|   | 
Details
   web
Records
Author Lu, Y.; Liu, X.-L.; He, L.; Zhang, Y.-X.; Hu, Z.-Y.; Tian, G.; Cheng, X.; Wu, S.-M.; Li, Y.-Z.; Yang, X.-H.; Wang, L.-Y.; Liu, J.-W.; Janiak, C.; Chang, G.-G.; Li, W.-H.; Van Tendeloo, G.; Yang, X.-Y.; Su, B.-L.
Title Spatial heterojunction in nanostructured TiO₂ and its cascade effect for efficient photocatalysis Type A1 Journal article
Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 20 Issue 5 Pages 3122-3129
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A highly efficient photoenergy conversion is strongly dependent on the cumulative cascade efficiency of the photogenerated carriers. Spatial heterojunctions are critical to directed charge transfer and, thus, attractive but still a challenge. Here, a spatially ternary titanium-defected TiO2@carbon quantum dots@reduced graphene oxide (denoted as V-Ti@CQDs@rGO) in one system is shown to demonstrate a cascade effect of charges and significant performances regarding the photocurrent, the apparent quantum yield, and photocatalysis such as H-2 production from water splitting and CO2 reduction. A key aspect in the construction is the technologically irrational junction of Ti-vacancies and nanocarbons for the spatially inside-out heterojunction. The new “spatial heterojunctions” concept, characteristics, mechanism, and extension are proposed at an atomic- nanoscale to clarify the generation of rational heterojunctions as well as the cascade electron transfer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000535255300024 Publication Date 2020-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited 5 Open Access Not_Open_Access
Notes ; This work was supported by the joint National Natural Science Foundation of China-Deutsche Forschungsgemeinschaft (NSFC-DFG) project (NSFC grant 51861135313, DFG JA466/39-1), Fundamental Research Funds for the Central Universities (19lgpy113, 19lgzd16), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) and Jilin Province Science and Technology Development Plan (20180101208JC). ; Approved Most recent IF: 10.8; 2020 IF: 12.712
Call Number UA @ admin @ c:irua:170263 Serial 6608
Permanent link to this record
 

 
Author Bourgeois, L.; Zhang, Y.; Zhang, Z.; Chen, Y.; Medhekar, N., V
Title Transforming solid-state precipitates via excess vacancies Type A1 Journal article
Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun
Volume 11 Issue 1 Pages 1248
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Many phase transformations associated with solid-state precipitation look structurally simple, yet, inexplicably, take place with great difficulty. A classic case of difficult phase transformations is the nucleation of strengthening precipitates in high-strength lightweight aluminium alloys. Here, using a combination of atomic-scale imaging, simulations and classical nucleation theory calculations, we investigate the nucleation of the strengthening phase theta' onto a template structure in the aluminium-copper alloy system. We show that this transformation can be promoted in samples exhibiting at least one nanoscale dimension, with extremely high nucleation rates for the strengthening phase as well as for an unexpected phase. This template-directed solid-state nucleation pathway is enabled by the large influx of surface vacancies that results from heating a nanoscale solid. Template-directed nucleation is replicated in a bulk alloy as well as under electron irradiation, implying that this difficult transformation can be facilitated under the general condition of sustained excess vacancy concentrations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000549162600025 Publication Date 2020-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 5 Open Access OpenAccess
Notes ; The authors are indebted to Matthew Weyland for his expert advice on aberrationcorrected scanning transmission electron microscopy. L.B. would like to acknowledge initial discussions with B.C. Muddle and J.F. Nie many years ago regarding the possible thermodynamic role of vacancies in solid-state precipitation. The authors acknowledge funding from the Australian Research Council (LE0454166, LE110100223), the Victorian State Government and Monash University for instrumentation, and use of the facilities within the Monash Centre for Electron Microscopy. The authors thank Flame Burgmann, Dougal McCulloch and Edwin Mayes for access to and assistance at the Microscopy and Microanalysis Facility at RMIT University. L.B. and N.M. acknowledge the financial support of the Australian Research Council (DP150100558). Authors also gratefully acknowledge the computational support from MonARCH, MASSIVE and the National Computing Infrastructure and Pawsey Supercomputing Centre. ZZ and YZ are thankful to Monash University for a Monash Graduate Scholarship, a Monash International Postgraduate Research Scholarship. Z.Z. is grateful for a Monash Centre for Electron Microscopy Postgraduate Scholarship. The authors are grateful to Anita Hill for advice. ; Approved Most recent IF: 16.6; 2020 IF: 12.124
Call Number UA @ admin @ c:irua:170797 Serial 6635
Permanent link to this record
 

 
Author Liang, Y.-S.; Xue, C.; Zhang, Y.-R.; Wang, Y.-N.
Title Investigation of active species in low-pressure capacitively coupled N-2/Ar plasmas Type A1 Journal article
Year 2021 Publication Physics Of Plasmas Abbreviated Journal Phys Plasmas
Volume 28 Issue 1 Pages 013510
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, a self-consistent fluid model is developed focusing on the plasma parameters in capacitively coupled 20% N 2-80% Ar discharges. Measurements of ion density are performed with the help of a floating double probe, and the emission intensities from Ar(4p) and N 2 ( B ) transitions are detected by an optical emission spectroscopy to estimate their relative densities. The consistency between the numerical and experimental results confirms the reliability of the simulation. Then the plasma characteristics, specifically the reaction mechanisms of active species, are analyzed under various voltages. The increasing voltage leads to a monotonous increase in species density, whereas a less homogeneous radial distribution is observed at a higher voltage. Due to the high concentration of Ar gas, Ar + becomes the main ion, followed by the N 2 +</mml:msubsup> ion. Besides the electron impact ionization of neutrals, the charge transfer processes of Ar +/ N 2 and N 2 +</mml:msubsup>/Ar are found to have an impact on the ionic species. The results indicate that adopting the lower charge transfer reaction rate coefficients weakens the Ar + ion density and yields a higher N 2 +</mml:msubsup> ion density. However, the effect on the species spatial distributions and other species densities is limited. As for the excited-state species, the electron impact excitation of background gases remains overwhelming in the formation of Ar(4p), N 2 ( B ), and N 2 ( a ' ), whereas the <mml:msub> N 2 ( A ) molecules are mainly formed by the decay of <mml:msub> N 2 ( B ). In addition, the dissociation of <mml:msub> N 2 collided by excited-state Ar atoms dominates the N generation, which are mostly depleted to produce N + ions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000629931300002 Publication Date 2021-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.115
Call Number UA @ admin @ c:irua:177669 Serial 6767
Permanent link to this record
 

 
Author Zhang, Z.; Bourgeois, L.; Zhang, Y.; Rosalie, J.M.; Medhekar, N.
Title Advanced imaging and simulations of precipitate interfaces in aluminium alloys and their role in phase transformations Type P1 Proceeding
Year 2020 Publication MATEC web of conferences T2 – 17th International Conference on Aluminium Alloys (ICAA), October 26-29, 2020 Abbreviated Journal
Volume Issue Pages 09003
Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Precipitation is accompanied by the formation and migration of heterophase interfaces. Using the combined approach of advanced imaging and atomistic simulations, we studied the precipitate-matrix interfaces in various aluminium alloy systems, aiming to resolve their detailed atomic structures and illuminate their role in phase transformations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000652552200053 Publication Date 2020-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume 326 Series Issue Edition
ISSN 2261-236x; 2274-7214 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:179147 Serial 6851
Permanent link to this record
 

 
Author Peng, X.; Peng, H.; Zhao, K.; Zhang, Y.; Xia, F.; Lyu, J.; Van Tendeloo, G.; Sun, C.; Wu, J.
Title Direct visualization of atomic-scale heterogeneous structure dynamics in MnO₂ nanowires Type A1 Journal article
Year 2021 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 13 Issue 28 Pages 33644-33651
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Manganese oxides are attracting great interest owing to their rich polymorphism and multiple valent states, which give rise to a wide range of applications in catalysis, capacitors, ion batteries, and so forth. Most of their functionalities are connected to transitions among the various polymorphisms and Mn valences. However, their atomic-scale dynamics is still a great challenge. Herein, we discovered a strong heterogeneity in the crystalline structure and defects, as well as in the Mn valence state. The transitions are studied by in situ transmission electron microscopy (TEM), and they involve a complex ordering of [MnO6] octahedra as the basic building tunnels. MnO2 nanowires synthesized using solution-based hydrothermal methods usually exhibit a large number of multiple polymorphism impurities with different tunnel sizes. Upon heating, MnO2 nanowires undergo a series of stoichiometric polymorphism changes, followed by oxygen release toward an oxygen-deficient spinel and rock-salt phase. The impurity polymorphism exhibits an abnormally high stability with interesting small-large-small tunnel size transition, which is attributed to a preferential stabilizer (K+) concentration, as well as a strong competition of kinetics and thermodynamics. Our results unveil the complicated intergrowth of polymorphism impurities in MnO2, which provide insights into the heterogeneous kinetics, thermodynamics, and transport properties of the tunnel-based building blocks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000677540900101 Publication Date 2021-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 7.504
Call Number UA @ admin @ c:irua:180450 Serial 6861
Permanent link to this record
 

 
Author Bae, J.; Cichocka, M.O.; Zhang, Y.; Bacsik, Z.; Bals, S.; Zou, X.; Willhammar, T.; Hong, S.B.
Title Phase transformation behavior of a two-dimensional zeolite Type A1 Journal article
Year 2019 Publication Angewandte Chemie: international edition in English Abbreviated Journal
Volume 58 Issue 30 Pages 10230-10235
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Understanding the molecular-level mechanisms of phase transformation in solids is of fundamental interest for functional materials such as zeolites. Two-dimensional (2D) zeolites, when used as shape-selective catalysts, can offer improved access to the catalytically active sites and a shortened diffusion length in comparison with their 3D analogues. However, few materials are known to maintain both their intralayer microporosity and structure during calcination for organic structure-directing agent (SDA) removal. Herein we report that PST-9, a new 2D zeolite which has been synthesized via the multiple inorganic cation approach and fulfills the requirements for true layered zeolites, can be transformed into the small-pore zeolite EU-12 under its crystallization conditions through the single-layer folding process, but not through the traditional dissolution/recrystallization route. We also show that zeolite crystal growth pathway can differ according to the type of organic SDAs employed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000476452700030 Publication Date 2019-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access OpenAccess
Notes We acknowledge financial support from National Creative Research Initiative Program (2012R1A3A-2048833) through the National Research Foundation of Korea, the National Research Council of Science & Technology (CRC-14-1-KRICT) grant by the Korea government (MSIP), the Swedish Research Council (2017-04321), and the Knut and Alice Wallenberg Foundation (KAW) through the project grant 3DEM-NATUR (2012.0112). T.W. acknowledges an international postdoc grant from the Swedish Research Council (2014-06948). Approved no
Call Number UA @ admin @ c:irua:181233 Serial 6878
Permanent link to this record
 

 
Author Zhang, Y.; Sahoo, P.K.; Ren, P.; Qin, Y.; Cauwenbergh, R.; Nimmegeers, P.; Gandhi, S.R.; Van Passel, S.; Guidetti, A.; Das, S.
Title Transition metal-free approach for the late-stage benzylic C(sp3)-H etherifications and esterifications Type A1 Journal article
Year 2022 Publication Chemical Communications Abbreviated Journal Chem Commun
Volume 58 Issue 81 Pages 11454-11457
Keywords A1 Journal article; Engineering Management (ENM); Organic synthesis (ORSY); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Herein, we report a transition metal-free approach for the regioselective functionalisation of benzylic C(sp3)-H bonds using alcohols and carboxylic acids as the nucleophiles. This approach provides a straightforward route for the synthesis of various benzylic ethers and esters to provide a wide generality of this system. Expediently, twelve pharmaceutically relevant compounds have been synthesized using this strategy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000857171200001 Publication Date 2022-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.9
Call Number UA @ admin @ c:irua:190191 Serial 7372
Permanent link to this record
 

 
Author Chen, H.; Xiong, Y.; Li, J.; Abed, J.; Wang, D.; Pedrazo-Tardajos, A.; Cao, Y.; Zhang, Y.; Wang, Y.; Shakouri, M.; Xiao, Q.; Hu, Y.; Bals, S.; Sargent, E.H.H.; Su, C.-Y.; Yang, Z.
Title Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal Nat Commun
Volume 14 Issue 1 Pages 1719-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Despite the natural abundance and promising properties of Si, there are few examples of crystalline Si-based catalysts. Here, the authors report an epitaxial growth method to construct Co single atoms on Si for light driven CO2 reduction to syngas. Improving the dispersion of active sites simultaneous with the efficient harvest of photons is a key priority for photocatalysis. Crystalline silicon is abundant on Earth and has a suitable bandgap. However, silicon-based photocatalysts combined with metal elements has proved challenging due to silicon's rigid crystal structure and high formation energy. Here we report a solid-state chemistry that produces crystalline silicon with well-dispersed Co atoms. Isolated Co sites in silicon are obtained through the in-situ formation of CoSi2 intermediate nanodomains that function as seeds, leading to the production of Co-incorporating silicon nanocrystals at the CoSi2/Si epitaxial interface. As a result, cobalt-on-silicon single-atom catalysts achieve an external quantum efficiency of 10% for CO2-to-syngas conversion, with CO and H-2 yields of 4.7 mol g((Co))(-1) and 4.4 mol g((Co))(-1), respectively. Moreover, the H-2/CO ratio is tunable between 0.8 and 2. This photocatalyst also achieves a corresponding turnover number of 2 x 10(4) for visible-light-driven CO2 reduction over 6 h, which is over ten times higher than previously reported single-atom photocatalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000962607600018 Publication Date 2023-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 6 Open Access OpenAccess
Notes This work was supported by the National Natural Science Foundation of China (21821003, 21890380, 21905316), Guangdong Natural Science Foundation (2019A1515011748), the Science and Technology Planning Project of Guangdong Province (2019A050510018), Pearl River Recruitment Program of Talent (2019QN01C108), the EU Infrastructure Project EUSMI (Grant No. E190700310), and Sun Yat-sen University. D.W. acknowledges an Individual Fellowship funded by the Marie-Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by grant no. 731019 (EUSMI) and ERC Consolidator grant no. 815128 (REALNANO). This project has received funding from the European Commission Grant (EUSMI E190700310). Synchrotron XAS data described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council (NSERC), the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number UA @ admin @ c:irua:196062 Serial 7932
Permanent link to this record
 

 
Author Xiaoyan, S.; Zhang, Y.-R.; Wang, Y.-N.; He, J.-X.
Title Fluid simulation of the superimposed dual-frequency source effect in inductively coupled discharges Type A1 Journal article
Year 2021 Publication Physics Of Plasmas Abbreviated Journal Phys Plasmas
Volume 28 Issue 11 Pages 113504-113510
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Superimposition of dual frequencies (DFs) is one of the methods used for controlling plasma distribution in an inductively coupled plasma (ICP) source. The effects of a superimposed DF on the argon plasma characteristics have been investigated using a two-dimensional self-consistent fluid model. When both currents are fixed at 6A, the plasma density drops with decrease in one of the source frequencies due to less efficient heating and the plasma uniformity improves significantly. Moreover, for ICP operated with superimposed DFs (i.e., 4.52MHz/13.56MHz and 2.26MHz/13.56MHz), the current source exhibits the same period as the low frequency (LF) component, and the plasma density is higher than that obtained at a single frequency (i.e., 4.52 and 2.26MHz) with the same total current of 12A. However, at superimposed current frequencies of 6.78MHz/13.56MHz, the plasma density is lower than that obtained at a single frequency of 6.78MHz due to the weaker negative azimuthal electric field between two positive maxima during one period of 6.78MHz. When the superimposed DF ICP operates at 2.26 and 13.56MHz, the rapid oscillations of the induced electric field become weaker during one period of 2.26MHz as the current ratio of 2.26MHz/13.56MHz rises from 24A/7 A to 30A/1 A, and the plasma density drops with the current ratio due to weakened electron heating. The uniformity of plasma increases due to sufficient diffusion under the low-density condition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000760326100004 Publication Date 2021-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664x ISBN Additional Links UA library record; WoS full record
Impact Factor 2.115 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.115
Call Number UA @ admin @ c:irua:187245 Serial 7974
Permanent link to this record
 

 
Author Zhang, Y.; van Schayck, J.P.; Pedrazo-Tardajos, A.; Claes, N.; Noteborn, W.E.M.; Lu, P.-H.; Duimel, H.; Dunin-Borkowski, R.E.; Bals, S.; Peters, P.J.; Ravelli, R.B.G.
Title Charging of vitreous samples in cryogenic electron microscopy mitigated by graphene Type A1 Journal article
Year 2023 Publication ACS nano Abbreviated Journal
Volume 17 Issue 16 Pages 15836-15846
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Cryogenic electronmicroscopy can provide high-resolution reconstructionsof macromolecules embedded in a thin layer of ice from which atomicmodels can be built de novo. However, the interactionbetween the ionizing electron beam and the sample results in beam-inducedmotion and image distortion, which limit the attainable resolutions.Sample charging is one contributing factor of beam-induced motionsand image distortions, which is normally alleviated by including partof the supporting conducting film within the beam-exposed region.However, routine data collection schemes avoid strategies wherebythe beam is not in contact with the supporting film, whose rationaleis not fully understood. Here we characterize electrostatic chargingof vitreous samples, both in imaging and in diffraction mode. We mitigatesample charging by depositing a single layer of conductive grapheneon top of regular EM grids. We obtained high-resolution single-particleanalysis (SPA) reconstructions at 2 & ANGS; when the electron beamonly irradiates the middle of the hole on graphene-coated grids, usingdata collection schemes that previously failed to produce sub 3 & ANGS;reconstructions without the graphene layer. We also observe that theSPA data obtained with the graphene-coated grids exhibit a higher b factor and reduced particle movement compared to dataobtained without the graphene layer. This mitigation of charging couldhave broad implications for various EM techniques, including SPA andcryotomography, and for the study of radiation damage and the developmentof future sample carriers. Furthermore, it may facilitate the explorationof more dose-efficient, scanning transmission EM based SPA techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 001041649900001 Publication Date 2023-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record
Impact Factor 17.1 Times cited Open Access OpenAccess
Notes We thank H. Nguyen for editing the manuscript. We warmly thank the M4i Microscopy CORE Lab team of FHML Maastricht University (MU) for their support and collaboration and Eve Timlin and Ye Gao (MU) for providing protein samples. Members of the Amsterdam Scientific Instruments team are acknowledged for their Timepix detector support. This work benefited from access to The Netherlands Centre for Electron Nanoscopy (NeCEN) with assistance from Ludovic Renault and Meindert Lamers. The authors acknowledge financial support of the Netherlands Electron Microscopy Infrastructure (NEMI), project number 184.034.014 of the National Roadmap for Large-Scale Research Infrastructure of the Dutch Research Council (NWO), the PPP Allowance made available by Health-Holland, Top Sector Life Sciences & Health, to stimulate public-private partnerships, project 4DEM, number LSHM21029, and the LINK program from the Province of Limburg, The Netherlands, as well as financial support from the European Commission under the Horizon 2020 Programme by grant no. 815128 (REALNANO). Approved Most recent IF: 17.1; 2023 IF: 13.942
Call Number UA @ admin @ c:irua:198376 Serial 8840
Permanent link to this record
 

 
Author Ying, J.; Xiao, Y.; Chen, J.; Hu, Z.-Y.; Tian, G.; Van Tendeloo, G.; Zhang, Y.; Symes, M.D.D.; Janiak, C.; Yang, X.-Y.
Title Fractal design of hierarchical PtPd with enhanced exposed surface atoms for highly catalytic activity and stability Type A1 Journal article
Year 2023 Publication Nano letters Abbreviated Journal
Volume 23 Issue 16 Pages 7371-7378
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hierarchicalassembly of arc-like fractal nanostructures not onlyhas its unique self-similarity feature for stability enhancement butalso possesses the structural advantages of highly exposed surface-activesites for activity enhancement, remaining a great challenge for high-performancemetallic nanocatalyst design. Herein, we report a facile strategyto synthesize a novel arc-like hierarchical fractal structure of PtPdbimetallic nanoparticles (h-PtPd) by using pyridinium-type ionic liquidsas the structure-directing agent. Growth mechanisms of the arc-likenanostructured PtPd nanoparticles have been fully studied, and precisecontrol of the particle sizes and pore sizes has been achieved. Dueto the structural features, such as size control by self-similaritygrowth of subunits, structural stability by nanofusion of subunits,and increased numbers of exposed active atoms by the curved homoepitaxialgrowth, h-PtPd displays outstanding electrocatalytic activity towardoxygen reduction reaction and excellent stability during hydrothermaltreatment and catalytic process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 001042181100001 Publication Date 2023-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 10.8; 2023 IF: 12.712
Call Number UA @ admin @ c:irua:198408 Serial 8870
Permanent link to this record
 

 
Author Chai, Z.-N.; Wang, X.-C.; Yusupov, M.; Zhang, Y.-T.
Title Unveiling the interaction mechanisms of cold atmospheric plasma and amino acids by machine learning Type A1 Journal article
Year 2024 Publication Plasma processes and polymers Abbreviated Journal
Volume Issue Pages 1-26
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma medicine has attracted tremendous interest in a variety of medical conditions, ranging from wound healing to antimicrobial applications, even in cancer treatment, through the interactions of cold atmospheric plasma (CAP) and various biological tissues directly or indirectly. The underlying mechanisms of CAP treatment are still poorly understood although the oxidative effects of CAP with amino acids, peptides, and proteins have been explored experimentally. In this study, machine learning (ML) technology is introduced to efficiently unveil the interaction mechanisms of amino acids and reactive oxygen species (ROS) in seconds based on the data obtained from the reactive molecular dynamics (MD) simulations, which are performed to probe the interaction of five types of amino acids with various ROS on the timescale of hundreds of picoseconds but with the huge computational load of several days. The oxidative reactions typically start with H-abstraction, and the details of the breaking and formation of chemical bonds are revealed; the modification types, such as nitrosylation, hydroxylation, and carbonylation, can be observed. The dose effects of ROS are also investigated by varying the number of ROS in the simulation box, indicating agreement with the experimental observation. To overcome the limits of timescales and the size of molecular systems in reactive MD simulations, a deep neural network (DNN) with five hidden layers is constructed according to the reaction data and employed to predict the type of oxidative modification and the probability of occurrence only in seconds as the dose of ROS varies. The well-trained DNN can effectively and accurately predict the oxidative processes and productions, which greatly improves the computational efficiency by almost ten orders of magnitude compared with the reactive MD simulation. This study shows the great potential of ML technology to efficiently unveil the underpinning mechanisms in plasma medicine based on the data from reactive MD simulations or experimental measurements. In this study, since reactive molecular dynamics simulation can currently only describe interactions between a few hundred atoms in a few hundred picoseconds, deep neural networks (DNN) are introduced to enhance the simulation results by predicting more data efficiently. image
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 001202061200001 Publication Date 2024-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205512 Serial 9181
Permanent link to this record
 

 
Author Zhang, Y.-R.; Van Laer, K.; Neyts, E.C.; Bogaerts, A.
Title Can plasma be formed in catalyst pores? A modeling investigation Type A1 Journal article
Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 185 Issue 185 Pages 56-67
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract tWe investigate microdischarge formation inside catalyst pores by a two-dimensional fluid model forvarious pore sizes in the m-range and for various applied voltages. Indeed, this is a poorly understoodphenomenon in plasma catalysis. The calculations are performed for a dielectric barrier discharge inhelium, at atmospheric pressure. The electron and ion densities, electron temperature, electric field andpotential, as well as the electron impact ionization and excitation rate and the densities of excited plasmaspecies, are examined for a better understanding of the characteristics of the plasma inside a pore. Theresults indicate that the pore size and the applied voltage are critical parameters for the formation of amicrodischarge inside a pore. At an applied voltage of 20 kV, our calculations reveal that the ionizationmainly takes place inside the pore, and the electron density shows a significant increase near and inthe pore for pore sizes larger than 200m, whereas the effect of the pore on the total ion density isevident even for 10m pores. When the pore size is fixed at 30m, the presence of the pore has nosignificant influence on the plasma properties at an applied voltage of 2 kV. Upon increasing the voltage,the ionization process is enhanced due to the strong electric field and high electron temperature, andthe ion density shows a remarkable increase near and in the pore for voltages above 10 kV. These resultsindicate that the plasma species can be formed inside pores of structured catalysts (in the m range),and they may interact with the catalyst surface, and affect the plasma catalytic process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000369452000006 Publication Date 2015-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 75 Open Access
Notes This work was supported by the Fund for Scientific ResearchFlanders (FWO) (Grant no. G.0217.14N), the National Natural Sci-ence Foundation of China (Grant no. 11405019), and the ChinaPostdoctoral Science Foundation (Grant no. 2015T80244). Theauthors are very grateful to V. Meynen for the useful discussions oncatalysts. This work was carried out in part using the Turing HPCinfrastructure at the CalcUA core facility of the Universiteit Antwer-pen, a division of the Flemish Supercomputer Center VSC, fundedby the Hercules Foundation, the Flemish Government (departmentEWI) and the University of Antwerp. Approved Most recent IF: 9.446
Call Number c:irua:129808 Serial 3984
Permanent link to this record
 

 
Author Zhang, Y.-R.; Neyts, E.C.; Bogaerts, A.
Title Influence of the Material Dielectric Constant on Plasma Generation inside Catalyst Pores Type A1 Journal article
Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 120 Issue 120 Pages 25923-25934
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is gaining increasing interest for various environmental applications, but the crucial question is whether plasma can be created inside catalyst pores and under which conditions. In practice, various catalytic support materials are used, with various dielectric constants. We investigate here the influence of the dielectric constant on the plasma properties inside catalyst pores and in the sheath in front of the pores, for various pore sizes. The calculations are performed by a two-dimensional fluid model for an atmospheric pressure dielectric barrier discharge in helium. The electron impact ionization rate, electron temperature, electron and ion density, as well as the potential distribution and surface charge density, are analyzed for a better understanding of the discharge behavior inside catalyst pores. The results indicate that, in a 100 μm pore, the electron impact ionization in the pore, which is characteristic for the plasma generation inside the pore, is greatly enhanced for dielectric constants below 300. Smaller pore sizes only yield enhanced ionization for smaller dielectric constants, i.e., up to εr = 200, 150, and 50 for pore sizes of 50, 30, and 10 μm. Thus, the most common catalyst supports, i.e., Al2O3 and SiO2, which have dielectric constants around εr = 8−11 and 4.2, respectively, should allow more easily that microdischarges can be formed inside catalyst pores, even for smaller pore sizes. On the other hand, ferroelectric materials with dielectric constants above 300 never seem to yield plasma enhancement inside catalyst pores, not even for 100 μm pore sizes. Furthermore, it is clear that the dielectric constant of the material has a large effect on the extent of plasma enhancement inside the catalyst pores, especially in the range between εr = 4 and εr = 200. The obtained results are explained in detail based on the surface charge density at the pore walls,

and the potential distribution and electron temperature inside and above the pores. The results obtained with this model are

important for plasma catalysis, as the production plasma species in catalyst pores might affect the catalyst properties, and thus

improve the applications of plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000388429100029 Publication Date 2016-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 34 Open Access
Notes This work was supported by the Fund for Scientific Research Flanders (FWO) (Grant G.0217.14N), the National Natural Science Foundation of China (Grant 11405019), and the China Postdoctoral Science Foundation (Grant 2015T80244). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @ c:irua:138602 Serial 4319
Permanent link to this record
 

 
Author Zhang, Y.; Wang, H.-yu; Zhang, Y.-ru; Bogaerts, A.
Title Formation of microdischarges inside a mesoporous catalyst in dielectric barrier discharge plasmas Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 054002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The formation process of a microdischarge (MD) in both μm- and nm-sized catalyst pores is simulated by a two-dimensional particle-in-cell/Monte Carlo collision model. A parallel-plate dielectric barrier discharge configuration in filamentary mode is considered in ambient air. The discharge is powered by a high voltage pulse. Our calculations reveal that a streamer can penetrate into the surface features of a porous catalyst and MDs can be formed inside both μm- and nm-sized pores, yielding ionization inside the pore. For the μm-sized pores, the ionization mainly occurs inside the pore, while for the nm-sized pores the ionization is strongest near and inside the pore. Thus, enhanced discharges near and inside the mesoporous catalyst are observed. Indeed, the maximum values of the electric field, ionization rate and electron density occur near and inside the pore. The maximum electric field and electron density inside the pore first increase when the pore size rises from 4 nm to 10 nm, and then they decrease for the 100 nm pore, due to

a more pronounced surface discharge for the smaller pores. However, the ionization rate is highest for the 100 nm pore due to the largest effective ionization region.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000399277700001 Publication Date 2017-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 15 Open Access OpenAccess
Notes This work was supported by the NSFC (11405067, 11275007, 11375163). Y Zhang gratefully acknowledges the Belgian Federal Science Policy Office for financial support. The authors are very grateful to Wei Jiang for the useful discussions on the photo-ionization model and the particle-incell/ Monte-Carlo model. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:142806 Serial 4566
Permanent link to this record
 

 
Author Sentosun, K.; Lobato, I.; Bladt, E.; Zhang, Y.; Palenstijn, W.J.; Batenburg, K.J.; Van Dyck, D.; Bals, S.
Title Artifact Reduction Based on Sinogram Interpolation for the 3D Reconstruction of Nanoparticles Using Electron Tomography Type A1 Journal article
Year 2017 Publication Particle and particle systems characterization Abbreviated Journal Part. Part. Syst. Charact.
Volume 34 Issue 34 Pages 1700287
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab
Abstract Electron tomography is a well-known technique providing a 3D characterization of the morphology and chemical composition of nanoparticles. However, several reasons hamper the acquisition of tilt series with a large number of projection images, which deteriorate the quality of the 3D reconstruction. Here, an inpainting method that is based on sinogram interpolation is proposed, which enables one to reduce artifacts in the reconstruction related to a limited tilt series of projection images. The advantages of the approach will be demonstrated for the 3D characterization of nanoparticles using phantoms and several case studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000418416100005 Publication Date 2017-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1521-4117 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access OpenAccess
Notes K.S. and S.B. acknowledge support from the Fund for Scientific ResearchFlanders (FWO) (G019014N and G021814N). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). Y.Z. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665501 through a FWO [PEGASUS]2 Marie Skłodowska-Curie fellowship (12U4917N). The authors would like to thank Prof. Luis Liz-Marzán for provision of the samples. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:147857UA @ admin @ c:irua:147857 Serial 4798
Permanent link to this record
 

 
Author Gao, M.; Zhang, Y.; Wang, H.; Guo, B.; Zhang, Q.; Bogaerts, A.
Title Mode Transition of Filaments in Packed-Bed Dielectric Barrier Discharges Type A1 Journal article
Year 2018 Publication Catalysts Abbreviated Journal Catalysts
Volume 8 Issue 6 Pages 248
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We investigated the mode transition from volume to surface discharge in a packed bed dielectric barrier discharge reactor by a two-dimensional particle-in-cell/Monte Carlo collision method. The calculations are performed at atmospheric pressure for various driving voltages and for gas mixtures with different N2 and O2 compositions. Our results reveal that both a change of the driving voltage and gas mixture can induce mode transition. Upon increasing voltage, a mode transition from hybrid (volume+surface) discharge to pure surface discharge occurs, because the charged species can escape much more easily to the beads and charge the bead surface due to the strong electric field at high driving voltage. This significant surface charging will further enhance the tangential component of the electric field along the dielectric bead surface, yielding surface ionization waves (SIWs). The SIWs will give rise to a high concentration of reactive species on the surface, and thus possibly enhance the surface activity of the beads, which might be of interest for plasma catalysis. Indeed, electron impact excitation and ionization mainly take place near the bead surface. In addition, the propagation speed of SIWs becomes faster with increasing N2 content in the gas mixture, and slower with increasing O2 content, due to the loss of electrons by attachment to O2

molecules. Indeed, the negative O-2 ion density produced by electron impact attachment is much higher than the electron and positive O+2 ion density. The different ionization rates between N2 and O2 gases will create different amounts of electrons and ions on the dielectric bead surface, which might also have effects in plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000436128600027 Publication Date 2018-06-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited 7 Open Access OpenAccess
Notes The authors are very grateful to Wei Jiang for the useful discussions on the particle-incell/ Monte-Carlo collision model. Approved Most recent IF: 3.082
Call Number PLASMANT @ plasmant @c:irua:152171 Serial 4991
Permanent link to this record
 

 
Author Zhang, Y.-R.; Neyts, E.C.; Bogaerts, A.
Title Enhancement of plasma generation in catalyst pores with different shapes Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 5 Pages 055008
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000432351700002 Publication Date 2018-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 11 Open Access OpenAccess
Notes This work was supported by the Fund for Scientific Research Flanders (FWO) (Grant No. G.0217.14N) and the Fundamental Research Funds for the Central Universities (Grant No. DUT17LK52). Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:151546 Serial 4998
Permanent link to this record
 

 
Author Zhang, Y.; Bals, S.; Van Tendeloo, G.
Title Understanding CeO2-Based Nanostructures through Advanced Electron Microscopy in 2D and 3D Type A1 Journal article
Year 2019 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 36 Issue 36 Pages 1800287
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Engineering morphology and size of CeO2-based nanostructures on a (sub)nanometer scale will greatly influence their performance; this is because of their high oxygen storage capacity and unique redox properties, which allow faster switching of the oxidation state between Ce4+ and Ce3+. Although tremendous research has been carried out on the shapecontrolled synthesis of CeO2, the characterization of these nanostructures at the atomic scale remains a major challenge and the origin of debate. The rapid developments of aberration-corrected transmission electron microscopy (AC-TEM) have pushed the resolution below 1 Å, both in TEM and in scanning transmission electron microscopy (STEM) mode. At present, not only morphology and structure, but also composition and electronic structure can be analyzed at an atomic scale, even in 3D. This review summarizes recent significant achievements using TEM/ STEM and associated spectroscopic techniques to study CeO2-based nanostructures and related catalytic phenomena. Recent results have shed light on the understanding of the different mechanisms. The potential and limitations, including future needs of various techniques, are discussed with recommendations to facilitate further developments of new and highly efficient CeO2-based nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000455414600012 Publication Date 2018-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 22 Open Access OpenAccess
Notes Y.Z. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska- Curie grant agreement no. 665501 through a FWO [PEGASUS]2 Marie Skłodowska-Curie fellowship (12U4917N). S.B. acknowledges funding from the European Research Council, ERC grant no. 335078-Colouratom. ; ecas_sara Approved Most recent IF: 4.474
Call Number EMAT @ emat @UA @ admin @ c:irua:156391 Serial 5151
Permanent link to this record
 

 
Author Altantzis, T.; Lobato, I.; De Backer, A.; Béché, A.; Zhang, Y.; Basak, S.; Porcu, M.; Xu, Q.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Van Tendeloo, G.; Van Aert, S.; Bals, S.
Title Three-Dimensional Quantification of the Facet Evolution of Pt Nanoparticles in a Variable Gaseous Environment Type A1 Journal article
Year 2019 Publication Nano letters Abbreviated Journal Nano Lett
Volume 19 Issue 19 Pages 477-481
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Pt nanoparticles play an essential role in a wide variety of catalytic reactions. The activity of the particles strongly depends on their three-dimensional (3D) structure and exposed facets, as well as on the reactive environment. High-resolution electron microscopy has often been used to characterize nanoparticle catalysts but unfortunately most observations so far have been either performed in vacuum and/or using conventional (2D) in situ microscopy. The latter however does not provide direct 3D morphological information. We have implemented a quantitative methodology to measure variations of the 3D atomic structure of nanoparticles under the flow of a selected gas. We were thereby able to quantify refaceting of Pt nanoparticles with atomic resolution during various oxidation−reduction cycles. In a H2 environment, a more faceted surface morphology of the particles was observed with {100} and {111} planes being dominant. On the other hand, in O2 the percentage of {100} and {111} facets decreased and a significant increase of higher order facets was found, resulting in a more rounded morphology. This methodology opens up new opportunities toward in situ characterization of catalytic nanoparticles because for the first time it enables one to directly measure 3D morphology variations at the atomic scale in a specific gaseous reaction environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000455561300061 Publication Date 2019-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 82 Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 335078 COLOURATOM to S.B. and Grant 770887 PICOMETRICS to S.V.A.). The authors acknowledge funding from the European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M., and Q.X. and MUMMERING 765604 to S.B. and Q.X.). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0368.15N, G.0369.15N, and G.0267.18N), postdoctoral grants to T.A. and A.D.B, and an FWO [PEGASUS]2 Marie Sklodowska-Curie fellowship to Y.Z. (12U4917N). L.M.L.-M. acknowledges funding from the Spanish Ministerio de Economía y Competitividad (Grant MAT2017-86659-R). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research. ecas_sara Realnano 815128; sygma Approved Most recent IF: 12.712
Call Number EMAT @ emat @UA @ admin @ c:irua:156390 Serial 5150
Permanent link to this record
 

 
Author van der Burgt, J.S.; Geuchies, J.J.; van der Meer, B.; Vanrompay, H.; Zanaga, D.; Zhang, Y.; Albrecht, W.; Petukhov, A.V.; Filion, L.; Bals, S.; Swart, I.; Vanmaekelbergh, D.
Title Cuboidal supraparticles self-assembled from cubic CsPbBr3 perovskite nanocrystals Type A1 Journal article
Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue 122 Pages 15706-15712
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Colloidal CsPbBr3 nanocrystals (NCs) have emerged as promising candidates for various opto-electronic applications, such as light-emitting diodes, photodetectors, and solar cells. Here, we report on the self-assembly of cubic NCs from an organic suspension into ordered cuboidal supraparticles (SPs) and their structural and optical properties. Upon increasing the NC concentration or by addition of a nonsolvent, the formation of the SPs occurs homogeneously in the suspension, as monitored by in situ X-ray scattering measurements. The three-dimensional structure of the SPs was resolved through high-angle annular dark-field scanning transmission electron microscopy and electron tomography. The NCs are atomically aligned but not connected. We characterize NC vacancies on superlattice positions both in the bulk and on the surface of the SPs. The occurrence of localized atomic-type NC vacancies-instead of delocalized ones-indicates that NC-NC attractions are important in the assembly, as we verify with Monte Carlo simulations. Even when assembled in SPs, the NCs show bright emission, with a red shift of about 30 meV compared to NCs in suspension.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor (up)
Language Wos 000439003600071 Publication Date 2018-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 60 Open Access OpenAccess
Notes ; The authors thank Dr. Rajeev Dattani and Jacques Gorini from the ID02 beamline of the ESRF for their excellent assistance during the X-ray scattering experiments. We also thank Carlo van Overbeek, P. Tim Prins, and Federico Montanarella for their support during the synchrotron experiments. The authors gratefully acknowledge Prof. Dr. Alfons van Blaaderen for fruitful discussions. D.V. acknowledges funding from NWO-CW TOPPUNT “Superficial superstructures.” J.J.G. acknowledges the joint Debye and ESRF graduate programs for the financial support. H.V. gratefully acknowledges the financial support by the Flemish Fund for Scientific Research (FWO grant 1S32617NN). S.B. acknowledges the financial support from the European Research Council (ERC Starting grant # 335078-COLOURATOMS). Y.Z. acknowledges the financial support from the European Union's Horizon 2020 research and innovation program, under the Marie Sklodowska-Curie grant agreement #665501 through a FWO [PEGASUS]2 Marie Sklodowska-Curie fellowship (12U4917N). W.A. acknowledges the financial support from the European Research Council under the European Unions Seventh Framework Program (FP-2007-2013)/ERC Advanced grant agreement 291667 HierarSACol. ; ecas_Sara Approved Most recent IF: 4.536
Call Number UA @ lucian @ c:irua:153161UA @ admin @ c:irua:153161 Serial 5087
Permanent link to this record
 

 
Author Bogaerts, A.; Zhang, Q.-Z.; Zhang, Y.-R.; Van Laer, K.; Wang, W.
Title Burning questions of plasma catalysis: Answers by modeling Type A1 Journal article
Year 2019 Publication Catalysis today Abbreviated Journal Catal Today
Volume 337 Issue Pages 3-14
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is promising for various environmental, energy and chemical synthesis applications, but the underlying mechanisms are far from understood. Modeling can help to obtain a better insight in these mechanisms. Some burning questions relate to the plasma behavior inside packed bed reactors and whether plasma can penetrate into catalyst pores. In this paper, we try to provide answers to these questions, by means of both fluid modeling and particle-in-cell/Monte Carlo collision simulations. We present a short overview of recent findings obtained in our group by means of modeling, i.e., the enhanced electric field near the contact points and the streamer propagation through the packing in packed bed reactors, as well as the plasma behavior in catalyst pores, to determine the minimum pore size in which plasma streamers can penetrate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000482179500002 Publication Date 2019-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.636 Times cited 7 Open Access
Notes University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowships “GlidArc”; “CryoEtch” within Horizon2020, 657304 702604 ;We would like to thank H.-H. Kim for performing experiments to validate the modeling of streamer propagation in packed bed reactors. We acknowledge financial support from the TOP-BOF project of the University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowships “GlidArc” and “CryoEtch” within Horizon2020 (Grant Nos. 657304 and 702604). Approved Most recent IF: 4.636
Call Number PLASMANT @ plasmant @c:irua:161775 Serial 5356
Permanent link to this record
 

 
Author Wu, L.; Kolmeijer, K.E.; Zhang, Y.; An, H.; Arnouts, S.; Bals, S.; Altantzis, T.; Hofmann, J.P.; Costa Figueiredo, M.; Hensen, E.J.M.; Weckhuysen, B.M.; van der Stam, W.
Title Stabilization effects in binary colloidal Cu and Ag nanoparticle electrodes under electrochemical CO₂ reduction conditions Type A1 Journal article
Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 13 Issue 9 Pages 4835-4844
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Nanoparticle modified electrodes constitute an attractive way to tailor-make efficient carbon dioxide (CO2) reduction catalysts. However, the restructuring and sintering processes of nanoparticles under electrochemical reaction conditions not only impedes the widespread application of nanoparticle catalysts, but also misleads the interpretation of the selectivity of the nanocatalysts. Here, we colloidally synthesized metallic copper (Cu) and silver (Ag) nanoparticles with a narrow size distribution (<10%) and utilized them in electrochemical CO2 reduction reactions. Monometallic Cu and Ag nanoparticle electrodes showed severe nanoparticle sintering already at low overpotential of -0.8 V vs. RHE, as evidenced by ex situ SEM investigations, and potential-dependent variations in product selectivity that resemble bulk Cu (14% for ethylene at -1.3 V vs. RHE) and Ag (69% for carbon monoxide at -1.0 V vs. RHE). However, by co-deposition of Cu and Ag nanoparticles, a nanoparticle stabilization effect was observed between Cu and Ag, and the sintering process was greatly suppressed at CO2 reducing potentials (-0.8 V vs. RHE). Furthermore, by varying the Cu/Ag nanoparticle ratio, the CO2 reduction reaction (CO2RR) selectivity towards methane (maximum of 20.6% for dense Cu-2.5-Ag-1 electrodes) and C-2 products (maximum of 15.7% for dense Cu-1-Ag-1 electrodes) can be tuned, which is attributed to a synergistic effect between neighbouring Ag and Cu nanoparticles. We attribute the stabilization of the nanoparticles to the positive enthalpies of Cu-Ag solid solutions, which prevents the dissolution-redeposition induced particle growth under CO2RR conditions. The observed nanoparticle stabilization effect enables the design and fabrication of active CO2 reduction nanocatalysts with high durability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000628024200011 Publication Date 2021-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 24 Open Access OpenAccess
Notes This work is funded by the Strategic UU-TU/e Alliance project ‘Joint Centre for Chemergy Research’ (budget holder B. M. W.). S. B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S. A. and T. A. acknowledge funding from the University of Antwerp Research fund (BOF). We thank Eric Hellebrand (Faculty of Geosciences, Utrecht University) for the assistance in SEM measurements. Dr Ramon Oord (ARC Chemical Building Blocks Consortium, Faculty of Science, Utrecht University) is acknowledged for assisting with the grazing incidence XRD measurements; sygma Approved Most recent IF: 7.367
Call Number UA @ admin @ c:irua:176723 Serial 6737
Permanent link to this record
 

 
Author Freund, R.; Canossa, S.; Cohen, S.M.; Yan, W.; Deng, H.; Guillerm, V.; Eddaoudi, M.; Madden, D.G.; Fairen-Jimenez, D.; Lyu, H.; Macreadie, L.K.; Ji, Z.; Zhang, Y.; Wang, B.; Haase, F.; Wöll, C.; Zaremba, O.; Andreo, J.; Wuttke, S.; Diercks, C.S.
Title 25 years of Reticular Chemistry Type A1 Journal article
Year 2021 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
Volume Issue Pages anie.202101644
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract At its core, reticular chemistry has translated the precision and expertise of organic and inorganic synthesis to the solid state. While initial excitement over metal‐organic frameworks (MOFs) and covalent organic frameworks (COFs) was undoubtedly fueled by their unprecedented porosity and surface areas, the most profound scientific innovation of the field has been the elaboration of design strategies for the synthesis of extended crystalline solids through strong directional bonds. In this contribution we highlight the different classes of reticular materials that have been developed, how these frameworks can be functionalized and how complexity can be introduced into their backbones. Finally, we show how the structural control over these materials is being extended from the molecular scale to their crystal morphology and shape on the nanoscale, all the way to their shaping on the bulk scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000672037800001 Publication Date 2021-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 11.994
Call Number EMAT @ emat @c:irua:177778 Serial 6743
Permanent link to this record
 

 
Author Yi, Y.; Li, S.; Cui, Z.; Hao, Y.; Zhang, Y.; Wang, L.; Liu, P.; Tu, X.; Xu, X.; Guo, H.; Bogaerts, A.
Title Selective oxidation of CH4 to CH3OH through plasma catalysis: Insights from catalyst characterization and chemical kinetics modelling Type A1 Journal Article;Methane conversion
Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ
Volume 296 Issue Pages 120384
Keywords A1 Journal Article;Methane conversion; Plasma catalysis; Selective oxidation; Methanol synthesis; Plasma chemistry; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The selective oxidation of methane to methanol (SOMTM) by molecular oxygen is a holy grail in catalytic chemistry and remains a challenge in chemical industry. We perform SOMTM in a CH4/O2 plasma, at low temperature and atmospheric pressure, promoted by Ni-based catalysts, reaching 81 % liquid oxygenates selectivity and 50 % CH3OH selectivity, with an excellent catalytic stability. Chemical kinetics modelling shows that CH3OH in the plasma is mainly produced through radical reactions, i.e., CH4 + O(1D) → CH3O + H, fol­lowed by CH3O + H + M→ CH3OH + M and CH3O + HCO → CH3OH + CO. The catalyst characterization shows that the improved production of CH3OH is attributed to abundant chemisorbed oxygen species, originating from highly dispersed NiO phase with strong oxide support interaction with γ-Al2O3, which are capable of promoting CH3OH formation through E-R reactions and activating H2O molecules to facilitate CH3OH desorption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000706860000003 Publication Date 2021-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited Open Access OpenAccess
Notes National Natural Science Foundation of China; PetroChina Innovation Foundation; We acknowledge financial support from the PetroChina Innovation Foundation [grant ID: 2018D-5007-0501], the Young Star Project of Dalian Science and Technology Bureau [grant ID: 2019RQ042], the National Natural Science Foundation of China [grant ID: 21503032] and the TOP research project of the Research Fund of the University of Antwerp [grant ID: 32249]. Approved Most recent IF: 9.446
Call Number PLASMANT @ plasmant @c:irua:178816 Serial 6793
Permanent link to this record
 

 
Author Hudry, D.; De Backer, A.; Popescu, R.; Busko, D.; Howard, I.A.; Bals, S.; Zhang, Y.; Pedrazo‐Tardajos, A.; Van Aert, S.; Gerthsen, D.; Altantzis, T.; Richards, B.S.
Title Interface Pattern Engineering in Core‐Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties Type A1 Journal article
Year 2021 Publication Small Abbreviated Journal Small
Volume Issue Pages 2104441
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Advances in controlling energy migration pathways in core-shell lanthanide (Ln)-based hetero-nanocrystals (HNCs) have relied heavily on assumptions about how optically active centers are distributed within individual HNCs. In this article, it is demonstrated that different types of interface patterns can be formed depending on shell growth conditions. Such interface patterns are not only identified but also characterized with spatial resolution ranging from the nanometer- to the atomic-scale. In the most favorable cases, atomic-scale resolved maps of individual particles are obtained. It is also demonstrated that, for the same type of core-shell architecture, the interface pattern can be engineered with thicknesses of just 1 nm up to several tens of nanometers. Total alloying between the core and shell domains is also possible when using ultra-small particles as seeds. Finally, with different types of interface patterns (same architecture and chemical composition of the core and shell domains) it is possible to modify the output color (yellow, red, and green-yellow) or change (improvement or degradation) the absolute upconversion quantum yield. The results presented in this article introduce an important paradigm shift and pave the way toward the emergence of a new generation of core-shell Ln-based HNCs with better control over their atomic-scale organization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000710758000001 Publication Date 2021-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 17 Open Access OpenAccess
Notes The authors would like to acknowledge the financial support provided by the Helmholtz Recruitment Initiative Fellowship (B.S.R.) and the Helmholtz Association's Research Field Energy (Materials and Technologies for the Energy Transition program, Topic 1 Photovoltaics and Wind Energy). The authors would like to thank the Karlsruhe Nano Micro Facility (KNMF) for STEM access. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (Grant agreement no. 770887 PICOMETRICS to S.V.A. and Grant agreement no. 815128 REALNANO to S.B.). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Projects no. G.0502.18N, G.0267.18N, and a postdoctoral grant to A.D.B. T.A. acknowledges funding from the University of Antwerp Research fund (BOF). This project had received funding (EUSMI proposal #E181100205) from the European Union's Horizon 2020 Research and Innovation Programme under Grant agreement no 731019 (EUSMI). D.H. would like to thank “CGFigures” for helpful tutorials on 3D graphics with Blender.; sygmaSB Approved Most recent IF: 8.643
Call Number EMAT @ emat @c:irua:183285 Serial 6817
Permanent link to this record
 

 
Author Mushtaq, A.; Pradhan, B.; Kushavah, D.; Zhang, Y.; Wolf, M.; Schrenker, N.; Fron, E.; Bals, S.; Hofkens, J.; Debroye, E.; Pal, S.K.
Title Third-Order Nonlinear Optical Properties and Saturation of Two-Photon Absorption in Lead-Free Double Perovskite Nanocrystals under Femtosecond Excitation Type A1 Journal article
Year 2021 Publication Acs Photonics Abbreviated Journal Acs Photonics
Volume 8 Issue 11 Pages 3365-3374
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Lead halide perovskites have been widely explored

in the field of photovoltaics, light-emitting diodes, and lasers due to

their outstanding linear and nonlinear optical (NLO) properties.

But, the presence of lead toxicity and low chemical stability remain

serious concerns. Lead-free double perovskite with excellent

optical properties and chemical stability could be an alternative.

However, proper examination of the NLO properties of such a

material is crucial to identify their utility for future nonlinear device

applications. Herein, we have made use of femtosecond (fs) Z-scan

technique to explore the NLO properties of Cs2AgIn0.9Bi0.1Cl6

nanocrystals (NCs). Our measurements suggest that under

nonresonant fs excitation, perovskite NCs exhibit strong twophoton

absorption (TPA). The observed saturation of TPA at high

light intensities has been explained by a customized model. Furthermore, we have demonstrated a change in the nonlinear refractive

index of the NCs under varying input intensities. The strong TPA absorption of lead-free double perovskite NCs could be used for

Kerr nonlinearity-based nonlinear applications such as optical shutters for picosecond lasers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000757024100028 Publication Date 2021-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2330-4022 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.756 Times cited 25 Open Access OpenAccess
Notes A.M. is thankful to IIT Mandi for his fellowship and Advanced Materials Research Centre for the experimental facilities. A.M. is also thankful to Torbjörn Pascher (Pascher Instrument) for writing the Z-scan data acquisition program. J.H. acknowledges financial support from the Research Foundation-Flanders (FWO, Grant No. G983.19N, G0A5817N, and G0H6316N) and the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04). B.P. acknowledges postdoctoral fellowship from the Research Foundation- Flanders (FWO Grant No. 1275521N). D.K. acknowledges the financial support from Science and Engineering Research Board (Grant No. PDF/2018/003146), India. N.J.S. acknowledges financial support from the Research Foundation- Flanders via a postdoctoral fellowship (FWO Grant No. 1238622N). Approved Most recent IF: 6.756
Call Number EMAT @ emat @c:irua:184249 Serial 6832
Permanent link to this record
 

 
Author Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S.K.; Bladt, E.; Kshirsagar, A.S.; Wang, Z.; Yin, J.; Wang, Y.; Quan, L.N.; Yan, F.; Gao, M.; Li, X.; Shamsi, J.; Debnath, T.; Cao, M.; Scheel, M.A.; Kumar, S.; Steele, J.A.; Gerhard, M.; Chouhan, L.; Xu, K.; Wu, X.-gang; Li, Y.; Zhang, Y.; Dutta, A.; Han, C.; Vincon, I.; Rogach, A.L.; Nag, A.; Samanta, A.; Korgel, B.A.; Shih, C.-J.; Gamelin, D.R.; Son, D.H.; Zeng, H.; Zhong, H.; Sun, H.; Demir, H.V.; Scheblykin, I.G.; Mora-Sero, I.; Stolarczyk, J.K.; Zhang, J.Z.; Feldmann, J.; Hofkens, J.; Luther, J.M.; Perez-Prieto, J.; Li, L.; Manna, L.; Bodnarchuk, M., I; Kovalenko, M., V; Roeffaers, M.B.J.; Pradhan, N.; Mohammed, O.F.; Bakr, O.M.; Yang, P.; Muller-Buschbaum, P.; Kamat, P., V; Bao, Q.; Zhang, Q.; Krahne, R.; Galian, R.E.; Stranks, S.D.; Bals, S.; Biju, V.; Tisdale, W.A.; Yan, Y.; Hoye, R.L.Z.; Polavarapu, L.
Title State of the art and prospects for Halide Perovskite Nanocrystals Type A1 Journal article
Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano
Volume 15 Issue 7 Pages 10775-10981
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000679406500006 Publication Date 2021-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 538 Open Access OpenAccess
Notes E.D. and J.H. acknowledge financial support from the Research FoundationFlanders (FWO Grant Nos. S002019N, G.0B39.15, G.0B49.15, G.0962.13, G098319N, and ZW15_09-GOH6316), the Research Foundation Flanders postdoctoral fellowships to J.A.S. and E.D. (FWO Grant Nos. 12Y7218N and 12O3719N, respectively), Approved Most recent IF: 13.942
Call Number UA @ admin @ c:irua:180553 Serial 6846
Permanent link to this record
 

 
Author Zhang, Y.; Qin, S.; Claes, N.; Schilling, W.; Sahoo, P.K.; Ching, H.Y.V.; Jaworski, A.; Lemière, F.; Slabon, A.; Van Doorslaer, S.; Bals, S.; Das, S.
Title Direct Solar Energy-Mediated Synthesis of Tertiary Benzylic Alcohols Using a Metal-Free Heterogeneous Photocatalyst Type A1 Journal article
Year 2022 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal Acs Sustain Chem Eng
Volume 10 Issue 1 Pages 530-540
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Organic synthesis (ORSY)
Abstract Direct hydroxylation via the functionalization of tertiary benzylic C(sp3)-H bond is of great significance for obtaining tertiary alcohols which find wide applications in pharmaceuticals as well as in fine chemical industries. However, current synthetic procedures use toxic reagents and therefore, the development of a sustainable strategy for the synthesis of tertiary benzyl alcohols is highly desirable. To solve this problem, herein, we report a metal-free

heterogeneous photocatalyst to synthesize the hydroxylated products using oxygen as the key reagent. Various benzylic substrates were employed into our mild reaction conditions to afford the desirable products in good to excellent yields. More importantly, gram-scale reaction was achieved via harvesting direct solar energy and exhibited high quantity of the product. The high stability of the catalyst was proved via recycling the catalyst and spectroscopic analyses. Finally, a possible mechanism was proposed based on the EPR and other experimental

evidence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 000736518000001 Publication Date 2022-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited 24 Open Access OpenAccess
Notes We thank BOF joint PhD grant (to Y. Z.), Francqui Foundation and FWO research grant (to S.D.), Chinese Scholarship Council (to Y.Z.). A.S. would like to thank the Swedish Energy Agency for financial support (project nr: 5050-1). The SEM microscope was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 8.4
Call Number EMAT @ emat @c:irua:184744 Serial 6900
Permanent link to this record
 

 
Author Wang, K.; Ceulemans, S.; Zhang, H.; Tsonev, I.; Zhang, Y.; Long, Y.; Fang, M.; Li, X.; Yan, J.; Bogaerts, A.
Title Inhibiting recombination to improve the performance of plasma-based CO2 conversion Type A1 Journal Article
Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 481 Issue Pages 148684
Keywords A1 Journal Article; Plasma-based CO2 splitting Recombination reactions In-situ gas sampling Fluid dynamics modeling Kinetics modeling Afterglow quenching; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Warm plasma offers a promising route for CO2 splitting into valuable CO, yet recombination reactions of CO with oxygen, forming again CO2, have recently emerged as critical limitation. This study combines experiments and fluid dynamics + chemical kinetics modelling to comprehensively analyse the recombination reactions upon CO2 splitting in an atmospheric plasmatron. We introduce an innovative in-situ gas sampling technique, enabling 2D spatial mapping of gas product compositions and temperatures, experimentally confirming for the first time the substantial limiting effect of CO recombination reactions in the afterglow region. Our results show that the CO mole fraction at a 5 L/min flow rate drops significantly from 11.9 % at a vertical distance of z = 20 mm in the afterglow region to 8.6 % at z = 40 mm. We constructed a comprehensive 2D model that allows for spatial reaction rates analysis incorporating crucial reactions, and we validated it to kinetically elucidate this phenomenon. CO2 +M⇌O+CO+M and CO2 +O⇌CO+O2 are the dominant reactions, with the forward reactions prevailing in the plasma region and the backward reactions becoming prominent in the afterglow region. These results allow us to propose an afterglow quenching strategy for performance enhancement, which is further demonstrated through a meticulously developed plasmatron reactor with two-stage cooling. Our approach substantially increases the CO2 conversion (e.g., from 6.6 % to 19.5 % at 3 L/min flow rate) and energy efficiency (from 13.5 % to 28.5 %, again at 3 L/min) and significantly shortens the startup time (from ~ 150 s to 25 s). Our study underscores the critical role of inhibiting recombination reactions in plasma-based CO2 conversion and offers new avenues for performance enhancement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Wos 001168999200001 Publication Date 2024-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record
Impact Factor 15.1 Times cited Open Access Not_Open_Access
Notes Key Research and Development Program of Zhejiang Province, 2023C03129 ; Vlaamse regering; European Research Council; National Natural Science Foundation of China, 51976191 52276214 ; Horizon 2020 Framework Programme; Fonds De La Recherche Scientifique – FNRS; Fonds Wetenschappelijk Onderzoek, 1101524N ; Vlaams Supercomputer Centrum; Horizon 2020, 101081162 810182 ; European Research Council; Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:204352 Serial 8993
Permanent link to this record