|   | 
Details
   web
Records
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
Title Modified atomic scattering amplitudes and size effects on the 002 and 220 electron structure factors of multiple Ga1-xInxAs/GaAs quantum wells Type A1 Journal article
Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 105 Issue 8 Pages 084310,1-084310,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The modified atomic scattering amplitudes (MASAs) of mixed Ga<sub>1-x</sub>In<sub>x</sub>As, GaAs<sub>1-x</sub>N<sub>x</sub>, and InAs<sub>1-x</sub>N<sub>x</sub> are calculated using the density functional theory approach and the results are compared with those of the binary counterparts. The MASAs of N, Ga, As, and In for various scattering vectors in various chemical environments and in the zinc-blende structure are compared with the frequently used Doyle and Turner values. Deviation from the Doyle and Turner results is found for small scattering vectors (s<0.3 Å<sup>-1</sup>) and for these scattering vectors the MASAs are found to be sensitive to the orientation of the scattering vector and on the chemical environment. The chemical environment sensitive MASAs are used within zero pressure classical Metropolis Monte Carlo, finite temperature calculations to investigate the effect of well size on the electron 002 and 220 structure factors (SFs). The implications of the use of the 002 (200) spot for the quantification of nanostructured Ga<sub>1-x</sub>In<sub>x</sub>As systems are examined while the 220 SF across the well is evaluated and is found to be very sensitive to the in-plane static displacements.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000268064700149 Publication Date 2009-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 2.068 Times cited Open Access
Notes Fwo G.0425.05; Esteem 026019 Approved Most recent IF: 2.068; 2009 IF: 2.072
Call Number UA @ lucian @ c:irua:78282 Serial 2160
Permanent link to this record
 

 
Author Dhong, H.M.; Zhang, J.; Peeters, F.M.; Xu, W.
Title Optical conductance and transmission in bilayer graphene Type A1 Journal article
Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 106 Issue 4 Pages 043103,1-043103,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a theoretical study of the optoelectronic properties of bilayer graphene. The optical conductance and transmission coefficient are calculated using the energy-balance equation derived from a Boltzmann equation for an air/graphene/dielectric-wafer system. For short wavelengths (<0.2 µm), we obtain the universal optical conductance =e2/(2). Interestingly, there exists an optical absorption window in the wavelength range 10100 µm, which is induced by different transition energies required for inter- and intra-band optical absorptions in the presence of the MossBurstein effect. As a result, the position and width of this absorption window depend sensitively on temperature, carrier density, and sample mobility of the system. These results are relevant for applications of recently developed graphene devices in advanced optoelectronics such as the infrared photodetectors.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000270083800004 Publication Date 2009-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 11 Open Access
Notes Approved Most recent IF: 2.068; 2009 IF: 2.072
Call Number UA @ lucian @ c:irua:79315 Serial 2472
Permanent link to this record
 

 
Author Pourghaderi, M.A.; Magnus, W.; Sorée, B.; Meuris, M.; de Meyer, K.; Heyns, M.
Title Ballistic current in metal-oxide-semiconductor field-effect transistors: the role of device topology Type A1 Journal article
Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 106 Issue 5 Pages 053702,1-053702,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this study we investigate the effect of device topology on the ballistic current in n-channel metal-oxide-semiconductor field-effect transistors. Comparison of the nanoscale planar and double-gate devices reveals that, down to a certain thickness of the double gate film, the ballistic current flowing in the double gate device is twice as large compared to its planar counterpart. On the other hand, further thinning of the film beyond this threshold is found to change noticeably the confinement and transport characteristics, which are strongly depending on the film material and the surface orientation. For double gate Ge and Si devices there exists a critical film thickness below which the transverse gate field is no longer effectively screened by the inversion layer electron gas and mutual inversion of the two gates is turned on. In the case of GaAs and other similar IIIV compounds, a decrease in the film thickness may drastically change the occupation of the L-valleys and therefore amend the transport properties. The simulation results show that, in both cases, the ballistic current and the transconductance are considerably enhanced.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000269850300052 Publication Date 2009-09-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 3 Open Access
Notes Approved Most recent IF: 2.068; 2009 IF: 2.072
Call Number UA @ lucian @ c:irua:79744 Serial 214
Permanent link to this record
 

 
Author Zhang, Y.; Fischetti, M.V.; Sorée, B.; Magnus, W.; Heyns, M.; Meuris, M.
Title Physical modeling of strain-dependent hole mobility in Ge p-channel inversion layers Type A1 Journal article
Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 106 Issue 8 Pages 083704,1-083704,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present comprehensive calculations of the low-field hole mobility in Ge p-channel inversion layers with SiO2 insulator using a six-band k·p band-structure model. The cases of relaxed, biaxially, and uniaxially (both tensily and compressively) strained Ge are studied employing an efficient self-consistent methodmaking use of a nonuniform spatial mesh and of the Broyden second methodto solve the coupled envelope-wave function k·p and Poisson equations. The hole mobility is computed using the KuboGreenwood formalism accounting for nonpolar hole-phonon scattering and scattering with interfacial roughness. Different approximations to handle dielectric screening are also investigated. As our main result, we find a large enhancement (up to a factor of 10 with respect to Si) of the mobility in the case of uniaxial compressive stress similarly to the well-known case of Si. Comparison with experimental data shows overall qualitative agreement but with significant deviations due mainly to the unknown morphology of the rough Ge-insulator interface, to additional scattering with surface optical phonon from the high- insulator, to Coulomb scattering interface traps or oxide chargesignored in our calculationsand to different channel structures employed.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000271358100050 Publication Date 2009-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 29 Open Access
Notes Approved Most recent IF: 2.068; 2009 IF: 2.072
Call Number UA @ lucian @ c:irua:80137 Serial 2617
Permanent link to this record
 

 
Author Saraiva, M.; Georgieva, V.; Mahieu, S.; van Aeken, K.; Bogaerts, A.; Depla, D.
Title Compositional effects on the growth of Mg(M)O films Type A1 Journal article
Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 107 Issue 3 Pages 034902,1-034902,10
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The influence of the composition on the crystallographic properties of deposited Mg(M)O (with M=Al, Cr, Ti, Y, and Zr) films is studied. For a flexible control of the composition, dual reactive magnetron sputtering was used as deposition technique. Two different approaches to predict the composition are discussed. The first is an experimental way based on the simple relationship between the deposition rate and the target-substrate distance. The second is a route using a Monte Carlo based particle trajectory code. Both methods require a minimal experimental input and enable the user to quickly predict the composition of complex thin films. Good control and flexibility allow us to study the compositional effects on the growth of Mg(M)O films. Pure MgO thin films were grown with a (111) preferential out-of-plane orientation. When adding M to MgO, two trends were noticed. The first trend is a change in the MgO lattice parameters compared to pure MgO. The second tendency is a decrease in the crystallinity of the MgO phase. The experimentally determined crystallographic properties are shown to be in correspondence with the predicted properties from molecular dynamics simulations.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000274517300116 Publication Date 2010-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited Open Access
Notes Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:80346 Serial 447
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M.
Title Magnetoresistance in a hybrid ferromagnetic/semiconductor device Type A1 Journal article
Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 107 Issue 6 Pages 063718,1-063718,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ballistic transport of a two-dimensional electron gas (2DEG) in a rectangle shaped wire, subjected to a local nonhomogeneous magnetic field that results from an in-plane magnetized ferromagnetic (FM) strip deposited above the 2DEG, is investigated theoretically. We found a positive magnetoresistance (MR), which exhibits hysteresis behavior with respect to the direction of the magnetic field sweep, in agreement with a recent experiment. This positive MR can be tuned by applying a gate voltage to the FM strip.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000276210800063 Publication Date 2010-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 10 Open Access
Notes ; ; Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:82281 Serial 1927
Permanent link to this record
 

 
Author Vandenberghe, W.; Sorée, B.; Magnus, W.; Groeseneken, G.
Title Zener tunneling in semiconductors under nonuniform electric fields Type A1 Journal article
Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 107 Issue 5 Pages 054520,1-054520,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, a renewed interest in Zener tunneling has arisen because of its increasing impact on semiconductor device performance at nanometer dimensions. In this paper we evaluate the tunnel probability under the action of a nonuniform electric field using a two-band model and arrive at significant deviations from the commonly used Kanes model, valid for weak uniform fields only. A threshold on the junction bias where Kanes model for Zener tunneling breaks down is determined. Comparison with Kanes model particularly shows that our calculation yields a higher tunnel probability for intermediate electric fields and a lower tunnel probability for high electric fields. When performing a current calculation comparing to the WKB approximation for the case of an abrupt p-n junction significant differences concerning the shape of the I-V curve are demonstrated.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000275657500136 Publication Date 2010-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 22 Open Access
Notes ; William Vandenberghe gratefully acknowledges the support of a Ph. D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). These authors acknowledge the support from IMEC's Industrial Affiliation Program and the authors would like to thank Anne Verhulst for useful comments. ; Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:82450 Serial 3929
Permanent link to this record
 

 
Author Depla, D.; Li, X.Y.; Mahieu, S.; van Aeken, K.; Leroy, W.P.; Haemers, J.; de Gryse, R.; Bogaerts, A.
Title Rotating cylindrical magnetron sputtering: simulation of the reactive process Type A1 Journal article
Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 107 Issue 11 Pages 113307,1-113307,9
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A rotating cylindrical magnetron consists of a cylindrical tube, functioning as the cathode, which rotates around a stationary magnet assembly. In stationary mode, the cylindrical magnetron behaves similar to a planar magnetron with respect to the influence of reactive gas addition to the plasma. However, the transition from metallic mode to poisoned mode and vice versa depends on the rotation speed. An existing model has been modified to simulate the influence of target rotation on the well known hysteresis behavior during reactive magnetron sputtering. The model shows that the existing poisoning mechanisms, i.e., chemisorption, direct reactive ion implantation and knock on implantation, are insufficient to describe the poisoning behavior of the rotating target. A better description of the process is only possible by including the deposition of sputtered material on the target.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000278907100020 Publication Date 2010-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 15 Open Access
Notes Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:82631 Serial 2930
Permanent link to this record
 

 
Author Gou, F.; Neyts, E.; Eckert, M.; Tinck, S.; Bogaerts, A.
Title Molecular dynamics simulations of Cl+ etching on a Si(100) surface Type A1 Journal article
Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 107 Issue 11 Pages 113305,1-113305,6
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics simulations using improved TersoffBrenner potential parameters were performed to investigate Cl+ etching of a {2×1} reconstructed Si(100) surface. Steady-state Si etching accompanying the Cl coverage of the surface is observed. Furthermore, a steady-state chlorinated reaction layer is formed. The thickness of this reaction layer is found to increase with increasing energy. The stoichiometry of SiClx species in the reaction layer is found to be SiCl:SiCl2:SiCl3 = 1.0:0.14:0.008 at 50 eV. These results are in excellent agreement with available experimental data. While elemental Si products are created by physical sputtering, most SiClx (0<x<4) etch products are produced by chemical-enhanced physical sputtering.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000278907100018 Publication Date 2010-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 15 Open Access
Notes Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:82663 Serial 2175
Permanent link to this record
 

 
Author Schattschneider, P.; Ennen, I.; Stoger-Pollach, M.; Verbeeck, J.
Title Circular dichroism in the electron microscope: progress and applications (invited) Type A1 Journal article
Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 107 Issue 9 Pages 09d311,1-09d311,6
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract According to theory, x-ray magnetic circular dichroism in a synchrotron is equivalent to energy loss magnetic chiral dichroism (EMCD) in a transmission electron microscope (TEM). After a synopsis of the development of EMCD, the theoretical background is reviewed and recent results are presented, focusing on the study of magnetic nanoparticles for ferrofluids and Heusler alloys for spintronic devices. Simulated maps of the dichroic strength as a function of atom position in the crystal allow evaluating the influence of specimen thickness and sample tilt on the experimental EMCD signal. Finally, the possibility of direct observation of chiral electronic transitions with atomic resolution in a TEM is discussed.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000277834300276 Publication Date 2010-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 28 Open Access
Notes Esteem Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:83653UA @ admin @ c:irua:83653 Serial 361
Permanent link to this record
 

 
Author Carrillo-Nuñez, H.; Magnus, W.; Peeters, F.M.
Title A simplified quantum mechanical model for nanowire transistors based on non-linear variational calculus Type A1 Journal article
Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 108 Issue 6 Pages 063708,1-063708,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A simplified quantum mechanical model is developed to investigate quantum transport features such as the electron concentration and the current flowing through a silicon nanowire metal-oxide-semiconductor field-effect transistor (MOSFET). In particular, the electron concentration is extracted from a self-consistent solution of the Schrödinger and Poisson equations as well as the ballistic Boltzmann equation which have been solved by exploiting a nonlinear variational principle within the framework of the generalized local density approximation. A suitable action functional has been minimized and details of the implementation and its numerical minimization are given. The current density and its related current-voltage characteristics are calculated from the one-dimensional ballistic steady-state Boltzmann transport equation which is solved analytically by using the method of characteristic curves. The straightforward implementation, the computational speed and the good qualitative behavior of the transport characteristics observed in our approach make it a promising simulation method for modeling quantum transport in nanowire MOSFETs.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000282646400067 Publication Date 2010-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 7 Open Access
Notes ; This work was supported by Flemish Science Foundation (FWO-VI) and the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC. ; Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:84943 Serial 3006
Permanent link to this record
 

 
Author Castelano, L.K.; Hai, G.Q.; Partoens, B.; Peeters, F.M.
Title Artificial molecular quantum rings under magnetic field influence Type A1 Journal article
Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 106 Issue 7 Pages 073702,1-073702,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The ground states of a few electrons confined in two vertically coupled quantum rings in the presence of an external magnetic field are studied systematically within the current spin-density functional theory. Electron-electron interactions combined with inter-ring tunneling affect the electronic structure and the persistent current. For small values of the external magnetic field, we recover the zero magnetic field molecular quantum ring ground state configurations. Increasing the magnetic field many angular momentum, spin, and isospin transitions are predicted to occur in the ground state. We show that these transitions follow certain rules, which are governed by the parity of the number of electrons, the single-particle picture, Hunds rules, and many-body effects.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000270915600047 Publication Date 2009-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 5 Open Access
Notes Approved Most recent IF: 2.068; 2009 IF: 2.072
Call Number UA @ lucian @ c:irua:86926 Serial 155
Permanent link to this record
 

 
Author Wouters, J.; Lebedev, O.I.; Van Tendeloo, G.; Yamada, H.; Sato, N.; Vanacken, J.; Moshchalkov, V.V.; Verbiest, T.; Valev, V.K.
Title Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy Type A1 Journal article
Year 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 109 Issue 7 Pages 076105-076105,3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Faraday rotation has been used to investigate a series of polymer films doped with magnetic iron oxide nanoparticles. The films have been prepared by spin-coating and melt-processing. In each case, upon varying the angle of optical incidence on the films, an in-plane magnetic anisotropy is observed. The effect of such an anisotropy on the Faraday rotation as a function of the angle of optical incidence is verified by comparison with magnetically poled films. These results demonstrate that care should be taken upon analyzing the magnetic behavior of such films on account of the sample preparation techniques themselves being able to affect the magnetization.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000289949000166 Publication Date 2011-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 10 Open Access
Notes Fwo; Iap; Iwt Approved Most recent IF: 2.068; 2011 IF: 2.168
Call Number UA @ lucian @ c:irua:89917 Serial 2709
Permanent link to this record
 

 
Author Vandenberghe, W.; Sorée, B.; Magnus, W.; Fischetti, M.V.
Title Generalized phonon-assisted Zener tunneling in indirect semiconductors with non-uniform electric fields : a rigorous approach Type A1 Journal article
Year 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 109 Issue 12 Pages 124503-124503,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A general framework to calculate the Zener current in an indirect semiconductor with an externally applied potential is provided. Assuming a parabolic valence and conduction band dispersion, the semiconductor is in equilibrium in the presence of the external field as long as the electron-phonon interaction is absent. The linear response to the electron-phonon interaction results in a non-equilibrium system. The Zener tunneling current is calculated from the number of electrons making the transition from valence to conduction band per unit time. A convenient expression based on the single particle spectral functions is provided, enabling the evaluation of the Zener tunneling current under any three-dimensional potential profile. For a one-dimensional potential profile an analytical expression is obtained for the current in a bulk semiconductor, a semiconductor under uniform field, and a semiconductor under a non-uniform field using the WKB (Wentzel-Kramers-Brillouin) approximation. The obtained results agree with the Kane result in the low field limit. A numerical example for abrupt p-n diodes with different doping concentrations is given, from which it can be seen that the uniform field model is a better approximation than the WKB model, but a direct numerical treatment is required for low bias conditions.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000292331200134 Publication Date 2011-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 41 Open Access
Notes ; William Vandenberghe gratefully acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). ; Approved Most recent IF: 2.068; 2011 IF: 2.168
Call Number UA @ lucian @ c:irua:90808 Serial 1325
Permanent link to this record
 

 
Author Hezareh, T.; Razavi, F.S.; Kremer, R.K.; Habermeier, H.-U.; Lebedev, O.I.; Kirilenko, D.; Van Tendeloo, G.
Title Effect of PbZr0.52Ti0.48O3 thin layer on structure, electronic and magnetic properties of La0.65Sr0.35MnO3 and La0.65Ca0.30MnO3 thin-films Type A1 Journal article
Year 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 109 Issue 11 Pages 113707,1-113707,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Epitaxial thin film heterostructures of high dielectric PbZr<sub>1-x</sub>Ti<sub>x</sub>O<sub>3</sub> (PZT) and La<sub>1-x</sub>A<sub>x</sub>MnO<sub>3</sub> (A-divalent alkaline earth metals such as Sr (LSMO) and Ca (LCMO)) were grown on SrTiO<sub>3</sub> substrates and their structure, temperature dependence of electrical resistivity, and magnetization were investigated as a function of the thickness of the LSMO(LCMO) layer. The microstructures of the samples were analyzed by TEM. By applying an electric field across the PZT layer, we applied a ferrodistortive pressure on the manganite layer and studied the correlations between lattice distortion and electric transport and magnetic properties of the CMR materials.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000292214700069 Publication Date 2011-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 4 Open Access
Notes Approved Most recent IF: 2.068; 2011 IF: 2.168
Call Number UA @ lucian @ c:irua:90964 Serial 843
Permanent link to this record
 

 
Author Amini, M.N.; Saniz, R.; Lamoen, D.; Partoens, B.
Title Hydrogen impurities and native defects in CdO Type A1 Journal article
Year 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 110 Issue 6 Pages 063521,1-063521,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We have used first-principles calculations based on density functional theory to study point defects in CdO within the local density approximation and beyond (LDA+U). Hydrogen interstitials and oxygen vacancies are found to act as shallow donors and can be interpreted as the cause of conductivity in CdO. Hydrogen can also occupy an oxygen vacancy in its substitutional form and also acts as a shallow donor. Similar to what was found for ZnO and MgO, hydrogen creates a multicenter bond with its six oxygen neighbors in CdO. The charge neutrality level for native defects and hydrogen impurities has been calculated. It is shown that in the case of native defects, it is not uniquely defined. Indeed, this level depends highly on the chemical potentials of the species and one can obtain different values for different end states in the experiment. Therefore, a comparison with experiment can only be made if the chemical potentials of the species in the experiment are well defined. However, for the hydrogen interstitial defect, since this level is independent of the chemical potential of hydrogen, one can obtain a unique value for the charge neutrality level. We find that the Fermi level stabilizes at 0.43 eV above the conduction band minimum in the case of the hydrogen interstitial defect, which is in good agreement with the experimentally reported value of 0.4 eV.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000295619300041 Publication Date 2011-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 13 Open Access
Notes ; The authors gratefully acknowledge financial support from the IWT-Vlaanderen through the ISIMADE project, the FWO-Vlaanderen through Project G.0191.08 and the BOF-NOI of the University of Antwerp. This work was carried out using the HPC infrastructure at the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC. ; Approved Most recent IF: 2.068; 2011 IF: 2.168
Call Number UA @ lucian @ c:irua:93613 Serial 1533
Permanent link to this record
 

 
Author Dong, H.M.; Xu, W.; Peeters, F.M.
Title High-field transport properties of graphene Type A1 Journal article
Year 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 110 Issue 6 Pages 063704,1-063704,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a theoretical investigation on the transport properties of graphene in the presence of high dc driving fields. Considering electron interactions with impurities and acoustic and optical phonons in graphene, we employ the momentum- and energy-balance equations derived from the Boltzmann equation to self-consistently evaluate the drift velocity and temperature of electrons in graphene in the linear and nonlinear response regimes. We find that the current-voltage relation exhibits distinctly nonlinear behavior, especially in the high electric field regime. Under the action of high-fields the large source-drain (sd) current density can be achieved and the current saturation in graphene is incomplete with increasing the sd voltage Vsd up to 3 V. Moreover, for high fields, Vsd>0.1 V, the heating of electrons in graphene occurs. It is shown that the sd current and electron temperature are sensitive to electron density and lattice temperature in the graphene device. This study is relevant to the application of graphene as high-field nano-electronic devices such as graphene field-effect transistors.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000295619300059 Publication Date 2011-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 17 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China (Grant No. 10974206) and the Department of Science and Technology of Yunnan Province. ; Approved Most recent IF: 2.068; 2011 IF: 2.168
Call Number UA @ lucian @ c:irua:93614 Serial 1433
Permanent link to this record
 

 
Author Bernaerts, D.; Van Tendeloo, G.; Amelinckx, S.; Hevesi, K.; Gensterblum, G.; Yu, L.M.; Pireaux, J.J.; Grey, F.; Bohr, J.
Title Structural defects and epitaxial rotation of C60 and C70 (111) films on GeS(001) Type A1 Journal article
Year 1996 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 80 Issue 6 Pages 3310-3318
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A transmission electron microscopy study of epitaxial C-60 and C-70 films grown on a GeS (001) surface is presented. The relationship between the orientation of the substrate and the films and structural defects in the films, such as grain boundaries, unknown in bulk C-60 and C-70 crystals, are studied. Small misalignments of the overlayers with respect to the orientation of the substrate, so-called epitaxial rotations, exist mainly in C-70 films, but also sporadically in the C-60 overlayers. A simple symmetry model, previously used to predict the rotation of hexagonal overlayers on hexagonal substrates, is numerically tested and applied to the present situation. Some qualitative conclusions concerning the substrate-film interaction are deduced. (C) 1996 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1996VG68100027 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.183 Times cited 6 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:95233 Serial 3229
Permanent link to this record