogen oxides (NOx) and particulate matter (PM), both hazardous to human health. A good alternative for mineral diesel is biodiesel, not only for the improvement of hazardous components in the exhaust gases but also because it can be produced in view of a circular economy. Biodiesel consists of a mix of different fatty acid methyl esters, which can react with oxygen. As a consequence, the oxidation stability of biodiesel has to be studied, because the oxidation of biodiesel could affect the performance of the engine due to the wear of injectors and fuel pumps. The oxidation stability could also affect the quality of the exhaust gases due to increases in NOx and PM. The basic question we try to answer in this communication is: 'Can we find an optimal fatty acid composition in order to have a maximal oxidation stability?' In this article, we try to find the optimal fatty acid composition according to the five most common fatty acid methyl esters present in biodiesel in order to reach a maximal oxidation stability. The measurements and statistical analysis show, however, that there is no useful regression model because there are statistically significant two- and three-way interactions among the different fatty acids.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001028597300001 Publication Date 2023-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.9; 2023 IF: 1.789
Call Number UA @ admin @ c:irua:198241 Serial 8839
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; Alloul, A.; Vlaeminck, S.E.
Title Feasibility of a return-sludge nursery concept for mainstream anammox biostimulation : creating optimal conditions for anammox to recover and grow in a parallel tank Type A1 Journal article
Year 2023 Publication Bioresource technology Abbreviated Journal
Volume 385 Issue Pages 129359-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract To overcome limiting anammox activity under sewage treatment conditions, a return-sludge nursery concept is proposed. This concept involves blending sludge reject water treated with partial nitritation with mainstream effluent to increase the temperature, N levels, and electrical conductivity (EC) of the anammox nursery reactor, which sludge periodically passes through the return sludge line of the mainstream system. Various nursery frequencies were tested in two 2.5 L reactors, including 0.5-2 days of nursery treatment per 3.5-14 days of the total operation. Bioreactor experiments showed that nursery increased nitrogen removal rates during mainstream operation by 33-38%. The increased anammox activity can be partly (35-60%) explained by higher temperatures. Elevated EC, higher nitrogen concentrations, and a putative synergy and/or unknown factor were responsible for 15-16%, 12-14%, and 10-36%, respectively. A relatively stable microbial community was observed, dominated by a “Candidatus Brocadia” member. This new concept boosted activity and sludge growth, which may facilitate mainstream anammox implementations based on partial nitritation/anammox or partial nitrification/denitratation/anammox.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001031586400001 Publication Date 2023-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 11.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 11.4; 2023 IF: 5.651
Call Number UA @ admin @ c:irua:198259 Serial 8866
Permanent link to this record
 

 
Author Wang, Y.; Yuan, Y.; Liao, X.; Van Tendeloo, G.; Zhao, Y.; Sun, C.
Title Chip-based in situ TEM investigation of structural thermal instability in aged layered cathode Type A1 Journal article
Year 2023 Publication Nanoscale Advances Abbreviated Journal
Volume 5 Issue 16 Pages 4182-4190
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Thermally induced oxygen release is an intrinsic structural instability in layered cathodes, which causes thermal runaway issues and becomes increasingly critical with the continuous improvement in energy density. Furthermore, thermal runaway events always occur in electrochemically aged cathodes, where the coupling of the thermal and electrochemical effect remains elusive. Herein, we report the anomalous segregation of cobalt metal in an aged LiCoO2 cathode, which is attributed to the local exposure of the high-energy (100) surface of LiCoO2 and weak interface Co-O dangling bonds significantly promoting the diffusion of Co. The presence of the LCO-Co interface severely aggregated the oxygen release in the form of dramatic Co growth. A unique particle-to-particle oxygen release pathway was also found, starting from the isolated high reduction areas induced by the cycling heterogeneity. This study provides atomistic insight into the robust coupling between the intrinsic structural instability and electrochemical cycling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001030149900001 Publication Date 2023-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2516-0230 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 4.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.7; 2023 IF: NA
Call Number UA @ admin @ c:irua:198281 Serial 8841
Permanent link to this record
 

 
Author Chekol Zewdie, M.; Moretti, M.; Tenessa, D.B.; Van Passel, S.
Title Farmers' preferences and willingness to pay for improved irrigation water supply program : a discrete choice experiment Type A1 Journal article
Year 2023 Publication Environment, development and sustainability Abbreviated Journal
Volume Issue Pages 1-24
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This study examines smallholder farmers' preferences and willingness to pay for an improved irrigation water supply program in northwest Ethiopia. We employed a discrete choice experiment with five attributes and three levels. Data were collected from randomly selected sample households of both irrigation users and non-users. A total of 379 respondents participated, and a mixed logit model was used to analyze the household-level survey data. The result indicates that to deviate from the business-as-usual scenario, smallholder farmers are willing to pay between 3,228 and 8,327 Ethiopian Birr per hectare of irrigated land. Furthermore, the results showed a strong public preference for access to produce cash crops, followed by irrigation water availability in the dry season, and adequate access to improved farm inputs. The results also provide useful information for policymakers and suggested possibilities for generating finance from farmers to cover the operation and maintenance costs of irrigation schemes. Also, this study result reveals that irrigation development and expansion must be integrated into a comprehensive support package that combines irrigation water with access to improved farm inputs and access to produce cash crops on farmers' farm plots.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001048896000004 Publication Date 2023-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-585x; 1573-2975 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited Open Access
Notes Approved Most recent IF: 4.9; 2023 IF: NA
Call Number UA @ admin @ c:irua:198283 Serial 9204
Permanent link to this record
 

 
Author Yu, R.; Zeng, W.; Zhou, L.; Van Tendeloo, G.; Mai, L.; Yao, Z.; Wu, J.
Title Layer-by-layer delithiation during lattice collapse as the origin of planar gliding and microcracking in Ni-rich cathodes Type A1 Journal article
Year 2023 Publication Cell reports physical science Abbreviated Journal
Volume 4 Issue 7 Pages 101480-14
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract High-energy-density nickel (Ni)-rich cathode materials are used in commercial lithium (Li)-ion batteries for electric vehicles, but they suffer from severe structural degradation upon cycling. Planar gliding and microcracking are seeds for fatal mechanical fracture, but their origin remains unclear. Herein, we show that “layer-by -layer delithiation”is activated at high voltages during the charge process when the “lattice collapse”(a characteristic high-voltage lattice evolution in Ni-rich cathodes) occurs. Layer-by-layer deli-thiation is evidenced by direct observation of the consecutive lattice collapse using in situ scanning transmission electron micro-scopy (STEM). The collapsing of the lattice initiates in the expanded planes and consecutively extends to the whole crystal. Localized strain will be induced at lattice-collapsing interface where planar gliding and intragranular microcracks are generated to release this strain. Our study reveals that layer-by-layer delithia-tion during lattice collapse is the fundamental origin of the mechanical instability in single-crystalline Ni-rich cathodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001048074500001 Publication Date 2023-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198299 Serial 8893
Permanent link to this record