|   | 
Details
   web
Records
Author Lumbeeck, G.
Title Mechanisms of nano-plasticity in as-deposited and hydrided nanocrystalline Pd and Ni thin films Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 130 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:164918 Serial 6309
Permanent link to this record
 

 
Author Zhou, R.; Zhou, R.; Xian, Y.; Fang, Z.; Lu, X.; Bazaka, K.; Bogaerts, A.; Ostrikov, K.(K.)
Title Plasma-enabled catalyst-free conversion of ethanol to hydrogen gas and carbon dots near room temperature Type A1 Journal article
Year 2020 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 382 Issue 382 Pages 122745
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Selective conversion of bio-renewable ethanol under mild conditions especially at room temperature remains a major challenge for sustainable production of hydrogen and valuable carbon-based materials. In this study, adaptive non-thermal plasma is applied to deliver pulsed energy to rapidly and selectively reform ethanol in the absence of a catalyst. Importantly, the carbon atoms in ethanol that would otherwise be released into the environment in the form of CO or CO2 are effectively captured in the form of carbon dots (CDs). Three modes of non-thermal spark plasma discharges, i.e. single spark mode (SSM), multiple spark mode (MSM) and gliding spark mode (GSM), provide additional flexibility in ethanol reforming by controlling the processes of energy transfer and distribution, thereby affecting the flow rate, gas content, and energy consumption in H-2 production. A favourable combination of low temperature (< 40 degrees C), attractive conversion rate (gas flow rate of similar to 120 mL/min), high hydrogen yield (H-2 content > 90%), low energy consumption (similar to 0.96 kWh/m(3) H-2) and the effective generation of photoluminescent CDs (which are applicable for bioimaging or biolabelling) in the MSM indicate that the proposed strategy may offer a new carbon-negative avenue for comprehensive utilization of alcohols and mitigating the increasingly severe energy and environmental issues.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000503381200200 Publication Date 2019-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited 20 Open Access
Notes ; ; Approved Most recent IF: 15.1; 2020 IF: 6.216
Call Number UA @ admin @ c:irua:165648 Serial 6318
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Bercx, M.; Karakulina, O.M.; Kirsanova, M.A.; Lamoen, D.; Hadermann, J.; Abakumov, A.M.; Van Bael, M.K.; Hardy, A.
Title An in-depth study of Sn substitution in Li-rich/Mn-rich NMC as a cathode material for Li-ion batteries Type A1 Journal article
Year 2020 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal
Volume 49 Issue 30 Pages 10486-10497
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Layered Li-rich/Mn-rich NMC (LMR-NMC) is characterized by high initial specific capacities of more than 250 mA h g(-1), lower cost due to a lower Co content and higher thermal stability than LiCoO2. However, its commercialisation is currently still hampered by significant voltage fade, which is caused by irreversible transition metal ion migration to emptied Li positionsviatetrahedral interstices upon electrochemical cycling. This structural change is strongly correlated with anionic redox chemistry of the oxygen sublattice and has a detrimental effect on electrochemical performance. In a fully charged state, up to 4.8 Vvs.Li/Li+, Mn4+ is prone to migrate to the Li layer. The replacement of Mn4+ for an isovalent cation such as Sn4+ which does not tend to adopt tetrahedral coordination and shows a higher metal-oxygen bond strength is considered to be a viable strategy to stabilize the layered structure upon extended electrochemical cycling, hereby decreasing voltage fade. The influence of Sn4+ on the voltage fade in partially charged LMR-NMC is not yet reported in the literature, and therefore, we have investigated the structure and the corresponding electrochemical properties of LMR-NMC with different Sn concentrations. We determined the substitution limit of Sn4+ in Li1.2Ni0.13Co0.13Mn0.54-xSnxO2 by powder X-ray diffraction and transmission electron microscopy to be x approximate to 0.045. The limited solubility of Sn is subsequently confirmed by density functional theory calculations. Voltage fade for x= 0 andx= 0.027 has been comparatively assessed within the 3.00 V-4.55 V (vs.Li/Li+) potential window, from which it is concluded that replacing Mn4+ by Sn4+ cannot be considered as a viable strategy to inhibit voltage fade within this window, at least with the given restricted doping level.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000555330900018 Publication Date 2020-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited Open Access OpenAccess
Notes ; The authors acknowledge Research Foundation Flanders (FWO) project number G040116N for funding. The authors are grateful to Dr Ken Elen and Greet Cuyvers (imo-imomec, UHasselt and imec) for respectively preliminary PXRD measurements and performing ICP-AES on the monometal precursors. Dr Dmitry Rupasov (Skolkovo Institute of Science and Technology) is acknowledged for performing TGA measurements on the metal sulfate precursors. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. ; Approved Most recent IF: 4; 2020 IF: 4.029
Call Number UA @ admin @ c:irua:171149 Serial 6450
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Peeters, F.M.; Çakir, D.
Title Assessment of sulfur-functionalized MXenes for li-ion battery applications Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 39 Pages 21293-21304
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The surface termination of MXenes greatly determines the electrochemical properties and ion kinetics on their surfaces. So far, hydroxyl-, oxygen-, and fluorine-terminated MXenes have been widely studied for energy storage applications. Recently, sulfur-functionalized MXene structures, which possess low diffusion barriers, have been proposed as candidate materials to enhance battery performance. We performed first-principles calculations on the structural, stability, electrochemical, and ion dynamic properties of Li-adsorbed sulfur-functionalized groups 3B, 4B, 5B, and 6B transition-metal (M)-based MXenes (i.e., M2CS2 with M = Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W). We performed phonon calculations, which indicated that all of the above M2CS2 MXenes, except for Sc, are dynamically stable at T = 0 K. The ground-state structure of each M2CS2 monolayer depends on the type of M atom. For instance, while sulfur prefers to sit at the FCC site on Ti2CS2, it occupies the HCP site of Cr-based MXene. We determined the Li adsorption configurations at different concentrations using the cluster expansion method. The highest maximum open-circuit voltages were computed for the group 4B element (i.e., Ti, Zr, and Hf)-based M2CS2, which are larger than 2.1 V, while their average voltages are approximately 1 V. The maximum voltage for the group 6B element (i.e., Cr, Mo, W)-based M2CS2 is less than 1 V, and the average voltage is less than 0.71 V. We found that S functionalization is helpful for capacity improvements over the O-terminated MXenes. In this respect, the computed storage gravimetric capacity may reach up to 417.4 mAh/g for Ti2CS2 and 404.5 mAh/g for V2CS2. Ta-, Cr-, Mo-, and W-based M2CS2 MXenes show very low capacities, which are less than 100 mAh/g. The Li surface diffusion energy barriers for all of the considered MXenes are less than 0.22 eV, which is favorable for high charging and discharging rates. Finally, ab initio molecular dynamic simulations performed at 400 K and bond-length analysis with respect to Li concentration verify that selected promising systems are robust against thermally induced perturbations that may induce structural transformations or distortions and undesirable Li release.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000577151900008 Publication Date 2020-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 24 Open Access
Notes ; Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118F512 and the Air Force Office of Scientific Research under award no. FA9550-19-1-7048. This work was performed in part at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118C026. ; Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number UA @ admin @ c:irua:172693 Serial 6452
Permanent link to this record
 

 
Author Geerts, R.; Vandermoere, F.; Van Winckel, T.; Halet, D.; Joos, P.; Van Den Steen, K.; Van Meenen, E.; Blust, R.; Borregán-Ochando, E.; Vlaeminck, S.E.
Title Bottle or tap? Toward an integrated approach to water type consumption Type A1 Journal article
Year 2020 Publication Water Research Abbreviated Journal Water Res
Volume 173 Issue Pages 115578-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change
Abstract While in many countries, people have access to cheap and safe potable tap water, the global consumption of bottled water is rising. Flanders, Belgium, where this study is located, has an exceptionally high consumption of bottled water per capita. However, in the interest of resource efficiency and global environmental challenges, the consumption of tap water is preferable. To our knowledge, an integrated analysis of the main reasons why people consume tap and bottled water is absent in Flanders, Belgium. Using Flemish survey data (N = 2309), we first compared tap and bottled water consumers through bivariate correlation analysis. Subsequently, path modelling techniques were used to further investigate these correlations. Our results show that bottled water consumption in Flanders is widespread despite environmental and financial considerations. For a large part, this is caused by negative perceptions about tap water. Many consumers consider it unhealthy, unsafe and prefer the taste of bottled water. Furthermore, we found that the broader social context often inhibits the consumption of tap water. On the one hand, improper infrastructures (e.g. lead piping) can limit access to potable tap water. On the other hand, social norms exist that promote bottled water. Lastly, results suggest that the consumption of bottled water is most common among men, older people and less educated groups. We conclude that future research and policy measures will benefit from an approach that integrates all behavioural aspects associated with water type consumption. This will enable both governments and tap water companies to devise more effective policies to manage and support tap water supply networks.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000523569000012 Publication Date 2020-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.8 Times cited 2 Open Access
Notes ; This was supported by a grant from Water-link. ; Approved Most recent IF: 12.8; 2020 IF: 6.942
Call Number UA @ admin @ c:irua:165873 Serial 6464
Permanent link to this record
 

 
Author Du, K.; Guo, L.; Peng, J.; Chen, X.; Zhou, Z.-N.; Zhang, Y.; Zheng, T.; Liang, Y.-P.; Lu, J.-P.; Ni, Z.-H.; Wang, S.-S.; Van Tendeloo, G.; Zhang, Z.; Dong, S.; Tian, H.
Title Direct visualization of irreducible ferrielectricity in crystals Type A1 Journal article
Year 2020 Publication npj Quantum Materials Abbreviated Journal
Volume 5 Issue 1 Pages 49-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In solids, charge polarity can one-to-one correspond to spin polarity phenomenologically, e.g., ferroelectricity/ferromagnetism, antiferroelectricity/antiferromagnetism, and even dipole-vortex/magnetic-vortex, but ferrielectricity/ferrimagnetism kept telling a disparate story in microscopic level. Since the definition of a charge dipole involves more than one ion, there may be multiple choices for a dipole unit, which makes most ferrielectric orders equivalent to ferroelectric ones, i.e., this ferrielectricity is not necessary to be a real independent branch of polarity. In this work, by using the spherical aberration-corrected scanning transmission electron microscope, we visualize a nontrivial ferrielectric structural evolution in BaFe2Se3, in which the development of two polar sub-lattices is out-of-sync, for which we term it as irreducible ferrielectricity. Such irreducible ferrielectricity leads to a non-monotonic behavior for the temperature-dependent polarization, and even a compensation point in the ordered state. Our finding unambiguously distinguishes ferrielectrics from ferroelectrics in solids.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000551499400001 Publication Date 2020-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-4648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes ; We acknowledge the National Natural Science Foundation of China (Grant Nos. 11834002, 11674055, and 11234011), National Key R&D Program of China 2017YFB0703100, and the 111 Project (Grant No. B16042). K.D. acknowledges the China Scholarship Council (CSC, No.201806320230) for sponsorship and 2019 Zhejiang University Academic Award for Outstanding Doctoral Candidates. We thank Prof. Fang Lin for providing guidance on calculating atoms position and Dr. Andrew Studer for performing neutron powder diffraction. We thank Prof. Sang-Wook Cheong, Prof. Zhigao Sheng, Prof. Qianghua Wang, Prof. Meng Wang, Prof. Renkui Zheng, Prof. Takuya Aoyama, Dr. Zhibo Yan, and Dr. Meifeng Liu for valuable discussion and/or technical help during measurements. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:171225 Serial 6486
Permanent link to this record
 

 
Author Bottari, F.; Daems, E.; de Vries, A.-M.; Van Wielendaele, P.; Trashin, S.; Blust, R.; Sobott, F.; Madder, A.; Martins, J.C.; De Wael, K.
Title Do aptamers always bind? The need for a multifaceted analytical approach when demonstrating binding affinity between aptamer and low molecular weight compounds Type A1 Journal article
Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 142 Issue 46 Pages jacs.0c08691-19630
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Medical Biochemistry
Abstract In this manuscript, we compare different analytical methodologies to validate or disprove the binding capabilities of aptamer sequences. This was prompted by the lack of a universally accepted and robust quality control protocol for the characterization of aptamer performances coupled with the observation of independent yet inconsistent data sets in the literature. As an example, we chose three aptamers with a reported affinity in the nanomolar range for ampicillin, a β-lactam antibiotic, used as biorecognition elements in several detection strategies described in the literature. Application of a well-known colorimetric assay based on aggregation of gold nanoparticles (AuNPs) yielded conflicting results with respect to the original report. Therefore, ampicillin binding was evaluated in solution using isothermal titration calorimetry (ITC), native nano-electrospray ionization mass spectrometry (native nESI-MS), and 1H-nuclear magnetic resonance spectroscopy (1H NMR). By coupling the thermodynamic data obtained with ITC with the structural information on the binding event given by native nESI-MS and 1H NMR we could verify that none of the ampicillin aptamers show any specific binding with their intended target. The effect of AuNPs on the binding event was studied by both ITC and 1H NMR, again without providing positive evidence of ampicillin binding. To validate the performance of our analytical approach, we investigated two well-characterized aptamers for cocaine/quinine (MN4), chosen for its nanomolar range affinity, and l-argininamide (1OLD) to show the versatility of our approach. The results clearly indicate the need for a multifaceted analytical approach, to unequivocally establish the actual detection potential and performance of aptamers aimed at small organic molecules.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000592911000024 Publication Date 2020-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited Open Access
Notes Approved Most recent IF: 15; 2020 IF: 13.858
Call Number UA @ admin @ c:irua:173136 Serial 6488
Permanent link to this record
 

 
Author Delvaux, A.; Lumbeeck, G.; Idrissi, H.; Proost, J.
Title Effect of microstructure and internal stress on hydrogen absorption into Ni thin film electrodes during alkaline water electrolysis Type A1 Journal article
Year 2020 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta
Volume 340 Issue Pages 135970-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Efforts to improve the cell efficiency of hydrogen production by water electrolysis continue to address the electrochemical kinetics of the oxygen and hydrogen evolution reactions in detail. The objective of this work is to study a parasitic reaction occurring during the hydrogen evolution reaction (HER), namely the absorption of hydrogen atoms into the bulk electrode. Effects of the electrode microstructure and internal stress on this reaction have been addressed as well in this paper. Ni thin film samples were deposited on a Si substrate by sputter deposition with different deposition pressures, resulting in different microstructures and varying levels of internal stress. These microstructures were first analyzed in detail by Transmission Electron Microscopy (TEM). Cathodic chrono-amperometric measurements and cyclic voltammetries have then been performed in a homemade electrochemical cell. These tests were coupled to a multi-beam optical sensor (MOS) in order to obtain in-situ curvature measurements during hydrogen absorption. Indeed, since hydrogen absorption in the thin film geometry results in a constrained volume expansion, internal stress generation during HER can be monitored by means of curvature measurements. Our results show that different levels of internal stress, grain size and twin boundary density can be obtained by varying the deposition parameters. From an electrochemical point of view, this paper highlights the fact that the electrochemical surface mechanisms during HER are the same for all the electrodes, regardless of their microstructure. However it is shown that the absolute amount of hydrogen being absorbed into the Ni thin films increases when the grain size is reduced, due to a higher grain boundaries density which are favourite absorption sites for hydrogen. At the same time, it was concluded that H-2 evolution is favoured at electrodes having a more compressive (i.e. a less tensile) internal stress. Finally, the subtle effect of microstructure on the hydrogen absorption rate will be discussed as well. (C) 2020 Elsevier Ltd. All rights reserved.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000521531800011 Publication Date 2020-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.6 Times cited 2 Open Access Not_Open_Access
Notes ; The authors gratefully acknowledge financial support of the Public Service of Wallonia e Department of Energy and Sustainable Building, through the project WallonHY. The ACOM-TEM work was supported by the Hercules Foundation [Grant No. AUHA13009], the Flemish Research Fund (FWO) [Grant No. G.0365.15 N], and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. We also like to cordially thank Ronny Santoro for carrying out the ICP-OES measurements. ; Approved Most recent IF: 6.6; 2020 IF: 4.798
Call Number UA @ admin @ c:irua:168536 Serial 6497
Permanent link to this record
 

 
Author Geerts, R.; Vandermoere, F.; Halet, D.; Van Winckel, T.; Joos, P.; Van Den Steen, K.; Van Meenen, E.; Blust, R.; Vlaeminck, S.E.
Title Ik drink (geen) afval! Een exploratieve studie naar socio-demografische verschillen in publieke steun voor het hergebruik van afvalwater in Vlaanderen Type A1 Journal article
Year 2020 Publication Vlaams tijdschrift voor overheidsmanagement Abbreviated Journal
Volume Issue 3 Pages 51-69
Keywords A1 Journal article; Sociology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change
Abstract In een context van stijgende waterschaarste verkennen wij, naar ons weten voor het eerst in Vlaanderen, publieke steun voor de behandeling en het hergebruik van afvalwater als drinkwater. Vlaanderen is vandaag een van de weinige regio’s waar afvalwater reeds gerecycleerd wordt voor drinkwaterdoeleinden. Dit gebeurt op kleinschalig niveau en de uitbreiding hiervan is vandaag een van de Vlaamse beleidsdoelstellingen. Internationale voorbeelden toonden echter dat een gebrek aan publieke steun een aanzienlijk obstakel kan zijn. Vaak worden gezondheids- en veiligheidsbezorgdheden aangehaald als oorzaak voor het beperkte draagvlak. Minder is geweten over de socio-demografische distributie van dit draagvlak. Daarbovenop blijft er onduidelijkheid over de samenhang tussen socio-demografische kenmerken en gezondheids- en veiligheidsbezorgdheden. Met behulp van een enquête uitgevoerd in Vlaanderen (N=2309), bestudeerden wij ten eerste deze socio-demografische verschillen op basis van bivariate associaties (gender, opleidingsniveau, leeftijd en woonplaats). Ten tweede construeerden we een padmodel om te onderzoeken of deze verschillen verklaard kunnen worden aan de hand van gezondheids- en veiligheidsbezorgdheden. Onze resultaten toonden dat publieke steun voor afvalwaterhergebruik voor drinkwaterdoeleinden in Vlaanderen beperkt is. Het draagvlak was het laagst bij oudere mensen, vrouwen, lager geschoolde groepen en mensen die niet in de Provincie Antwerpen wonen. Voor een groot deel konden socio-demografische verschillen verklaard worden door hogere gezondheids- en veiligheidsbezorgdheden bij vrouwen, lager geschoolden en mensen uit West- en Oost-Vlaanderen. Dit suggereert een gebrek aan vertrouwen in waterexperts en -technologie bij bepaalde socio-demografische groepen, wat zich vertaalt in een verminderde publieke steun voor afvalwaterhergebruik. Op basis van deze bevindingen bespreken we een aantal potentiële actiestrategieën om publieke oppositie te anticiperen en proactief publieke steun te verwerven via doelgerichte (risico)communicatie.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1373-0509 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:171478 Serial 6541
Permanent link to this record
 

 
Author Lu, Y.; Liu, Y.-X.; He, L.; Wang, L.-Y.; Liu, X.-L.; Liu, J.-W.; Li, Y.-Z.; Tian, G.; Zhao, H.; Yang, X.-H.; Liu, J.; Janiak, C.; Lenaerts, S.; Yang, X.-Y.; Su, B.-L.
Title Interfacial co-existence of oxygen and titanium vacancies in nanostructured TiO₂ for enhancement of carrier transport Type A1 Journal article
Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 12 Issue 15 Pages 8364-8370
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The interfacial co-existence of oxygen and metal vacancies in metal oxide semiconductors and their highly efficient carrier transport have rarely been reported. This work reports on the co-existence of oxygen and titanium vacancies at the interface between TiO2 and rGO via a simple two-step calcination treatment. Experimental measurements show that the oxygen and titanium vacancies are formed under 550 degrees C/Ar and 350 degrees C/air calcination conditions, respectively. These oxygen and titanium vacancies significantly enhance the transport of interfacial carriers, and thus greatly improve the photocurrent performances, the apparent quantum yield, and photocatalysis such as photocatalytic H-2 production from water-splitting, photocatalytic CO2 reduction and photo-electrochemical anticorrosion of metals. A new “interfacial co-existence of oxygen and titanium vacancies” phenomenon, and its characteristics and mechanism are proposed at the atomic-/nanoscale to clarify the generation of oxygen and titanium vacancies as well as the interfacial carrier transport.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000529201500029 Publication Date 2020-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 4 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China (51861135313, U1663225, U1662134, and 51472190), the International Science & Technology Cooperation Program of China (2015DFE52870), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), the Fundamental Research Funds for the Central Universities (19lgpy113 and 19lgzd16), the Jilin Province Science and Technology Development Plan (20180101208JC) and the Hubei Provincial Natural Science Foundation of China (2016CFA033). ; Approved Most recent IF: 6.7; 2020 IF: 7.367
Call Number UA @ admin @ c:irua:169578 Serial 6550
Permanent link to this record
 

 
Author Nicolas-Boluda, A.; Yang, Z.; Dobryden, I.; Carn, F.; Winckelmans, N.; Pechoux, C.; Bonville, P.; Bals, S.; Claesson, P.M.; Gazeau, F.; Pileni, M.P.
Title Intracellular fate of hydrophobic nanocrystal self-assemblies in tumor cells Type A1 Journal article
Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
Volume 30 Issue 40 Pages 2004274-15
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Control of interactions between nanomaterials and cells remains a biomedical challenge. A strategy is proposed to modulate the intralysosomal distribution of nanoparticles through the design of 3D suprastructures built by hydrophilic nanocrystals (NCs) coated with alkyl chains. The intracellular fate of two water-dispersible architectures of self-assembled hydrophobic magnetic NCs: hollow deformable shells (colloidosomes) or solid fcc particles (supraballs) is compared. These two self-assemblies display increased cellular uptake by tumor cells compared to dispersions of the water-soluble NC building blocks. Moreover, the self-assembly structures increase the NCs density in lysosomes and close to the lysosome membrane. Importantly, the structural organization of NCs in colloidosomes and supraballs are maintained in lysosomes up to 8 days after internalization, whereas initially dispersed hydrophilic NCs are randomly aggregated. Supraballs and colloidosomes are differently sensed by cells due to their different architectures and mechanical properties. Flexible and soft colloidosomes deform and spread along the biological membranes. In contrast, the more rigid supraballs remain spherical. By subjecting the internalized suprastructures to a magnetic field, they both align and form long chains. Overall, it is highlighted that the mechanical and topological properties of the self-assemblies direct their intracellular fate allowing the control intralysosomal density, ordering, and localization of NCs.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000559913300001 Publication Date 2020-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19 Times cited 11 Open Access Not_Open_Access
Notes ; F.G. and M.P.P. contributed equally to this work. Dr. J. Teixeira from Laboratoire Leon Brillouin CEA Saclay is thanked for fruitful discussions on SAXS measurement. Dr. J.M. Guinier is thanked for cryoTEM experiments. A.N.-B. received a Ph.D. fellowship from the Institute thematique multi-organismes (ITMO) Cancer and the doctoral school Frontieres du Vivant (FdV)-Programme Bettencourt and the Fondation ARC pour la recherche sur le cancer. ; Approved Most recent IF: 19; 2020 IF: 12.124
Call Number UA @ admin @ c:irua:171145 Serial 6551
Permanent link to this record
 

 
Author Plumadore, R.; Baskurt, M.; Boddison-Chouinard, J.; Lopinski, G.; Modarresi, M.; Potasz, P.; Hawrylak, P.; Sahin, H.; Peeters, F.M.; Luican-Mayer, A.
Title Prevalence of oxygen defects in an in-plane anisotropic transition metal dichalcogenide Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 20 Pages 205408
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Atomic scale defects in semiconductors enable their technological applications and realization of different quantum states. Using scanning tunneling microscopy and spectroscopy complemented by ab initio calculations we determine the nature of defects in the anisotropic van der Waals layered semiconductor ReS2. We demonstrate the in-plane anisotropy of the lattice by directly visualizing chains of rhenium atoms forming diamond-shaped clusters. Using scanning tunneling spectroscopy we measure the semiconducting gap in the density of states. We reveal the presence of lattice defects and by comparison of their topographic and spectroscopic signatures with ab initio calculations we determine their origin as oxygen atoms absorbed at lattice point defect sites. These results provide an atomic-scale view into the semiconducting transition metal dichalcogenides, paving the way toward understanding and engineering their properties.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000587595800007 Publication Date 2020-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 9 Open Access
Notes ; The authors acknowledge funding from National Sciences and Engineering Research Council (NSERC) Discovery Grant No. RGPIN-2016-06717. We also acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) through QC2DM Strategic Project No. STPGP 521420. P.H. thanks uOttawa Research Chair in Quantum Theory of Materials for support. P.P. acknowledges partial financial support from National Science Center (NCN), Poland, Grant Maestro No. 2014/14/A/ST3/00654, and calculations were performed in theWroclaw Center for Networking and Supercomputing. H.S. acknowledges financial support from TUBITAK under Project No. 117F095 and from Turkish Academy of Sciences under the GEBIP program. Our computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:173525 Serial 6584
Permanent link to this record
 

 
Author Lu, Y.; Liu, X.-L.; He, L.; Zhang, Y.-X.; Hu, Z.-Y.; Tian, G.; Cheng, X.; Wu, S.-M.; Li, Y.-Z.; Yang, X.-H.; Wang, L.-Y.; Liu, J.-W.; Janiak, C.; Chang, G.-G.; Li, W.-H.; Van Tendeloo, G.; Yang, X.-Y.; Su, B.-L.
Title Spatial heterojunction in nanostructured TiO₂ and its cascade effect for efficient photocatalysis Type A1 Journal article
Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 20 Issue 5 Pages 3122-3129
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A highly efficient photoenergy conversion is strongly dependent on the cumulative cascade efficiency of the photogenerated carriers. Spatial heterojunctions are critical to directed charge transfer and, thus, attractive but still a challenge. Here, a spatially ternary titanium-defected TiO2@carbon quantum dots@reduced graphene oxide (denoted as V-Ti@CQDs@rGO) in one system is shown to demonstrate a cascade effect of charges and significant performances regarding the photocurrent, the apparent quantum yield, and photocatalysis such as H-2 production from water splitting and CO2 reduction. A key aspect in the construction is the technologically irrational junction of Ti-vacancies and nanocarbons for the spatially inside-out heterojunction. The new “spatial heterojunctions” concept, characteristics, mechanism, and extension are proposed at an atomic- nanoscale to clarify the generation of rational heterojunctions as well as the cascade electron transfer.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000535255300024 Publication Date 2020-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited 5 Open Access Not_Open_Access
Notes ; This work was supported by the joint National Natural Science Foundation of China-Deutsche Forschungsgemeinschaft (NSFC-DFG) project (NSFC grant 51861135313, DFG JA466/39-1), Fundamental Research Funds for the Central Universities (19lgpy113, 19lgzd16), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) and Jilin Province Science and Technology Development Plan (20180101208JC). ; Approved Most recent IF: 10.8; 2020 IF: 12.712
Call Number UA @ admin @ c:irua:170263 Serial 6608
Permanent link to this record
 

 
Author Ding, L.; Raskin, J.-P.; Lumbeeck, G.; Schryvers, D.; Idrissi, H.
Title TEM investigation of the role of the polycrystalline-silicon film/substrate interface in high quality radio frequency silicon substrates Type A1 Journal article
Year 2020 Publication Materials Characterization Abbreviated Journal Mater Charact
Volume 161 Issue Pages 110174-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The microstructural characteristics of two polycrystalline silicon (poly-Si) films with different electrical properties produced by low-pressure chemical vapour deposition on top of high resistivity silicon substrates were investigated by advanced transmission electron microscopy (TEM), including high resolution aberration corrected TEM and automated crystallographic orientation mapping in TEM. The results reveal that the nature of the poly-Si film/Si substrate interface is the main factor controlling the electrical resistivity of the poly-Si films. The high resistivity and high electrical linearity of poly-Si films are strongly promoted by the Sigma 3 twin type character of the poly-Si/Si substrate interface, leading to the generation of a huge amount of extended defects including stacking faults, Sigma 3 twin boundaries as well as Sigma 9 grain boundaries at this interface. Furthermore, a high density of interfacial dislocations has been observed at numerous common and more exotic grain boundaries deviating from their standard crystallographic planes. In contrast, poly-Si film/Si substrate interfaces with random character do not favour the formation of such complex patterns of defects, leading to poor electrical resistivity of the poly-Si film. This finding opens windows for the development of high resistivity silicon substrates for Radio Frequency (RF) integrated circuits (ICs) applications.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000521515800027 Publication Date 2020-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access Not_Open_Access
Notes ; H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). ; Approved Most recent IF: 4.7; 2020 IF: 2.714
Call Number UA @ admin @ c:irua:168664 Serial 6621
Permanent link to this record
 

 
Author Benito Llorens, J.; Embon, L.; Correa, A.; Gonzalez, J.D.; Herrera, E.; Guillamon, I.; Luccas, R.F.; Azpeitia, J.; Mompean, F.J.; Garcia-Hernandez, M.; Munuera, C.; Aragon Sanchez, J.; Fasano, Y.; Milošević, M.V.; Suderow, H.; Anahory, Y.
Title Observation of a gel of quantum vortices in a superconductor at very low magnetic fields Type A1 Journal article
Year 2020 Publication Physical review research Abbreviated Journal
Volume 2 Issue 1 Pages 013329
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A gel consists of a network of particles or molecules formed for example using the sol-gel process, by which a solution transforms into a porous solid. Particles or molecules in a gel are mainly organized on a scaffold that makes up a porous system. Quantized vortices in type-II superconductors mostly form spatially homogeneous ordered or amorphous solids. Here we present high-resolution imaging of the vortex lattice displaying dense vortex clusters separated by sparse or entirely vortex-free regions in beta-Bi2Pd superconductor. We find that the intervortex distance diverges upon decreasing the magnetic field and that vortex lattice images follow a multifractal behavior. These properties, characteristic of gels, establish the presence of a novel vortex distribution, distinctly different from the well-studied disordered and glassy phases observed in high-temperature and conventional superconductors. The observed behavior is caused by a scaffold of one-dimensional structural defects with enhanced stress close to the defects. The vortex gel might often occur in type-II superconductors at low magnetic fields. Such vortex distributions should allow to considerably simplify control over vortex positions and manipulation of quantum vortex states.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000602698100008 Publication Date 2020-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 14 Open Access
Notes ; We acknowledge support, discussions and critical reading of the manuscript from Eli Zeldov, who also devised and setup the SOT system. We also acknowledge critical reading and suggestions of Vladimir Kogan and Alexander Buzdin. Work performed in Spain was supported by the MINECO (FIS2017-84330-R, MAT2017-87134-C2-2-R, RYC-2014-16626 and RYC-2014-15093) and by the Region of Madrid through programs NANOFRONTMAG-CM (S2013/MIT-2850) and MAD2D-CM (S2013/ MIT-3007). The SEGAINVEX at UAM is also acknowledged as well as PEOPLE, Graphene Flagship, NMP programs of EU (Grant Agreements FP7-PEOPLE-2013-CIG 618321, 604391 and AMPHIBIAN H2020-NMBP-03-2016 NMP3-SL 2012-310516). Work in Israel was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 802952). Y.F. acknowledges the support of grant PICT 2017-2182 from the ANPCyT. R.F.L. acknowledges the support of grant PICT 2017-2898 from the ANPCyT. E.H. acknowledges support of Departamento Administrativo de Ciencia, Tecnologia e Innovacion, COLCIENCIAS (Colombia) Programa de estancias Postdoctorales convocatoria 784-2017 and the Cluster de investigacin en ciencias y tecnologas convergentes de la Universidad Central (Colombia). I.G. was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 679080). M.V.M. acknowledges support from Research FoundationFlanders (FWO). The international collaboration on this work was fostered by the EU-COST Action CA16218 Nanoscale Coherent Hybrid Devices for Superconducting Quantum Technologies (NANOCOHYBRI). J.D.G. and M.V.M. gratefully acknowledge support from the Research Fund (FONCIENCIAS) of Universidad del Magdalena. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:175138 Serial 6694
Permanent link to this record
 

 
Author Kaliyappan, P.; Paulus, A.; D’Haen, J.; Samyn, P.; Uytdenhouwen, Y.; Hafezkhiabani, N.; Bogaerts, A.; Meynen, V.; Elen, K.; Hardy, A.; Van Bael, M.K.
Title Probing the impact of material properties of core-shell SiO₂@TiO₂ spheres on the plasma-catalytic CO₂ dissociation using a packed bed DBD plasma reactor Type A1 Journal article
Year 2021 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util
Volume 46 Issue Pages 101468
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis, a promising technology for conversion of CO2 into value-added chemicals near room temperature, is gaining increasing interest. A dielectric barrier discharge (DBD) plasma has attracted attention due to its simple design and operation at near ambient conditions, ease to implement catalysts in the plasma zone and upscaling ability to industrial applications. To improve its main drawbacks, being relatively low conversion and energy efficiency, a packing material is used in the plasma discharge zone of the reactor, sometimes decorated by a catalytic material. Nevertheless, the extent to which different properties of the packing material influence plasma performance is still largely unexplored and unknown. In this study, the particular effect of synthesis induced differences in the morphology of a TiO2 shell covering a SiO2 core packing material on the plasma conversion of CO2 is studied. TiO2 has been successfully deposited around 1.6–1.8 mm sized SiO2 spheres by means of spray coating, starting from aqueous citratoperoxotitanate(IV) precursors. Parameters such as concentration of the Ti(IV) precursor solutions and addition of a binder were found to affect the shells’ properties and surface morphology and to have a major impact on the CO2 conversion in a packed bed DBD plasma reactor. Core-shell SiO2@TiO2 obtained from 0.25 M citratoperoxotitante(IV) precursors with the addition of a LUDOX binder showed the highest CO2 conversion 37.7% (at a space time of 70 s corresponding to an energy efficiency of 2%) and the highest energy efficiency of 4.8% (at a space time of 2.5 s corresponding to a conversion of 3%).
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000634280300004 Publication Date 2021-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.292 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.292
Call Number UA @ admin @ c:irua:175958 Serial 6773
Permanent link to this record
 

 
Author Bartholomeeusen, E.; De Cremer, G.; Kennes, K.; Hammond, C.; Hermans, I.; Lu, J.-B.; Schryvers, D.; Jacobs, P.A.; Roeffaers, M.B.J.; Hofkens, J.; Sels, B.F.; Coutino-Gonzalez, E.
Title Optical encoding of luminescent carbon nanodots in confined spaces Type A1 Journal article
Year 2021 Publication Chemical Communications Abbreviated Journal Chem Commun
Volume 57 Issue 90 Pages 11952-11955
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Stable emissive carbon nanodots were generated in zeolite crystals using near infrared photon irradiation gradually converting the occluded organic template, originally used to synthesize the zeolite crystals, into discrete luminescent species consisting of nano-sized carbogenic fluorophores, as ascertained using Raman microscopy, and steady-state and time-resolved spectroscopic techniques. Photoactivation in a confocal laser fluorescence microscope allows 3D resolved writing of luminescent carbon nanodot patterns inside zeolites providing a cost-effective and non-toxic alternative to previously reported metal-based nanoclusters confined in zeolites, and opens up opportunities in bio-labelling and sensing applications.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000711122000001 Publication Date 2021-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.319
Call Number UA @ admin @ c:irua:184147 Serial 6876
Permanent link to this record
 

 
Author Idrissi, H.; Samaee, V.; Lumbeeck, G.; van der Werf, T.; Pardoen, T.; Schryvers, D.; Cordier, P.
Title Supporting data for “In situ Quantitative Tensile Tests on Antigorite in a Transmission Electron Microscope” Type Dataset
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract The determination of the mechanical properties of serpentinites is essential towards the understanding of the mechanics of faulting and subduction. Here, we present the first in situ tensile tests on antigorite in a transmission electron microscope. A push-to-pull deformation device is used to perform quantitative tensile tests, during which force and displacement are measured, while the microstructure is imaged with the microscope. The experiments have been performed at room temperature on beams prepared by focused ion beam. The specimens are not single crystals despite their small sizes. Orientation mapping indicated that some grains were well-oriented for plastic slip. However, no dislocation activity has been observed even though engineering tensile stress went up to 700 MPa. We show also that antigorite does not exhibit an pure elastic-brittle behaviour since, despite the presence of defects, the specimens underwent plastic deformation and did not fail within the elastic regime. Instead, we observe that strain localizes at grain boundaries. All observations concur to show that under our experimental conditions, grain boundary sliding is the dominant deformation mechanism. This study sheds a new light on the mechanical properties of antigorite and calls for further studies on the structure and properties of grain boundaries in antigorite and more generally in phyllosilicates.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169107 Serial 6891
Permanent link to this record
 

 
Author Lu, W.; Cui, W.; Zhao, W.; Lin, W.; Liu, C.; Van Tendeloo, G.; Sang, X.; Zhao, W.; Zhang, Q.
Title In situ atomistic insight into magnetic metal diffusion across Bi0.5Sb1.5Te3 quintuple layers Type A1 Journal article
Year 2022 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume Issue Pages 2102161
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Diffusion and occupancy of magnetic atoms in van der Waals (VDW) layered materials have significant impact on applications such as energy storage, thermoelectrics, catalysis, and topological phenomena. However, due to the weak VDW bonding, most research focus on in-plane diffusion within the VDW gap, while out-of-plane diffusion has rarely been reported. Here, to investigate out-of-plane diffusion in VDW-layered Bi2Te3-based alloys, a Ni/Bi0.5Sb1.5Te3 heterointerface is synthesized by depositing magnetic Ni metal on a mechanically exfoliated Bi0.5Sb1.5Te3 (0001) substrate. Diffusion of Ni atoms across the Bi0.5Sb1.5Te3 quintuple layers is directly observed at elevated temperatures using spherical-aberration-corrected scanning transmission electron microscopy (STEM). Density functional theory calculations demonstrate that the diffusion energy barrier of Ni atoms is only 0.31-0.45 eV when they diffuse through Te-3(Bi, Sb)(3) octahedron chains. Atomic-resolution in situ STEM reveals that the distortion of the Te-3(Bi, Sb)(3) octahedron, induced by the Ni occupancy, drives the formation of coherent NiM (M = Bi, Sb, Te) at the heterointerfaces. This work can lead to new strategies to design novel thermoelectric and topological materials by introducing magnetic dopants to VDW-layered materials.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000751742300001 Publication Date 2022-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 5.4
Call Number UA @ admin @ c:irua:186421 Serial 6960
Permanent link to this record
 

 
Author Zalalutdinov, M.K.; Robinson, J.T.; Fonseca, J.J.; LaGasse, S.W.; Pandey, T.; Lindsay, L.R.; Reinecke, T.L.; Photiadis, D.M.; Culbertson, J.C.; Cress, C.D.; Houston, B.H.
Title Acoustic cavities in 2D heterostructures Type A1 Journal article
Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun
Volume 12 Issue 1 Pages 3267
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) materials offer unique opportunities in engineering the ultrafast spatiotemporal response of composite nanomechanical structures. In this work, we report on high frequency, high quality factor (Q) 2D acoustic cavities operating in the 50-600GHz frequency (f) range with f x Q up to 1 x 10(14). Monolayer steps and material interfaces expand cavity functionality, as demonstrated by building adjacent cavities that are isolated or strongly-coupled, as well as a frequency comb generator in MoS2/h-BN systems. Energy dissipation measurements in 2D cavities are compared with attenuation derived from phonon-phonon scattering rates calculated using a fully microscopic ab initio approach. Phonon lifetime calculations extended to low frequencies (<1THz) and combined with sound propagation analysis in ultrathin plates provide a framework for designing acoustic cavities that approach their fundamental performance limit. These results provide a pathway for developing platforms employing phonon-based signal processing and for exploring the quantum nature of phonons. Here, authors report on acoustic cavities in 2D materials operating in the 50-600GHz range and show that quality factors approach the limit set by lattice anharmonicity. Functionality expanded by heterogeneities (steps and interfaces) is demonstrated through coupled cavities and frequency comb generation.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000660772400004 Publication Date 2021-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 12.124
Call Number UA @ admin @ c:irua:179597 Serial 6968
Permanent link to this record
 

 
Author Charalampopoulou, E.; Lambrinou, K.; Van der Donck, T.; Paladino, B.; Di Fonzo, F.; Azina, C.; Eklund, P.; Mraz, S.; Schneider, J.M.; Schryvers, D.; Delville, R.
Title Early stages of dissolution corrosion in 316L and DIN 1.4970 austenitic stainless steels with and without anticorrosion coatings in static liquid lead-bismuth eutectic (LBE) at 500 degrees C Type A1 Journal article
Year 2021 Publication Materials Characterization Abbreviated Journal Mater Charact
Volume 178 Issue Pages 111234
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This work addresses the early stages (<= 1000 h) of the dissolution corrosion behavior of 316L and DIN 1.4970 austenitic stainless steels in contact with oxygen-poor (C-O < 10(-8) mass%), static liquid lead-bismuth eutectic (LBE) at 500 degrees C for 600-1000 h. The objective of this study was to determine the relative early-stage resistance of the uncoated steels to dissolution corrosion and to assess the protectiveness of select candidate coatings (Cr2AlC, Al2O3, V2AlxCy). The simultaneous exposure of steels with intended differences in microstructure and thermomechanical state showed the effects of steel grain size, density of annealing/deformation twins, and secondary precipitates on the steel dissolution corrosion behavior. The findings of this study provide recommendations on steel manufacturing with the aim of using the steels to construct Gen-IV lead-cooled fast reactors.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000752582700001 Publication Date 2021-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.714
Call Number UA @ admin @ c:irua:186509 Serial 7061
Permanent link to this record
 

 
Author Poulain, R.; Lumbeeck, G.; Hunka, J.; Proost, J.; Savolainen, H.; Idrissi, H.; Schryvers, D.; Gauquelin, N.; Klein, A.
Title Electronic and chemical properties of nickel oxide thin films and the intrinsic defects compensation mechanism Type A1 Journal article
Year 2022 Publication ACS applied electronic materials Abbreviated Journal
Volume 4 Issue 6 Pages 2718-2728
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Although largely studied, contradictory results on nickel oxide (NiO) properties can be found in the literature. We herein propose a comprehensive study that aims at leveling contradictions related to NiO materials with a focus on its conductivity, surface properties, and the intrinsic charge defects compensation mechanism with regards to the conditions preparation. The experiments were performed by in situ photo-electron spectroscopy, electron energy loss spectroscopy, and optical as well as electrical measurements on polycrystalline NiO thin films prepared under various preparation conditions by reactive sputtering. The results show that surface and bulk properties were strongly related to the deposition temperature with in particular the observation of Fermi level pinning, high work function, and unstable oxygen-rich grain boundaries for the thin films produced at room temperature but not at high temperature (>200 degrees C). Finally, this study provides substantial information about surface and bulk NiO properties enabling to unveil the origin of the high electrical conductivity of room temperature NiO thin films and also for supporting a general electronic charge compensation mechanism of intrinsic defects according to the deposition temperature.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000819431200001 Publication Date 2022-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189555 Serial 7081
Permanent link to this record
 

 
Author Hendrickx, M.; Paulus, A.; Kirsanova, M.A.; Van Bael, M.K.; Abakumov, A.M.; Hardy, A.; Hadermann, J.
Title The influence of synthesis method on the local structure and electrochemical properties of Li-rich/Mn-rich NMC cathode materials for Li-Ion batteries Type A1 Journal article
Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 12 Issue 13 Pages 2269-18
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electrochemical energy storage plays a vital role in combating global climate change. Nowadays lithium-ion battery technology remains the most prominent technology for rechargeable batteries. A key performance-limiting factor of lithium-ion batteries is the active material of the positive electrode (cathode). Lithium- and manganese-rich nickel manganese cobalt oxide (LMR-NMC) cathode materials for Li-ion batteries are extensively investigated due to their high specific discharge capacities (>280 mAh/g). However, these materials are prone to severe capacity and voltage fade, which deteriorates the electrochemical performance. Capacity and voltage fade are strongly correlated with the particle morphology and nano- and microstructure of LMR-NMCs. By selecting an adequate synthesis strategy, the particle morphology and structure can be controlled, as such steering the electrochemical properties. In this manuscript we comparatively assessed the morphology and nanostructure of LMR-NMC (Li1.2Ni0.13Mn0.54Co0.13O2) prepared via an environmentally friendly aqueous solution-gel and co-precipitation route, respectively. The solution-gel (SG) synthesized material shows a Ni-enriched spinel-type surface layer at the {200} facets, which, based on our post-mortem high-angle annual dark-field scanning transmission electron microscopy and selected-area electron diffraction analysis, could partly explain the retarded voltage fade compared to the co-precipitation (CP) synthesized material. In addition, deviations in voltage fade and capacity fade (the latter being larger for the SG material) could also be correlated with the different particle morphology obtained for both materials.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000824547500001 Publication Date 2022-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 5.3
Call Number UA @ admin @ c:irua:189591 Serial 7098
Permanent link to this record
 

 
Author Omranian, S.R.; Geluykens, M.; Van Hal, M.; Hasheminejad, N.; Rocha Segundo, I.; Pipintakos, G.; Denys, S.; Tytgat, T.; Fraga Freitas, E.; Carneiro, J.; Verbruggen, S.; Vuye, C.
Title Assessing the potential of application of titanium dioxide for photocatalytic degradation of deposited soot on asphalt pavement surfaces Type A1 Journal article
Year 2022 Publication Construction and building materials Abbreviated Journal Constr Build Mater
Volume 350 Issue Pages 128859-13
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract It is known that pollutants and their irreparable influence can considerably jeopardize the environment and human health. Such disastrous, growing, hazardous particles urged researchers to find effective ways and diminish their destructive impacts and preserve our planet. This study evaluates the potential of incorporating Titanium Dioxide (TiO2) semiconductor nanoparticles on asphalt pavements to degrade pollutants without compromising bitumen performance. Accordingly, the Response Surface Method (RSM) was employed to develop an experimental matrix based on the central composite design. Image Analysis (IA) was used to determine the rate of soot degradation (as pollutant representative) using MATLAB and ImageJ software. Confocal Laser Scanning Microscopy (CLSM), Fourier Transform Infrared spectroscopy (FTIR), and Dynamic Shear Rheometer (DSR) were finally carried out to estimate the effects of adding different percentages of TiO2 on the micro -structural features and dispersion of the TiO2, chemical fingerprinting, and rheological performance of the bituminous binder. The results showed a promising potential of TiO2 to degrade soot (over 50%) during the conducted experiments. In addition, the RSM outcomes showed that applying a higher amount of TiO2 is more efficient for pollutant degradation. Finally, no negative impact was observed, neither on the rheological behavior nor on the aging susceptibility of the bitumen, even though the homogenous dispersion of the TiO2 was clearly captured via CLSM.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000848227000001 Publication Date 2022-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0618 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7.4
Call Number UA @ admin @ c:irua:189820 Serial 7128
Permanent link to this record
 

 
Author Demirkol, Ö.; Sevik, C.; Demiroğlu, I.
Title First principles assessment of the phase stability and transition mechanisms of designated crystal structures of pristine and Janus transition metal dichalcogenides Type A1 Journal article
Year 2022 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 24 Issue 12 Pages 7430-7441
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional Transition Metal Dichalcogenides (TMDs) possessing extraordinary physical properties at reduced dimensionality have attracted interest due to their promise in electronic and optical device applications. However, TMD monolayers can show a broad range of different properties depending on their crystal phase; for example, H phases are usually semiconductors, while the T phases are metallic. Thus, controlling phase transitions has become critical for device applications. In this study, the energetically low-lying crystal structures of pristine and Janus TMDs are investigated by using ab initio Nudged Elastic Band and molecular dynamics simulations to provide a general explanation for their phase stability and transition properties. Across all materials investigated, the T phase is found to be the least stable and the H phase is the most stable except for WTe2, while the T' and T '' phases change places according to the TMD material. The transition energy barriers are found to be large enough to hint that even the higher energy phases are unlikely to undergo a phase transition to a more stable phase if they can be achieved except for the least stable T phase, which has zero barrier towards the T ' phase. Indeed, in molecular dynamics simulations the thermodynamically least stable T phase transformed into the T ' phase spontaneously while in general no other phase transition was observed up to 2100 K for the other three phases. Thus, the examined T ', T '' and H phases were shown to be mostly stable and do not readily transform into another phase. Furthermore, so-called mixed phase calculations considered in our study explain the experimentally observed lateral hybrid structures and point out that the coexistence of different phases is strongly stable against phase transitions. Indeed, stable complex structures such as metal-semiconductor-metal architectures, which have immense potential to be used in future device applications, are also possible based on our investigation.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000766791000001 Publication Date 2022-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.3
Call Number UA @ admin @ c:irua:187184 Serial 7164
Permanent link to this record
 

 
Author Lu, X.P.; Bruggeman, P.J.; Reuter, S.; Naidis, G.; Bogaerts, A.; Laroussi, M.; Keidar, M.; Robert, E.; Pouvesle, J.-M.; Liu, D.W.; Ostrikov, K.(K.)
Title Grand challenges in low temperature plasmas Type A1 Journal article
Year 2022 Publication Frontiers in physics Abbreviated Journal
Volume 10 Issue Pages 1040658-12
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Low temperature plasmas (LTPs) enable to create a highly reactive environment at near ambient temperatures due to the energetic electrons with typical kinetic energies in the range of 1 to 10 eV (1 eV = 11600K), which are being used in applications ranging from plasma etching of electronic chips and additive manufacturing to plasma-assisted combustion. LTPs are at the core of many advanced technologies. Without LTPs, many of the conveniences of modern society would simply not exist. New applications of LTPs are continuously being proposed. Researchers are facing many grand challenges before these new applications can be translated to practice. In this paper, we will discuss the challenges being faced in the field of LTPs, in particular for atmospheric pressure plasmas, with a focus on health, energy and sustainability.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000878212000001 Publication Date 2022-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Additional Links UA library record; WoS full record
Impact Factor 3.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.1
Call Number UA @ admin @ c:irua:192173 Serial 7267
Permanent link to this record
 

 
Author Gurel, T.; Altunay, Y.A.; Bulut, P.; Yildirim, S.; Sevik, C.
Title Comprehensive investigation of the extremely low lattice thermal conductivity and thermoelectric properties of BaIn₂Te₄ Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 106 Issue 19 Pages 195204-195210
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, an extremely low lattice thermal conductivity value has been reported for the alkali-based telluride material BaIn2Te4. The value is comparable with low-thermal conductivity metal chalcogenides, and the glass limit is highly intriguing. Therefore, to shed light on this issue, we performed first-principles phonon thermal transport calculations. We predicted highly anisotropic lattice thermal conductivity along different directions via the solution of the linearized phonon Boltzmann transport equation. More importantly, we determined several different factors as the main sources of the predicted ultralow lattice thermal conductivity of this crystal, such as the strong interactions between low-frequency optical phonons and acoustic phonons, small phonon group velocities, and lattice anharmonicity indicated by large negative mode Gruneisen parameters. Along with thermal transport calculations, we also investigated the electronic transport properties by accurately calculating the scattering mechanisms, namely the acoustic deformation potential, ionized impurity, and polar optical scatterings. The inclusion of spin-orbit coupling (SOC) for electronic structure is found to strongly affect the p-type Seebeck coefficients. Finally, we calculated the thermoelectric properties accurately, and the optimal ZT value of p-type doping, which originated from high Seebeck coefficients, was predicted to exceed unity after 700 K and have a direction averaged value of 1.63 (1.76 in the y-direction) at 1000 K around 2 x 1020 cm-3 hole concentration. For n-type doping, a ZT around 3.2 x 1019 cm-3 concentration was predicted to be a direction-averaged value of 1.40 (1.76 in the z-direction) at 1000 K, mostly originating from its high electron mobility. With the experimental evidence of high thermal stability, we showed that the BaIn2Te4 compound has the potential to be a promising mid- to high-temperature thermoelectric material for both p-type and n-type systems with appropriate doping.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000918954800001 Publication Date 2022-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:194384 Serial 7290
Permanent link to this record
 

 
Author Yedukondalu, N.; Pandey, T.; Roshan, S.C.R.
Title Effect of hydrostatic pressure on lone pair activity and phonon transport in Bi₂O₂S Type A1 Journal article
Year 2023 Publication ACS applied energy materials Abbreviated Journal
Volume 6 Issue 4 Pages 2401-2411
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Dibismuth dioxychalcogenides, Bi2O2Ch (Ch = S, Se, Te), are a promising class of materials for next-generation electronics and thermoelectrics due to their ultrahigh carrier mobility and excellent air stability. An interesting member of this family is Bi2O2S, which has a stereochemically active 6s2 lone pair of Bi3+ cations, heterogeneous bonding, and a high mass contrast between its constituent elements. In the present study, we have used first-principles calculations in combination with Boltzmann transport theory to systematically investigate the effect of hydrostatic pressure on lattice dynamics and phonon transport properties of Bi2O2S. We found that the ambient Pnmn phase has a low average lattice thermal conductivity (kappa l) of 1.71 W/(m K) at 300 K. We also predicted that Bi2O2S undergoes a structural phase transition from a low-symmetry (Pnmn) to a high-symmetry (I4/mmm) structure at around 4 GPa due to centering of Bi3+ cations with pressure. Upon compression, the lone pair activity of Bi3+ cations is suppressed, which increases kappa l by almost 3 times to 4.92 W/ (m K) at 5 GPa for the I4/mmm phase. The computed phonon lifetimes and Gru''neisen parameters show that anharmonicity decreases with increasing pressure due to further suppression of the lone pair activity and strengthening of intra-and intermolecular interactions, leading to an average room-temperature kappa l of 12.82 W/(m K) at 20 GPa. Overall, this study provides a comprehensive understanding of the effect of hydrostatic pressure on the stereochemical activity of the lone pair of Bi3+ cations and its implications on the phonon transport properties of Bi2O2S.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000929103700001 Publication Date 2023-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.4; 2023 IF: NA
Call Number UA @ admin @ c:irua:195245 Serial 7300
Permanent link to this record
 

 
Author Zhou, Z.; Tan, Y.; Yang, Q.; Bera, A.; Xiong, Z.; Yagmurcukardes, M.; Kim, M.; Zou, Y.; Wang, G.; Mishchenko, A.; Timokhin, I.; Wang, C.; Wang, H.; Yang, C.; Lu, Y.; Boya, R.; Liao, H.; Haigh, S.; Liu, H.; Peeters, F.M.; Li, Y.; Geim, A.K.; Hu, S.
Title Gas permeation through graphdiyne-based nanoporous membranes Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue 1 Pages 4031-4036
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeance. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows. Using isotope and cryogenic temperature measurements, the seemingly conflicting characteristics are explained by a high density of straight-through holes (direct porosity of similar to 0.1%), in which heavy atoms are adsorbed on the walls, partially blocking Knudsen flows. Our work offers important insights into intricate transport mechanisms playing a role at nanoscale.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000918423100001 Publication Date 2022-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 21 Open Access OpenAccess
Notes Approved Most recent IF: 16.6
Call Number UA @ admin @ c:irua:194402 Serial 7308
Permanent link to this record
 

 
Author Duden, E.I.; Savaci, U.; Turan, S.; Sevik, C.; Demiroglu, I.
Title Intercalation of argon in honeycomb structures towards promising strategy for rechargeable Li-ion batteries Type A1 Journal article
Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal
Volume 35 Issue 8 Pages 085301-85311
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract High-performance rechargeable batteries are becoming very important for high-end technologies with their ever increasing application areas. Hence, improving the performance of such batteries has become the main bottleneck to transferring high-end technologies to end users. In this study, we propose an argon intercalation strategy to enhance battery performance via engineering the interlayer spacing of honeycomb structures such as graphite, a common electrode material in lithium-ion batteries (LIBs). Herein, we systematically investigated the LIB performance of graphite and hexagonal boron nitride (h-BN) when argon atoms were sent into between their layers by using first-principles density-functional-theory calculations. Our results showed enhanced lithium binding for graphite and h-BN structures when argon atoms were intercalated. The increased interlayer space doubles the gravimetric lithium capacity for graphite, while the volumetric capacity also increased by around 20% even though the volume was also increased. The ab initio molecular dynamics simulations indicate the thermal stability of such graphite structures against any structural transformation and Li release. The nudged-elastic-band calculations showed that the migration energy barriers were drastically lowered, which promises fast charging capability for batteries containing graphite electrodes. Although a similar level of battery promise was not achieved for h-BN material, its enhanced battery capabilities by argon intercalation also support that the argon intercalation strategy can be a viable route to enhance such honeycomb battery electrodes.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000899825400001 Publication Date 2022-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7; 2023 IF: 2.649
Call Number UA @ admin @ c:irua:193399 Serial 7313
Permanent link to this record