|   | 
Details
   web
Records
Author Wang, Y.-T.; Wu, S.-M.; Luo, G.-Q.; Tian, G.; Wang, L.-Y.; Xiao, S.-T.; Wu, J.-X.; Wu, A.; Wu, K.-J.; Lenaerts, S.; Yang, X.-Y.
Title A core-shell confined Pd@TS-1 @meso-SiO2 catalyst and its synergy effect on styrene oxidation Type A1 Journal article
Year 2023 Publication Applied catalysis : A : general Abbreviated Journal
Volume 650 Issue Pages 119016-6
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Dual active sites from acidic zeolite and Pd are not only capable of catalyzing multiple type of reactions, but could also generate unique functions owing to the synergy between metals and acidic sites. However, there are only a few reports on the investigation of the synergy of acid/Pd dual sites in TS-1. Herein, TS-1 confined Pd catalyst with mesoporous silica shell (Pd@TS-1 @meso-SiO2) has been successfully synthesized and its synergy effect contributes to the enhanced conversion rate (19.2%) and selectivity (74.7%) on styrene oxidation. The interaction between Pd and TS-1 has been investigated by EPR and 1H NMR techniques, the experimental measurements show an obvious change in the signal distribution of weakly acidic terminal hydroxyls and hydrogen-bonding silanols. The schematic illustration of selective styrene oxidation in the model of Pd@TS-1 @meso-SiO2 is proposed to clarify the synergistic effect on styrene oxidation between TS-1 and Pd nanoparticles at an atomic-/nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001015700000001 Publication Date 2022-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-860x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited Open Access (up) Not_Open_Access
Notes Approved Most recent IF: 5.5; 2023 IF: 4.339
Call Number UA @ admin @ c:irua:197805 Serial 8826
Permanent link to this record
 

 
Author Perreault, P.; Preuster, P.
Title Editorial hydrogen production storage and use Type Editorial
Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal
Volume 44 Issue Pages 100861-100863
Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In the pursuit of clean and sustainable energy sources, hydrogen has emerged as a key contender, offering high energy density and the potential to serve as a carbon-neutral fuel. However, one of the major challenges associated with hydrogen is efficient and safe storage and transportation. In this Special Edition, we delve into the exciting developments in the upcoming hydrogen economy, from its sustainable production to chemical hydrogen storage. Some of our reviews focus on particular technologies namely on liquid organic hydrogen carriers (LOHCs) and the utilization of ammonia as a hydrogen carrier.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001079651000001 Publication Date 2023-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record
Impact Factor 9.3 Times cited Open Access (up) Not_Open_Access
Notes Approved Most recent IF: 9.3; 2023 IF: NA
Call Number UA @ admin @ c:irua:198505 Serial 8853
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; Alloul, A.; Vlaeminck, S.E.
Title Feasibility of a return-sludge nursery concept for mainstream anammox biostimulation : creating optimal conditions for anammox to recover and grow in a parallel tank Type A1 Journal article
Year 2023 Publication Bioresource technology Abbreviated Journal
Volume 385 Issue Pages 129359-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract To overcome limiting anammox activity under sewage treatment conditions, a return-sludge nursery concept is proposed. This concept involves blending sludge reject water treated with partial nitritation with mainstream effluent to increase the temperature, N levels, and electrical conductivity (EC) of the anammox nursery reactor, which sludge periodically passes through the return sludge line of the mainstream system. Various nursery frequencies were tested in two 2.5 L reactors, including 0.5-2 days of nursery treatment per 3.5-14 days of the total operation. Bioreactor experiments showed that nursery increased nitrogen removal rates during mainstream operation by 33-38%. The increased anammox activity can be partly (35-60%) explained by higher temperatures. Elevated EC, higher nitrogen concentrations, and a putative synergy and/or unknown factor were responsible for 15-16%, 12-14%, and 10-36%, respectively. A relatively stable microbial community was observed, dominated by a “Candidatus Brocadia” member. This new concept boosted activity and sludge growth, which may facilitate mainstream anammox implementations based on partial nitritation/anammox or partial nitrification/denitratation/anammox.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001031586400001 Publication Date 2023-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record
Impact Factor 11.4 Times cited Open Access (up) Not_Open_Access
Notes Approved Most recent IF: 11.4; 2023 IF: 5.651
Call Number UA @ admin @ c:irua:198259 Serial 8866
Permanent link to this record
 

 
Author Phuttaro, C.; Krishnan, S.; Saritpongteeraka, K.; Charnnok, B.; Diels, L.; Chaiprapat, S.
Title Integrated poultry waste management by co-digestion with perennial grass : effects of mixing ratio, pretreatments, reaction temperature, and effluent recycle on biomethanation yield Type A1 Journal article
Year 2023 Publication Biochemical engineering journal Abbreviated Journal
Volume 196 Issue Pages 108937-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This work aims to enhance the efficiency of integrated poultry waste management in bio-circular-green economy by maximizing the co-digestion of chicken manure and its digestate-grown biomass. In a series of batch assays, Napier grass (NG) was mixed with chicken manure (CM) at various proportions (100:0, 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100) to identify co-substrate synergism, followed by physiochemical conditioning (size reduction and ultrasonication) of NG before co-digestion. Results indicated that NG mix of at least 80% was required to gain a full methanation potential of the individual substrates; no synergistic ratio above unity was found. However, the combined effect of size reduction and sonication was found to markedly improve the cosubstrate's biodegradability by 88.7%. The findings were then used to run continuous co-digestion at various operating regimes. In optimal continuous co-digestion condition, NG particle size of 0.6-2.4 mm combined with sonication intensity at 1111 kJ/kgTS improved biomethanation yield as high as 106.3%. Sub-thermophilic digestion at 45 degrees C was shown to give a higher and more stable CH4 yield than at 55 degrees C. Finally, it was also found that recycling liquid effluent at 40% to replace freshwater in feed, although showed no significant difference in CH4 yield (& alpha; = 0.05), noticeably increased system buffer capacity. This optimized biodegradation regime could give co-digestion waste management a higher overall plant efficiency and economic return.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001054826200001 Publication Date 2023-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1369-703x; 1873-295x ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access (up) Not_Open_Access
Notes Approved Most recent IF: 3.9; 2023 IF: 2.892
Call Number UA @ admin @ c:irua:199209 Serial 8887
Permanent link to this record
 

 
Author Scandura, G.; Kumari, P.; Palmisano, G.; Karanikolos, G.N.; Orwa, J.; Dumee, L.F.
Title Nanoporous Dealloyed Metal Materials Processing and Applications?A Review Type A1 Journal article
Year 2023 Publication Industrial and engineering chemistry research Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The development of porous metal materials with pore geometries and sizes at the nanoscale offers promising opportunities for the development of smart responsive interfaces for separation and catalytic applications and as building blocks for complex composite materials. Dealloying is an innovative technique based on selective removal of a sacrificial metal from a metal alloy to engineer surface textures and pores across significant thicknesses. Dealloyed structures may be processed over large scales and for a range of source alloys, offering unprecedented manufacturing opportunities. This review presents the operations and challenges of dealloying routes and discusses avenues for process optimizations and improvements, aiming at the development of scalable nanoporous materials. The potential of dealloyed materials for catalytic and sensing applications is expanded and benchmarked against reference materials. Future prospects and applications of dealloyed materials toward surface reactivity control and pore architecture development are highlighted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000918107700001 Publication Date 2023-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.2 Times cited Open Access (up) Not_Open_Access
Notes Approved Most recent IF: 4.2; 2023 IF: 2.843
Call Number UA @ admin @ c:irua:199419 Serial 8904
Permanent link to this record
 

 
Author Borah, R.; Kumar, A.; Samantaray, M.; Desai, A.; Tseng, F.-G.
Title Photothermal heating of Au nanorods and nanospheres : temperature characteristics and strength of convective forces Type A1 Journal article
Year 2023 Publication Plasmonics Abbreviated Journal
Volume 18 Issue 4 Pages 1449-1465
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The nanoscale photothermal effect and the optofluidic convection around plasmonic nanoparticles drive the application of such nanoparticles in micro-environment. In this work, heat transfer and fluid flow around Au nanospheres and nanorods in water medium under continuous and pulsed wave laser irradiance was investigated using an FEM based numerical framework. Au nanospheres of a wide range of diameter: 40 nm = Diameter (D) = 180 nm and relatively large nanorods (diameter: 50 nm) with varying aspect ratio (1 = Aspect ratio (A) = 5) and orientation (0 degrees = ? = 90 degrees, ? = 0 degrees, 90 degrees) with respect to the incident EM radiation were investigated for continuous wave (CW) and pulsed wave laser. It was found that although nanorods can attain much higher temperature than nanospheres, orientation of a nanorod is an important factor to be carefully considered in applications. In micro-scale spherical and hemispherical confinements (diameter < 14.4 p.m), the convective velocity fields around nanoparticles is in the order of 10-9 m/s, with only a weak effect of the slip or no-slip boundary condition on the confining walls. Importantly, the size of the confinement has a strong effect leading to an order of magnitude stronger convection for 14.4 p.m (diameter) spherical confinement as compared to 3.6 p.m confinement. Additionally close proximity of the nanoparticles to the confining walls strongly reduces (by an order of magnitude) the convective currents. The results reported herein provides important insights for the use of photothermal nanoparticles in microscale confined space (e.g. cellular environment) for applications such as optical tweezers, photoporation, etc.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000985445100001 Publication Date 2023-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1955; 1557-1963 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3 Times cited Open Access (up) Not_Open_Access
Notes Approved Most recent IF: 3; 2023 IF: 2.139
Call Number UA @ admin @ c:irua:197380 Serial 8914
Permanent link to this record
 

 
Author Alvarado-Alvarado, A.A.; Smets, W.; Irga, P.; Denys, S.
Title Engineering green wall botanical biofiltration to abate indoor volatile organic compounds : a review on mechanisms, phyllosphere bioaugmentation, and modeling Type A1 Journal article
Year 2024 Publication Journal of hazardous materials Abbreviated Journal
Volume 465 Issue Pages 133491-16
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Indoor air pollution affects the global population, especially in developed countries where people spend around 90% of their time indoors. The recent pandemic exacerbated the exposure by relying on indoor spaces and a teleworking lifestyle. VOCs are a group of indoor air pollutants with harmful effects on human health at low concentrations. It is widespread that plants can remove indoor VOCs. To this day, research has combined principles of phytoremediation, biofiltration, and bioremediation into a holistic and sustainable technology called botanical biofiltration. Overall, it is sustained that its main advantage is the capacity to break down and biodegrade pollutants using low energy input. This differs from traditional systems that transfer VOCs to another phase. Furthermore, it offers additional benefits like decreased indoor air health costs, enhanced work productivity, and well-being. However, many disparities exist within the field regarding the role of plants, substrate, and phyllosphere bacteria. Yet their role has been theorized; its stability is poorly known for an engineering approach. Previous research has not addressed the bioaugmentation of the phyllosphere to increase the performance, which could boost the system. Moreover, most experiments have studied passive potted plant systems at a lab scale using small chambers, making it difficult to extrapolate findings into tangible parameters to engineer the technology. Active systems are believed to be more efficient yet require more maintenance and knowledge expertise; besides, the impact of the active flow on the long term is not fully understood. Besides, modeling the system has been oversimplified, limiting the understanding and optimization. This review sheds light on the field’s gains and gaps, like concepts, experiments, and modeling. We believe that embracing a multidisciplinary approach encompassing experiments, multiphysics modeling, microbial community analysis, and coworking with the indoor air sector will enable the optimization of the technology and facilitate its adoption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-01-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Additional Links UA library record
Impact Factor 13.6 Times cited Open Access (up) Not_Open_Access
Notes Approved Most recent IF: 13.6; 2024 IF: 6.065
Call Number UA @ admin @ c:irua:202311 Serial 9030
Permanent link to this record
 

 
Author Faust, V.; Vlaeminck, S.E.; Ganigué, R.; Udert, K.M.
Title Influence of pH on urine nitrification : community shifts of ammonia-oxidizing bacteria and inhibition of nitrite-oxidizing bacteria Type A1 Journal article
Year 2024 Publication ACS ES&T engineering Abbreviated Journal
Volume 4 Issue 2 Pages 342-353
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Urine nitrification is pH-sensitive due to limited alkalinity and high residual ammonium concentrations. This study aimed to investigate how the pH affects nitrogen conversion and the microbial community of urine nitrification with a pH-based feeding strategy. First, kinetic parameters for NH3, HNO2, and NO2– limitation and inhibition were determined for nitrifiers from a urine nitrification reactor. The turning point for ammonia-oxidizing bacteria (AOB), i.e., the substrate concentration at which a further increase would lead to a decrease in activity due to inhibitory effects, was at an NH3 concentration of 12 mg-N L–1, which was reached only at pH values above 7. The total nitrite turning point for nitrite-oxidizing bacteria (NOB) was pH-dependent, e.g., 18 mg-N L–1 at pH 6.3. Second, four years of data from two 120 L reactors were analyzed, showing that stable nitrification with low nitrite was most likely between pH 5.8 and 6.7. And third, six 12 L urine nitrification reactors were operated at total nitrogen concentrations of 1300 and 3600 mg-N L–1 and pH values between 2.5 and 8.5. At pH 6, the AOB Nitrosomonas europaea was found, and the NOB belonged to the genus Nitrobacter. At pH 7, nitrite accumulated, and Nitrosomonas halophila was the dominant AOB. NOB were inhibited by HNO2 accumulation. At pH 8.5, the AOB Nitrosomonas stercoris became dominant, and NH3 inhibited NOB. Without influent, the pH dropped to 2.5 due to the growth of the acid-tolerant AOB “Candidatus Nitrosacidococcus urinae”. In conclusion, pH is a decisive process control parameter for urine nitrification by influencing the selection and kinetics of nitrifiers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access (up) Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203306 Serial 9048
Permanent link to this record
 

 
Author Zhang, L.; Quinn, B.K.; Hui, C.; Lian, M.; Gielis, J.; Gao, J.; Shi, P.
Title New indices to balance α-diversity against tree size inequality Type A1 Journal article
Year 2024 Publication Journal of forestry research Abbreviated Journal
Volume 35 Issue 1 Pages 31-39
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The number and composition of species in a community can be quantified with alpha-diversity indices, including species richness (R), Simpson's index (D), and the Shannon-Wiener index (HGREEK TONOS). In forest communities, there are large variations in tree size among species and individuals of the same species, which result in differences in ecological processes and ecosystem functions. However, tree size inequality (TSI) has been largely neglected in studies using the available diversity indices. The TSI in the diameter at breast height (DBH) data for each of 999 20 m x 20 m forest census quadrats was quantified using the Gini index (GI), a measure of the inequality of size distribution. The generalized performance equation was used to describe the rotated and right-shifted Lorenz curve of the cumulative proportion of DBH and the cumulative proportion of number of trees per quadrat. We also examined the relationships of alpha-diversity indices with the GI using correlation tests. The generalized performance equation effectively described the rotated and right-shifted Lorenz curve of DBH distributions, with most root-mean-square errors (990 out of 999 quadrats) being < 0.0030. There were significant positive correlations between each of three alpha-diversity indices (i.e., R, D, and H') and the GI. Nevertheless, the total abundance of trees in each quadrat did not significantly influence the GI. This means that the TSI increased with increasing species diversity. Thus, two new indices are proposed that can balance alpha-diversity against the extent of TSI in the community: (1 – GI) x D, and (1 – GI) x H'. These new indices were significantly correlated with the original D and HGREEK TONOS, and did not increase the extent of variation within each group of indices. This study presents a useful tool for quantifying both species diversity and the variation in tree sizes in forest communities, especially in the face of cumulative species loss under global climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001131698000001 Publication Date 2023-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1007-662x; 1993-0607 ISBN Additional Links UA library record; WoS full record
Impact Factor 3 Times cited Open Access (up) Not_Open_Access
Notes Approved Most recent IF: 3; 2024 IF: 0.774
Call Number UA @ admin @ c:irua:201972 Serial 9061
Permanent link to this record
 

 
Author Van Tendeloo, M.; Baptista, M.C.; Van Winckel, T.; Vlaeminck, S.E.
Title Recurrent multi-stressor floc treatments with sulphide and free ammonia enabled mainstream partial nitritation/anammox Type A1 Journal article
Year 2024 Publication The science of the total environment Abbreviated Journal
Volume 912 Issue Pages 169449-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Selective suppression of nitrite-oxidising bacteria (NOB) over aerobic and anoxic ammonium-oxidising bacteria (AerAOB and AnAOB) remains a major challenge for mainstream partial nitritation/anammox implementation, a resource-efficient nitrogen removal pathway. A unique multi-stressor floc treatment was therefore designed and validated for the first time under lab-scale conditions while staying true to full-scale design principles. Two hybrid (suspended + biofilm growth) reactors were operated continuously at 20.2 ± 0.6 °C. Recurrent multi-stressor floc treatments were applied, consisting of a sulphide-spiked deoxygenated starvation followed by a free ammonia shock. A good microbial activity balance with high AnAOB (71 ± 21 mg N L−1 d−1) and low NOB (4 ± 17 % of AerAOB) activity was achieved by combining multiple operational strategies: recurrent multi-stressor floc treatments, hybrid sludge (flocs & biofilm), short floc age control, intermittent aeration, and residual ammonium control. The multi-stressor treatment was shown to be the most important control tool and should be continuously applied to maintain this balance. Excessive NOB growth on the biofilm was avoided despite only treating the flocs to safeguard the AnAOB activity on the biofilm. Additionally, no signs of NOB adaptation were observed over 142 days. Elevated effluent ammonium concentrations (25 ± 6 mg N L−1) limited the TN removal efficiency to 39 ± 9 %, complicating a future full-scale implementation. Operating at higher sludge concentrations or reducing the volumetric loading rate could overcome this issue. The obtained results ease the implementation of mainstream PN/A by providing and additional control tool to steer the microbial activity with the multi-stressor treatment, thus advancing the concept of energy neutrality in sewage treatment plants.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record
Impact Factor 9.8 Times cited Open Access (up) Not_Open_Access
Notes Approved Most recent IF: 9.8; 2024 IF: 4.9
Call Number UA @ admin @ c:irua:202286 Serial 9083
Permanent link to this record
 

 
Author Broos, W.; Wittner, N.; Dries, J.; Vlaeminck, S.E.; Gunde-Cimerman, N.; Cornet, I.
Title Rhodotorula kratochvilovae outperforms Cutaneotrichosporon oleaginosum in the valorisation of lignocellulosic wastewater to microbial oil Type A1 Journal article
Year 2024 Publication Process biochemistry (1991) Abbreviated Journal
Volume 137 Issue Pages 229-238
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Rhodotorula kratochvilovae has shown to be a promising species for microbial oil production from lignin-derived compounds. Yet, information on R. kratochvilovae’s detoxification and microbial oil production is scarce. This study investigated the growth and microbial oil production on the phenolic-containing effluent from poplar steam explosion and its detoxification with five R. kratochvilovae strains (EXF11626, EXF9590, EXF7516, EXF3697, EXF3471) and compared them with Cutaneotrichosporon oleaginosum. The R. kratochvilovae strains reached a maximum growth rate up to four times higher than C. oleaginosum. Furthermore, all R. kratochvilovae strains generally degraded phenolics more rapidly and to a larger extent than C. oleaginosum. However, the diluted substrate limited the lipid production by all strains as the maximum lipid content and titre were 10.5% CDW and 0.40 g/L, respectively. Therefore, future work should focus on increasing lipid production by using advanced fermentation strategies and stimulating the enzyme excretion by the yeasts for complex substrate breakdown.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-5113 ISBN Additional Links UA library record
Impact Factor 4.4 Times cited Open Access (up) Not_Open_Access
Notes Approved Most recent IF: 4.4; 2024 IF: 2.497
Call Number UA @ admin @ c:irua:202365 Serial 9087
Permanent link to this record
 

 
Author Verbeelen, T.; Fernandez, C.A.; Nguyen, T.H.; Gupta, S.; Aarts, R.; Tabury, K.; Leroy, B.; Wattiez, R.; Vlaeminck, S.E.; Leys, N.; Ganigué, R.; Mastroleo, F.
Title Whole transcriptome analysis highlights nutrient limitation of nitrogen cycle bacteria in simulated microgravity Type A1 Journal article
Year 2024 Publication NPJ microgravity Abbreviated Journal
Volume 10 Issue 1 Pages 3-19
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Regenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA). Rotary cell culture systems (RCCS) and random positioning machines (RPM) were used as SMG analogues. The transcriptional responses of the cultures were elucidated. For CO2-producing C. testosteroni and the tripartite culture, a PermaLifeTM PL-70 cell culture bag mounted on an in-house 3D-printed holder was applied to eliminate air bubble formation during SMG cultivation. Gene expression changes indicated that the fluid dynamics in SMG caused nutrient and O2 limitation. Genes involved in urea hydrolysis and nitrification were minimally affected, while denitrification-related gene expression was increased. The findings highlight potential challenges for nitrogen recovery in space.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001140007100001 Publication Date 2024-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2373-8065 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access (up) Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202285 Serial 9113
Permanent link to this record
 

 
Author De Paepe, J.; Garcia Gragera, D.; Arnau Jimenez, C.; Rabaey, K.; Vlaeminck, S.E.; Gòdia, F.
Title Continuous cultivation of microalgae yields high nutrient recovery from nitrified urine with limited supplementation Type A1 Journal article
Year 2023 Publication Journal of environmental management Abbreviated Journal
Volume 345 Issue Pages 118500-118510
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Microalgae can play a key role in the bioeconomy, particularly in combination with the valorisation of waste streams as cultivation media. Urine is an example of a widely available nutrient-rich waste stream, and alkaline stabilization and subsequent full nitrification in a bioreactor yields a stable nitrate-rich solution. In this study, such nitrified urine served as a culture medium for the edible microalga Limnospira indica. In batch cultivation, nitrified urine without additional supplements yielded a lower biomass concentration, nutrient uptake and protein content compared to modified Zarrouk medium, as standard medium. To enhance the nitrogen uptake efficiency and biomass production, nitrified urine was supplemented with potentially limiting elements. Limited amounts of phosphorus (36 mg L−1), magnesium (7.9 mg L−1), calcium (12.2 mg L−1), iron (2.0 mg L−1) and EDTA (88.5 mg Na2-EDTA.2H2O L−1) rendered the nitrified urine matrix as effective as modified Zarrouk medium in terms of biomass production (OD750 of 1.2), nutrient uptake (130 mg N L−1) and protein yield (47%) in batch culture. Urine precipitates formed by alkalinisation could in principle supply enough phosphorus, calcium and magnesium, requiring only external addition of iron, EDTA and inorganic carbon. Subsequently, the suitability of supplemented nitrified urine as a culture medium was confirmed in continuous Limnospira cultivation in a CSTR photobioreactor. This qualifies nitrified urine as a valuable and sustainable microalgae growth medium, thereby creating novel nutrient loops on Earth and in Space, i.e., in regenerative life support systems for human deep-space missions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001052880800001 Publication Date 2023-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.7 Times cited Open Access (up) Not_Open_Access: Available from 03.02.2024
Notes Approved Most recent IF: 8.7; 2023 IF: 4.01
Call Number UA @ admin @ c:irua:199049 Serial 8844
Permanent link to this record
 

 
Author Gielis, J.
Title Simon Stevin as a central figure in the development of abstract algebra and generic programming Type A1 Journal article
Year 2023 Publication Symmetry : culture and science Abbreviated Journal
Volume 34 Issue 2 Pages 155-168
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Simon Stevin (1548-1620) is mainly known for the decimal system and his Clootkrans proof. His influence is also profound in infinitesimal calculus, mechanics, and even in abstract algebra and today’s conception of polynomials, algorithms, and generic programming. Here we review his influence as assessed in generic programming. According to Dr. Stepanov, one of the most influential researchers in generic programming, Stevin’s work on polynomials can be regarded as the essence of generic programming: an algorithm from one domain can be applied in another similar domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001068714100003 Publication Date 2023-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access (up) Not_Open_Access: Available from 08.02.2024
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198000 Serial 8929
Permanent link to this record
 

 
Author Li, Q.; Niklas, K.J.J.; Niinemets, U.; Zhang, L.; Yu, K.; Gielis, J.; Gao, J.; Shi, P.
Title Stomatal shape described by a superellipse in four Magnoliaceae species Type A1 Journal article
Year 2023 Publication Botany letters Abbreviated Journal
Volume Issue Pages 1-9
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Stomata are essential for the exchange of water vapour and atmospheric gases between vascular plants and their external environments. The stomatal geometries of many plants appear to be elliptical. However, prior studies have not tested whether this is a mathematical reality, particularly since many natural shapes that appear to be ellipses are superellipses with greater or smaller edge curvature than predicted for an ellipse. Compared with the ellipse equation, the superellipse equation includes an additional parameter that allows generation of a larger range of shapes. We randomly selected 240 stomata from each of four Magnoliaceae species to test whether the stomatal geometries are superellipses or ellipses. The stomatal geometries for most stomata (943/960) were found to be described better using the superellipse equation. The traditional “elliptical stomata hypothesis” resulted in an underestimation of the area of stomata, whereas the superellipse equation accurately predicted stomatal area. This finding has important implications for the estimation of stomatal area in studies looking at stomatal shape, geometry, and function.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001024190300001 Publication Date 2023-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2381-8107; 2381-8115 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.5 Times cited Open Access (up) Not_Open_Access: Available from 12.01.2024
Notes Approved Most recent IF: 1.5; 2023 IF: NA
Call Number UA @ admin @ c:irua:197847 Serial 8935
Permanent link to this record
 

 
Author Xie, Y.; Van Tendeloo, M.; Zhu, W.; Peng, L.; Vlaeminck, S.E.
Title Autotrophic nitrogen polishing of secondary effluents : Alkaline pH and residual nitrate control S0-driven denitratation for downstream anammox treatment Type A1 Journal article
Year 2023 Publication Journal of Water Process Engineering Abbreviated Journal
Volume 56 Issue Pages 104402-104409
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Energy-lean nitrogen removal technologies, such as partial nitritation/anammox, often encounter effluent issues due to elevated nitrate and ammonium levels. This study proposed a novel autotrophic polishing strategy coupling sulfur-driven denitratation with anammox. To explore the denitratation potential in obtaining stable and sufficient nitrite accumulation, the effects of pH, residual nitrate level, and biomass-specific nitrate loading rate (BSNLR) were investigated in an S0-packed bed reactor at low hydraulic retention time (i.e., 0.2 h). Implementing pH and residual nitrate control strategies would be easier in practice than BSNLR control to polish secondary effluent. Alkaline pH values could realize successful nitrite accumulation without residual nitrate, and further intensify the accumulation under increased residual nitrate levels. The nitrate level was positively correlated with the nitrite accumulation efficiency. At pH 8.5 and nitrate concentration of 1.0 ± 0.8 mg N L−1, sulfur-driven denitratation could successfully maintain nitrite accumulation of 6.4 ± 1.0 mg NO2−-N L−1, ideally for the downstream anammox in case of residual ammonium levels of around 5 mg N L−1. Since Thiobacillus members play a key role in managing nitrite accumulation, their abundance should be guaranteed in the practical application.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001103341400001 Publication Date 2023-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-7144 ISBN Additional Links UA library record; WoS full record
Impact Factor 7 Times cited Open Access (up) Not_Open_Access: Available from 18.04.2024
Notes Approved Most recent IF: 7; 2023 IF: NA
Call Number UA @ admin @ c:irua:200036 Serial 8835
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; De Paepe, J.; Vlaeminck, S.E.
Title Comparison of typical nitrite oxidizing bacteria suppression strategies and the effect on nitrous oxide emissions in a biofilm reactor Type A1 Journal article
Year 2023 Publication Bioresource technology Abbreviated Journal
Volume 387 Issue Pages 129607-129609
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In mainstream partial nitritation/anammox (PN/A), suppression of nitrite oxidizing bacteria (NOB) and mitigation of N2O emissions are two essential operational goals. The N2O emissions linked to three typical NOB suppression strategies were tested in a covered rotating biological contactor (RBC) biofilm system at 21 degrees C: (i) low dissolved oxygen (DO) concentrations, and treatments with (ii) free ammonia (FA), and (iii) free nitrous acids (FNA). Low emerged DO levels effectively minimized NOB activity and decreased N2O emissions, but NOB adaptation appeared after 200 days of operation. Further NOB suppression was successfully achieved by periodic (3 h per week) treatments with FA (29.3 & PLUSMN; 2.6 mg NH3-N L-1) or FNA (3.1 & PLUSMN; 0.3 mg HNO2-N L-1). FA treatment, however, promoted N2O emissions, while FNA did not affect these. Hence, biofilm PN/A should be operated at relatively low DO levels with periodic FNA treatment to maximize nitrogen removal efficiency while avoiding high greenhouse gas emissions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001063180200001 Publication Date 2023-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.4 Times cited Open Access (up) Not_Open_Access: Available from 21.02.2024
Notes Approved Most recent IF: 11.4; 2023 IF: 5.651
Call Number UA @ admin @ c:irua:199051 Serial 8843
Permanent link to this record
 

 
Author Ramakers, M.; Heijkers, S.; Tytgat, T.; Lenaerts, S.; Bogaerts, A.
Title Combining CO2 conversion and N2 fixation in a gliding arc plasmatron Type A1 Journal article
Year 2019 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util
Volume 33 Issue Pages 121-130
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Industry needs a flexible and efficient technology to convert CO2 into useful products, which fits in the Carbon Capture and Utilization (CCU) philosophy. Plasma technology is intensively being investigated for this purpose. A promising candidate is the gliding arc plasmatron (GAP). Waste streams of CO2 are often not pure and contain N2 as important impurity. Therefore, in this paper we provide a detailed experimental and computational study of the combined CO2 and N2 conversion in a GAP. Is it possible to take advantage of the presence of N2 in the mixture and to combine CO2 conversion with N2 fixation? Our experiments and simulations reveal that N2 actively contributes to the process of CO2 conversion, through its vibrational levels. In addition, NO and NO2 are formed, with concentrations around 7000 ppm, which is slightly too low for valorization, but by improving the reactor design it must be possible to further increase their concentrations. Other NO-based molecules, in particular the strong greenhouse gas N2O, are not formed in the GAP, which is an important result. We also compare our results with those obtained in other plasma reactors to clarify the differences in underlying plasma processes, and to demonstrate the superiority of the GAP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000487274100013 Publication Date 2019-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.292 Times cited 3 Open Access (up) Not_Open_Access: Available from 23.05.2021
Notes Fund for Scientific Research Flanders, G.0383.16N ; Excellence of Science program of the Fund for Scientific Research, G0F9618N ; Hercules Foundation, the Flemish Government; UAntwerpen; We acknowledge financial support from the Fund for Scientific Research Flanders (FWO; Grant no. G.0383.16N) and the Excellence of Science program of the Fund for Scientific Research (FWO-FNRS; Grant no. G0F9618N; EOS ID: 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Finally, we also want to thank Dr. Ramses Snoeckx for the very interesting discussions, and A. Fridman and A. Rabinovich for developing the GAP. Approved Most recent IF: 4.292
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159984 Serial 5173
Permanent link to this record
 

 
Author Wang, L.; Shi, P.; Chen, L.; Gielis, J.; Niklas, K.J.
Title Evidence that Chinese white olive (Canarium album(Lour.) DC.) fruits are solids of revolution Type A1 Journal article
Year 2023 Publication Botany letters Abbreviated Journal
Volume Issue Pages 1-7
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Although many fruit geometries resemble a solid of revolution, this assumption has rarely been rigorously examined. To test this assumption, 574 fruits of Canarium album (Lour.) DC. which appear to have an ellipsoidal shape, were examined to determine the validity of a general avian-based egg-shape equation, referred to as the explicit Preston equation (EPE). The assumption that the C. album fruit geometry is a solid of revolution is tested by applying the volume formula for a solid of revolution using the EPE. The goodness of fit of the EPE was assessed using the adjusted root-mean-square error (RMSEadj). The relationship between the observed volume (Vobs) of each fruit, as measured by water displacement in a graduated cylinder, and the predicted volumes (Vpre) based on the EPE was also evaluated using the equation Vpre = slope * Vobs. All the RMSEadj values were smaller than 0.05, which demonstrated the validity of the EPE based on C. album fruit profiles. The 95% confidence interval of the slope of Vpre vs. Vobs included 1.0, indicating that there was no significant difference between Vpre and Vobs. The data confirm that C. album fruits are solids of revolution. This study provides a new approach for calculating the volume and surface area of geometrically similar fruits, which can be extended to other species with similar fruit geometries to further explore the ontogeny and evolution of angiosperm reproductive organs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033135400001 Publication Date 2023-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2381-8107; 2381-8115 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.5 Times cited Open Access (up) Not_Open_Access: Available from 24.01.2024
Notes Approved Most recent IF: 1.5; 2023 IF: NA
Call Number UA @ admin @ c:irua:198001 Serial 8864
Permanent link to this record
 

 
Author Wittner, N.; Vasilakou, K.; Broos, W.; Vlaeminck, S.E.; Nimmegeers, P.; Cornet, I.
Title Investigating the technical and economic potential of solid-state fungal pretreatment at nonsterile conditions for sugar production from poplar wood Type A1 Journal article
Year 2023 Publication Industrial and engineering chemistry research Abbreviated Journal
Volume Issue Pages 1-11
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM); Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Pretreatment is crucial for the conversion of lignocellulose to biofuels. Unlike conventional chemical/physicochemical methods, fungal pretreatment uses white-rot fungi and mild reaction conditions. However, challenges, including substrate sterilization, long duration, and low sugar yields associated with this method, contribute to lower techno-economic performance, an aspect that has rarely been investigated. This study aimed to evaluate the feasibility of fungal pretreatment of nonsterilized poplar wood. Various factors, including inoculum types, fermentation supplements, and cultivation methods, were investigated to optimize the process. A techno-economic assessment of the optimized processes was performed at a full biorefinery scale. The scenario using nonsterilized wood as a substrate, precolonized wood as an inoculum, and a 4 week pretreatment showed a 14.5% reduction in sugar production costs (€2.15/kg) compared to using sterilized wood. Although the evaluation of nonsterilized wood pretreatment showed promising cost reductions, fungal pretreatment remained more expensive than conventional methods due to the significant capital investment required.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001102138000001 Publication Date 2023-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.2 Times cited Open Access (up) Not_Open_Access: Available from 24.04.2024
Notes Approved Most recent IF: 4.2; 2023 IF: 2.843
Call Number UA @ admin @ c:irua:200155 Serial 8891
Permanent link to this record
 

 
Author Lian, M.; Shi, P.; Zhang, L.; Yao, W.; Gielis, J.; Niklas, K.J.
Title A generalized performance equation and its application in measuring the Gini index of leaf size inequality Type A1 Journal article
Year 2023 Publication Trees: structure and function Abbreviated Journal
Volume 37 Issue Pages 1555-1565
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The goal of this study is to provide a rigorous tool to quantify the inequality of the leaf size distribution of an individual plant, thereby serving as a reference trait for quantifying plant adaptations to local environmental conditions. The tool to be presented and tested employs three components: (1) a performance equation (PE), which can produce flexible asymmetrical and symmetrical bell-shaped curves, (2) the Lorenz curve (i.e., the cumulative proportion of leaf size vs. the cumulative proportion of number of leaves), which is the basis for calculating, and (3) the Gini index, which measures the inequality of leaf size distribution. We sampled 12 individual plants of a dwarf bamboo and measured the area and dry mass of each leaf of each plant. We then developed a generalized performance equation (GPE) of which the PE is a special case and fitted the Lorenz curve to leaf size distribution using the GPE and PE. The GPE performed better than the PE in fitting the Lorenz curve. We compared the Gini index of leaf area distribution with that of leaf dry mass distribution and found that there was a significant difference between the two indices that might emerge from the scaling relationship between leaf dry mass and area. Nevertheless, there was a strong correlation between the two Gini indices (r2 = 0.9846). This study provides a promising tool based on the GPE for quantifying the inequality of leaf size distributions across individual plants and can be used to quantify plant adaptations to local environmental conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001069570200001 Publication Date 2023-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0931-1890; 1432-2285 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.3 Times cited Open Access (up) Not_Open_Access: Available from 26.02.2024
Notes Approved Most recent IF: 2.3; 2023 IF: 1.842
Call Number UA @ admin @ c:irua:199562 Serial 8874
Permanent link to this record
 

 
Author Verbruggen, S.W.; Deng, S.; Kurttepeli, M.; Cott, D.J.; Vereecken, P.M.; Bals, S.; Martens, J.A.; Detavernier, C.; Lenaerts, S.
Title Photocatalytic acetaldehyde oxidation in air using spacious TiO2 films prepared by atomic layer deposition on supported carbonaceous sacrificial templates Type A1 Journal article
Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 160 Issue Pages 204-210
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Supported carbon nanosheets and carbon nanotubes served as sacrificial templates for preparing spacious TiO2 photocatalytic thin films. Amorphous TiO2 was deposited conformally on the carbonaceous template material by atomic layer deposition (ALD). Upon calcination at 550 °C, the carbon template was oxidatively removed and the as-deposited continuous amorphous TiO2 layers transformed into interlinked anatase nanoparticles with an overall morphology commensurate to the original template structure. The effect of type of template, number of ALD cycles and gas residence time of pollutant on the photocatalytic activity, as well as the stability of the photocatalytic performance of these thin films was investigated. The TiO2 films exhibited excellent photocatalytic activity toward photocatalytic degradation of acetaldehyde in air as a model reaction for photocatalytic indoor air pollution abatement. Optimized films outperformed a reference film of commercial PC500.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000340687900024 Publication Date 2014-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 37 Open Access (up) OpenAccess
Notes 335078 Colouratom; Iap-Pai P7/05; Fwo; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446; 2014 IF: 7.435
Call Number UA @ lucian @ c:irua:117094 Serial 2608
Permanent link to this record
 

 
Author Kurttepeli, M.; Deng, S.; Verbruggen, S.W.; Guzzinati, G.; Cott, D.J.; Lenaerts, S.; Verbeeck, J.; Van Tendeloo, G.; Detavernier, C.; Bals, S.
Title Synthesis and characterization of photoreactive TiO2carbon nanosheet composites Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 36 Pages 21031-21037
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract We report the atomic layer deposition of titanium dioxide on carbon nanosheet templates and investigate the effects of postdeposition annealing in a helium environment using different characterization techniques. The crystallization of the titanium dioxide coating upon annealing is observed using in situ X-ray diffraction. The (micro)structural characterization of the films is carried out by scanning electron microscopy and advanced transmission electron microscopy techniques. Our study shows that the annealing of the atomic layer deposition processed and carbon nanosheets templated titanium dioxide layers in helium environment resulting in the formation of a porous, nanocrystalline and photocatalytically active titanium dioxide-carbon nanosheet composite film. Such composites are suitable for photocatalysis and dye-sensitized solar cells applications.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000341619500034 Publication Date 2014-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 9 Open Access (up) OpenAccess
Notes This research was funded by the Flemish research foundation FWO-Vlaanderen, by the European Research Council (Starting Grant No. 239865) and by the Special Research Fund BOF of Ghent University (GOA-01G01513). G.G, M.K., J.V., S.B., and G.V.T. acknowledge funding from the European Research Council under the seventh Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX and No. 335078 COLOURATOMS. ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:119085 Serial 3416
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Goris, B.; Blommaerts, N.; Bals, S.; Martens, J.A.; Lenaerts, S.
Title Plasmonic ‘rainbow’ photocatalyst with broadband solar light response for environmental applications Type A1 Journal article
Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 188 Issue 188 Pages 147-153
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract We propose the concept of a ‘rainbow’ photocatalyst that consists of TiO2 modified with gold-silver alloy nanoparticles of various sizes and compositions, resulting in a broad plasmon absorption band that covers the entire UV–vis range of the solar spectrum. It is demonstrated that this plasmonic ‘rainbow’ photocatalyst is 16% more effective than TiO2 P25 under both simulated and real solar light for pollutant degradation at the solid-gas interface. With this we provide a promising strategy to maximize the spectral response for solar to chemical energy conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372677500016 Publication Date 2016-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 47 Open Access (up) OpenAccess
Notes S.W.V. and B.G. acknowledge the Research Foundation—Flanders (FWO) for a postdoctoral fellowship. M.K. acknowledges IWT for the doctoral scholarship. S.B. acknowledges the European Research Council (ERC) for financial support through the ERC grant agreement no. 335078-COLOURATOM. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446
Call Number c:irua:130995 Serial 4061
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W.
Title Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis Type A1 Journal article
Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 200 Issue 200 Pages 31-38
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Affordable silver-polymer core-shell nanoparticles are prepared using the layer-by-layer (LbL) technique. The metallic silver core is encapsulated with an ultra-thin protective shell that prevents oxidation and clustering without compromising the plasmonic properties. The core-shell nanoparticles retain their plasmonic near field enhancement effect, as studied from finite element numerical simulations. Control over the shell thickness up to the sub-nanometer level is there for key. The particles are used to prepare a plasmonic Ag-TiO2 photocatalyst of which the gas phase photocatalytic activity is monitored over a period of four months. The described system outperforms pristine TiO2 and retains its plasmonic enhancement in contrast to TiO2 modified with bare silver nanoparticles. With this an important step is made toward the development of long-term stable plasmonic (photocatalytic) applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384775600004 Publication Date 2016-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 45 Open Access (up) OpenAccess
Notes CD, SL and SWV acknowledge the Research Foundation − Flanders (FWO) for financial support. CD further acknowledges BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014). SB acknowledges the European Research Council for the ERC Starting Grant #335078-COLOURATOM.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446
Call Number c:irua:134384 c:irua:134384UA @ admin @ c:irua:134384 Serial 4104
Permanent link to this record
 

 
Author Blommaerts, N.; Asapu, R.; Claes, N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.
Title Gas phase photocatalytic spiral reactor for fast and efficient pollutant degradation Type A1 Journal article
Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 316 Issue 316 Pages 850-856
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Photocatalytic reactors for the degradation of gaseous organic pollutants often suffer from major limitations such as small reaction area, sub-optimal irradiation conditions and thus limited reaction rate. In this work, an alternative solution is presented that involves a glass tube coated on the inside with (silvermodified) TiO2 and spiraled around a UVA lamp. First, the spiral reactor is coated from the inside with TiO2 using an experimentally verified procedure that is optimized toward UV light transmission. This procedure is kept as simple as possible and involves a single casting step of a 1 wt% suspension of TiO2 in ethanol through the spiral. This results in a coated tube that absorbs nearly all incident UV light under the experimental conditions used. The optimized coated spiral reactor is then benchmarked to a conventional annular photoreactor of the same outer dimensions and total catalyst loading over a broad range of experimental conditions. Although residence time distribution experiments indicate slightly longer dwelling of molecules in the spiral reactor, no significant difference in by-passing of gas between the spiral reactor and the annular reactor can be claimed. Acetaldehyde degradation efficiency of 100% is obtained with the spiral reactor for a residence time as low as 60 s, whereas the annular reactor could not achieve full degradation even at 1000 s residence time. In a final case study, addition of long-term stable silver nanoparticles, protected by an ultra-thin polymer shell applied via the layer-by-layer (LbL) method, to the spiral reactor coating is shown to double the degradation efficiency and provides an interesting strategy to cope with higher pollutant concentrations without changing the overall dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398985200089 Publication Date 2017-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 30 Open Access (up) OpenAccess
Notes N.B. wishes to thank the University of Antwerp – Belgium for financial support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078- COLOURATOM). S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 6.216
Call Number EMAT @ emat @ c:irua:140925UA @ admin @ c:irua:140925 Serial 4481
Permanent link to this record
 

 
Author Liao, T.-W.; Verbruggen, S.; Claes, N.; Yadav, A.; Grandjean, D.; Bals, S.; Lievens, P.
Title TiO2 Films Modified with Au Nanoclusters as Self-Cleaning Surfaces under Visible Light Type A1 Journal article
Year 2018 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 8 Issue 8 Pages 30
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this study, we applied cluster beam deposition (CBD) as a new approach for fabricating efficient plasmon-based photocatalytic materials. Au nanoclusters (AuNCs) produced in the gas phase were deposited on TiO2 P25-coated silicon wafers with coverage ranging from 2 to 8 atomic monolayer (ML) equivalents. Scanning Electron Microscopy (SEM) images of the AuNCs modified TiO2 P25 films show that the surface is uniformly covered by the AuNCs that remain isolated at low coverage (2 ML, 4 ML) and aggregate at higher coverage (8 ML). A clear relationship between AuNCs coverage and photocatalytic activity towards stearic acid photo-oxidation was measured, both under ultraviolet and green light illumination. TiO2 P25 covered with 4 ML AuNCs showed the best stearic acid photo-oxidation performance under green light illumination (Formal Quantum Efficiency 1.6 x 10-6 over a period of 93 h). These results demonstrate the large potential of gas-phase AuNCs beam deposition technology for the fabrication of visible light active plasmonic photocatalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000424131600030 Publication Date 2018-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited 29 Open Access (up) OpenAccess
Notes The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n 607417 (Catsense). We also thank the Research Foundation—Flanders (FWO, Belgium), the Flemish Concerted Action (BOF KU Leuven, Project No. GOA/14/007) research program, and the microscope was partly funded by the Hercules Fund from the Flemish Government for the support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). ECAS_Sara (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.553
Call Number EMAT @ emat @c:irua:147898UA @ admin @ c:irua:147898 Serial 4805
Permanent link to this record
 

 
Author Asapu, R.; Ciocarlan, R.-G.; Claes, N.; Blommaerts, N.; Minjauw, M.; Ahmad, T.; Dendooven, J.; Cool, P.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W.
Title Plasmonic Near-Field Localization of Silver Core–Shell Nanoparticle Assemblies via Wet Chemistry Nanogap Engineering Type A1 Journal article
Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 9 Issue 9 Pages 41577-41585
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Silver nanoparticles are widely used in the field of plasmonics because of their unique optical properties. The wavelength-dependent surface plasmon resonance gives rise to a strongly enhanced electromagnetic field, especially at so-called hot spots located in the nanogap in-between metal nanoparticle assemblies. Therefore, the interparticle distance is a decisive factor in plasmonic applications, such as surface-enhanced Raman spectroscopy (SERS). In this study, the aim is to engineer this interparticle distance for silver nanospheres using a convenient wet-chemical approach and to predict and quantify the corresponding enhancement factor using both theoretical and experimental tools. This was done by building a tunable ultrathin polymer shell around the nanoparticles using the layer-by-layer method, in which the polymer shell acts as the separating interparticle spacer layer. Comparison of different theoretical approaches and corroborating the results with SERS analytical experiments using silver and silver−polymer core−shell nanoparticle clusters as SERS substrates was also done. Herewith, an approach is provided to estimate the extent of plasmonic near-field enhancement both theoretically as well as experimentally.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000417005900057 Publication Date 2017-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 29 Open Access (up) OpenAccess
Notes financial support through a research fellowship. C.D. wishes to thank the Hercules foundation for the financial support (SPINAL). P.C. and R.-G.C. acknowledge financial support by FWO Vlaanderen (project no. G038215N). N.C. and S.B. acknowledge the financial support from the European Research Council (ERC starting grant #335078-COLOURATOM). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.504
Call Number EMAT @ emat @c:irua:147243 Serial 4804
Permanent link to this record
 

 
Author Claes, N.; Asapu, R.; Blommaerts, N.; Verbruggen, S.W.; Lenaerts, S.; Bals, S.
Title Characterization of silver-polymer core–shell nanoparticles using electron microscopy Type A1 Journal article
Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 10 Issue 10 Pages 9186-9191
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Silver-polymer core–shell nanoparticles show interesting optical properties, making them widely applicable in the field of plasmonics. The uniformity, thickness and homogeneity of the polymer shell will affect the properties of the system which makes a thorough structural characterization of these core–shell silver-polymer nanoparticles of great importance. However, visualizing the shell and the particle simultaneously is far from straightforward due to the sensitivity of the polymer shell towards the electron beam. In this study, we use different 2D and 3D electron microscopy techniques to investigate different structural aspects of the polymer coating.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000437007700028 Publication Date 2018-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 11 Open Access (up) OpenAccess
Notes N. C. and S. B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS) and from the FWO through project funding (G038116N). R. A. and S. L. acknowledge the Research Foundation Flanders (FWO) for financial support. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 7.367
Call Number EMAT @ emat @c:irua:151290UA @ admin @ c:irua:151290 Serial 4959
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Ciocarlan, R.-G.; Minjauw, M.; Detavernier, C.; Cool, P.; Bals, S.; Verbruggen, S.W.
Title Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO2Photocatalytic Systems Type A1 Journal article
Year 2019 Publication ACS applied nano materials Abbreviated Journal ACS Appl. Nano Mater.
Volume 2 Issue 2 Pages 4067-4074
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)
Abstract The major mechanism responsible for plasmonic enhancement of titanium dioxide photocatalysis using gold nanoparticles is still under contention. This work introduces an experimental strategy to disentangle the significance of the charge transfer and near-field mechanisms in plasmonic photocatalysis. By controlling the thickness and conductive nature of a nanoparticle shell that acts as a spacer layer separating the plasmonic metal core from the TiO2 surface, field enhancement or charge transfer effects can be selectively repressed or evoked. Layer-by-layer and in situ polymerization methods are used to synthesize gold core–polymer shell nanoparticles with shell thickness control up to the sub-nanometer level. Detailed optical and electrical characterization supported by near-field simulation models corroborate the trends in photocatalytic activity of the different systems. This approach mainly points at an important contribution of the enhanced near field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477917700006 Publication Date 2019-05-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 32 Open Access (up) OpenAccess
Notes This work was supported by Research Foundation Flanders (FWO). P.C. and R-G.C. acknowledge financial support from FWO (Project No. G038215N). N.C. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant No. 335078-COLOURATOM). Approved Most recent IF: NA
Call Number EMAT @ emat @UA @ admin @ c:irua:160579 Serial 5184
Permanent link to this record