|
Record |
Links |
|
Author |
Dhong, H.M.; Zhang, J.; Peeters, F.M.; Xu, W. |
|
|
Title |
Optical conductance and transmission in bilayer graphene |
Type |
A1 Journal article |
|
Year |
2009 |
Publication |
Journal of applied physics |
Abbreviated Journal |
J Appl Phys |
|
|
Volume |
106 |
Issue |
4 |
Pages |
043103,1-043103,6 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
We present a theoretical study of the optoelectronic properties of bilayer graphene. The optical conductance and transmission coefficient are calculated using the energy-balance equation derived from a Boltzmann equation for an air/graphene/dielectric-wafer system. For short wavelengths (<0.2 µm), we obtain the universal optical conductance =e2/(2). Interestingly, there exists an optical absorption window in the wavelength range 10100 µm, which is induced by different transition energies required for inter- and intra-band optical absorptions in the presence of the MossBurstein effect. As a result, the position and width of this absorption window depend sensitively on temperature, carrier density, and sample mobility of the system. These results are relevant for applications of recently developed graphene devices in advanced optoelectronics such as the infrared photodetectors. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Institute of Physics |
Place of Publication |
New York, N.Y. |
Editor |
|
|
|
Language |
|
Wos |
000270083800004 |
Publication Date |
2009-08-20 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0021-8979; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.068 |
Times cited |
11 |
Open Access |
|
|
|
Notes |
|
Approved |
Most recent IF: 2.068; 2009 IF: 2.072 |
|
|
Call Number |
UA @ lucian @ c:irua:79315 |
Serial |
2472 |
|
Permanent link to this record |