|   | 
Details
   web
Records
Author Chen, X.; Dong, X.; Zhang, C.; Zhu, M.; Ahmed, E.; Krishnamurthy, G.; Rouzbahani, R.; Pobedinskas, P.; Gauquelin, N.; Jannis, D.; Kaur, K.; Hafez, A.M.E.; Thiel, F.; Bornemann, R.; Engelhard, C.; Schoenherr, H.; Verbeeck, J.; Haenen, K.; Jiang, X.; Yang, N.
Title Interlayer affected diamond electrochemistry Type A1 Journal article
Year 2024 Publication Small methods Abbreviated Journal
Volume Issue Pages 2301774
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Diamond electrochemistry is primarily influenced by quantities of sp3-carbon, surface terminations, and crystalline structure. In this work, a new dimension is introduced by investigating the effect of using substrate-interlayers for diamond growth. Boron and nitrogen co-doped nanocrystalline diamond (BNDD) films are grown on Si substrate without and with Ti and Ta as interlayers, named BNDD/Si, BNDD/Ti/Si, and BNDD/Ta/Ti/Si, respectively. After detailed characterization using microscopies, spectroscopies, electrochemical techniques, and density functional theory simulations, the relationship of composition, interfacial structure, charge transport, and electrochemical properties of the interface between diamond and metal is investigated. The BNDD/Ta/Ti/Si electrodes exhibit faster electron transfer processes than the other two diamond electrodes. The interlayer thus determines the intrinsic activity and reaction kinetics. The reduction in their barrier widths can be attributed to the formation of TaC, which facilitates carrier tunneling, and simultaneously increases the concentration of electrically active defects. As a case study, the BNDD/Ta/Ti/Si electrode is further employed to assemble a redox-electrolyte-based supercapacitor device with enhanced performance. In summary, the study not only sheds light on the intricate relationship between interlayer composition, charge transfer, and electrochemical performance but also demonstrates the potential of tailored interlayer design to unlock new capabilities in diamond-based electrochemical devices. Diamond electrochemistry is revealed to be affected by the interlayers between boron/nitrogen co-doped nanocrystalline diamond (BNDD) film and a Si substrate. A BNDD/Ta/Ti/Si electrode exhibits faster electron transfer processes and smaller electron transfer resistance of redox probes for [Fe(CN)6]3-/4- and [Ru(NH3)6]3+/2+ than the other electrodes, because the interlayer thus determines the intrinsic activity and reaction kinetics of diamond films. image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001247280600001 Publication Date 2024-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2366-9608 ISBN Additional Links UA library record; WoS full record
Impact Factor 12.4 Times cited Open Access (up)
Notes Approved Most recent IF: 12.4; 2024 IF: NA
Call Number UA @ admin @ c:irua:206567 Serial 9298
Permanent link to this record
 

 
Author Cheng, X.; Xu, W.; Wen, H.; Zhang, J.; Zhang, H.; Li, H.; Peeters, F.M.
Title Key electronic parameters of 2H-stacking bilayer MoS₂ on sapphire substrate determined by terahertz magneto-optical measurement in Faraday geometry Type A1 Journal article
Year 2024 Publication Frontiers of physics Abbreviated Journal
Volume 19 Issue 6 Pages 63204-63209
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bilayer (BL) transition metal dichalcogenides (TMDs) are important materials in valleytronics and twistronics. Here we study terahertz (THz) magneto-optical (MO) properties of n-type 2H-stacking BL molybdenum sulfide (MoS2) on sapphire substrate grown by chemical vapor deposition. The AFM, Raman spectroscopy and photoluminescence are used for characterization of the samples. Applying THz time-domain spectroscopy (TDS), in combination with polarization test and the presence of magnetic field in Faraday geometry, THz MO transmissions through the sample are measured from 0 to 8 T at 80 K. The complex right- and left-handed circular MO conductivities for 2H-stacking BL MoS2 are obtained. Through fitting the experimental results with theoretical formula of MO conductivities for an electron gas, generalized by us previously through the inclusion of photon-induced electronic backscattering effect, we are able to determine magneto-optically the key electronic parameters of BL MoS2, such as the electron density n(e), the electronic relaxation time tau, the electronic localization factor c and, particularly, the effective electron mass m* around Q-point in between the K- and Gamma-point in the electronic band structure. The dependence of these parameters upon magnetic field is examined and analyzed. This is a pioneering experimental work to measure m* around the Q-point in 2H-stacking BL MoS2 and the experimental value is very close to that obtained theoretically. We find that n(e)/tau/ divided by c divided by /m* in 2H-stacking BL MoS2 decreases/increases/decreases/increases with increasing magnetic field. The results obtained from this study can be benefit to us in gaining an in-depth understanding of the electronic and optoelectronic properties of BL TMD systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001271 Publication Date 2024-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0462; 2095-0470 ISBN Additional Links UA library record; WoS full record
Impact Factor 7.5 Times cited Open Access (up)
Notes Approved Most recent IF: 7.5; 2024 IF: 2.579
Call Number UA @ admin @ c:irua:207600 Serial 9300
Permanent link to this record
 

 
Author Liu, J.; Xu, W.; Xiao, Y.M.; Ding, L.; Li, H.W.; Van Duppen, B.; Milošević, M.V.; Peeters, F.M.
Title Longitudinal and transverse mobilities of n-type monolayer transition metal dichalcogenides in the presence of proximity-induced interactions at low temperature Type A1 Journal article
Year 2024 Publication Physical review B Abbreviated Journal
Volume 109 Issue 19 Pages 195418-14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a detailed theoretical investigation on the electronic transport properties of n-type monolayer (ML) transition metal dichalcogenides (TMDs) at low temperature in the presence of proximity-induced interactions such as Rashba spin-orbit coupling (RSOC) and the exchange interaction. The electronic band structure is calculated by solving the Schr & ouml;dinger equation with a k <middle dot> p Hamiltonian, and the electric screening induced by electron-electron interaction is evaluated under a standard random phase approximation approach. In particular, the longitudinal and transverse or Hall mobilities are calculated by using a momentum-balance equation derived from a semiclassical Boltzmann equation, where the electron-impurity interaction is considered as the principal scattering center at low temperature. The obtained results show that the RSOC can induce the in-plane spin components for spin-split subbands in different valleys, while the exchange interaction can lift the energy degeneracy for electrons in different valleys. The opposite signs of Berry curvatures in the two valleys would introduce opposite directions of Lorentz force on valley electrons. As a result, the transverse currents from nondegenerate valleys can no longer be canceled out so that the transverse current or Hall mobility can be observed. Interestingly, we find that at a fixed effective Zeeman field, the lowest spin-split conduction subband in ML-TMDs can be tuned from one in the K'-valley to one in the K-valley by varying the Rashba parameter. The occupation of electrons in different valleys also varies with changing carrier density. Therefore, we can change the magnitude and direction of the Hall current by varying the Rashba parameter, effective Zeeman field, and carrier density by, e.g., the presence of a ferromagnetic substrate and/or applying a gate voltage. By taking the ML-MoS2 as an example, these effects are demonstrated and examined. The important and interesting theoretical findings can be beneficial to experimental observation of the valleytronic effect and to gaining an in-depth understanding of the ML-TMD systems in the presence of proximity-induced interactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001237245700001 Publication Date 2024-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access (up)
Notes Approved Most recent IF: 3.7; 2024 IF: 3.836
Call Number UA @ admin @ c:irua:206596 Serial 9302
Permanent link to this record
 

 
Author Miao, X.; Milošević, M.; Zhang, C.
Title Magnetic ferroelectric metal in bilayer Fe₃GeTe₂ under interlayer sliding Type A1 Journal article
Year 2024 Publication Physica: B : condensed matter Abbreviated Journal
Volume 694 Issue Pages 416427-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The inherent interlayer freedom in van der Waals stacked materials provides an excellent opportunity to investigate ferroelectric-like behavior through interlayer translation. Based on first-principles calculations, we find that the interlayer sliding in Fe3GeTe2 (FGT) bilayer enables the coexistence of polarization, metallicity, and ferromagnetism. We find that the polarization is induced by the uncompensated vertical interlayer charge transfer, and can be switched by an in-plane interlayer sliding. A moderate biaxial strain can reverse the polarization direction of the sliding FGT bilayer. The vertical polarization disentangles with the in-plane conductivity as was previously seen in the sliding ferroelectric WTe2 bilayer. Our work proposes an extremely rare magnetic ferroelectric metal phase that is useful for magnetoelectric and spintronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001300 Publication Date 2024-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; 1873-2135 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.8 Times cited Open Access (up)
Notes Approved Most recent IF: 2.8; 2024 IF: 1.386
Call Number UA @ admin @ c:irua:208567 Serial 9304
Permanent link to this record
 

 
Author Li, Y.; Xiao, Y.M.; Xu, W.; Ding, L.; Milošević, M.V.; Peeters, F.M.
Title Magneto-optical conductivity of monolayer transition metal dichalcogenides in the presence of proximity-induced exchange interaction and external electrical field Type A1 Journal article
Year 2024 Publication Physical review B Abbreviated Journal
Volume 109 Issue 16 Pages 165441-14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically investigate the magneto-optical (MO) properties of monolayer (ML) transition metal dichalcogenides (TMDs) in the presence of external electrical and quantizing magnetic fields and of the proximity-induced exchange interaction. The corresponding Landau Level (LL) structure is studied by solving the Schr & ouml;dinger equation and the spin polarization in ML-TMDs under the action of the magnetic field is evaluated. The impact of trigonal warping on LLs and MO absorption is examined. Furthermore, the longitudinal MO conductivity is calculated through the dynamical dielectric function under the standard random-phase approximation (RPA) with the Kubo formula. We take ML-MoS 2 as an example to examine the effects of proximity-induced exchange interaction, external electrical and magnetic fields on the MO conductivity induced via intra- and interband electronic transitions among the LLs. For intraband electronic transitions within the conduction or valence bands, we can observe two absorption peaks in terahertz (THz) frequency range. While the interband electronic transitions between conduction and valence LLs show a series of absorption peaks in the visible range. We find that the proximity-induced exchange interaction, the carrier density, the strengths of the external electrical and magnetic fields can effectively modulate the positions of the absorption peaks and the shapes of the MO absorption spectra. The results obtained from this study can benefit to an in-depth understanding of the MO properties of ML-TMDs which can be potentially applied for magneto-optic, spintronic, and valleytronic devices working in visible to THz frequency bandwidths.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001231884200004 Publication Date 2024-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access (up)
Notes Approved Most recent IF: 3.7; 2024 IF: 3.836
Call Number UA @ admin @ c:irua:206589 Serial 9305
Permanent link to this record
 

 
Author Tian, X.; Xie, X.; Li, J.; Kong, X.; Gong, W.-J.; Peeters, F.M.; Li, L.
Title Multiferroic ScLaX₂ (X = P, As, and Sb) monolayers : bidirectional negative Poisson's ratio effects and phase transformations driven by rare-earth (main-group) elements Type A1 Journal article
Year 2024 Publication Physical review materials Abbreviated Journal
Volume 8 Issue 8 Pages 084407-84411
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The combination of auxetic property, ferroelasticity, and ferroelectricity in two-dimensional materials offers new avenues for next-generation multifunctional devices. However, two-dimensional materials that simultaneously exhibit those properties are rarely reported. Here, we present a class of two-dimensional Janus-like structures ScLaX2 X 2 (X X = P, As, and Sb) with a rectangular lattice based on first-principles calculations. We predict that those ScLaX2 X 2 monolayers are stable semiconductors with both intrinsic in-plane and out-of-plane auxetic properties, showing a bidirectional negative Poisson's ratio effect. The value of the out-of-plane negative Poisson's ratio effect can reach – 2.28 /- 3.06 /- 3.89. By applying uniaxial strain engineering, two transition paths can be found, including the VA main group element path and the rare-earth metal element path, corresponding to the ferroelastic and the multiferroic (ferroelastic and ferroelectric) phase transition, respectively. For the ScLaSb2 2 monolayer, the external force field can not only control the ferroelastic phase transition, but it can also lead to the reversal of the out-of-plane polarization, exhibiting potential multiferroicity. The coupling between the bidirectional negative Poisson's ratio effect and multiferroicity makes the ScLaX2 X 2 monolayers promising for future device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001293 Publication Date 2024-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access (up)
Notes Approved Most recent IF: 3.4; 2024 IF: NA
Call Number UA @ admin @ c:irua:207592 Serial 9306
Permanent link to this record
 

 
Author Tunca, S.; Parrilla, M.; Raj, K.; Nuyts, G.; Verbruggen, S.W.; De Wael, K.
Title Nickel hydroxide nanosphere decorated reduced-TiO₂ nanotubes as supercapacitor electrodes Type A1 Journal article
Year 2024 Publication Electrochimica acta Abbreviated Journal
Volume 505 Issue Pages 144990-11
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)
Abstract A straightforward electrochemical method was developed to modify titanium dioxide nanotubes (TiO2 NTs), creating oxygen vacancies via electrochemical reduction (ER) and depositing nickel hydroxide nanospheres (Ni (OH)2 NSs). This was done to discover the electrochemical properties of a TiO2 NTs based binder-free supercapacitor electrode. The improved conductivity of the reduced TiO2 NTs (R-TiO2 NTs) electrode provided a 90fold increase in the specific capacitance compared to that of pristine TiO2 NTs. R-TiO2 NTs were further decorated with Ni(OH)2 NSs by an electrodeposition method to further improve the supercapacitive performance. Fabricated R-TiO2 NTs/Ni(OH)2 electrodes exhibited a high areal specific capacitance value of 305.91 mF/cm2 at a current density of 0.75 mA/cm2. The modified electrode shows an improved charge-storage capacity compared to the TiO2 NTs/Ni(OH)2 electrodes, and to previously reported 1D-TiO2/Ni(OH)2 nanocomposite structures. Furthermore, the proposed electrode showed good cyclic stability by retaining 71% of its initial capacitance after 1500 cycles and a promising rate capability with a capacitive retention of 86% while increasing the current density from 0.75 to 5 mA/cm2. Overall, the ER step proved to improve the conductivity of the R-TiO2 NTs, which favors the deposition of the Ni(OH)2 NSs and promotes the Faradaic reactions at the electrode-electrolyte interface demonstrating a promising supercapacitor electrode material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001309 Publication Date 2024-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.6 Times cited Open Access (up)
Notes Approved Most recent IF: 6.6; 2024 IF: 4.798
Call Number UA @ admin @ c:irua:208529 Serial 9308
Permanent link to this record
 

 
Author Kandemir, Z.; D'Amico, P.; Sesti, G.; Cardoso, C.; Milošević, M.V.; Sevik, C.
Title Optical properties of metallic MXene multilayers through advanced first-principles calculations Type A1 Journal article
Year 2024 Publication Physical review materials Abbreviated Journal
Volume 8 Issue 7 Pages 075201-75210
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Having a strong electromagnetic absorption, MXene multilayers are readily envisaged for applications in electromagnetic shields and related prospective technology. However, an ab initio characterization of the optical properties of MXenes is still lacking, due in part to major difficulties with the treatment of metallicity in the first-principles approaches. Here we addressed the latter challenge, after a careful treatment of intraband transitions, to present a thorough analysis of the electronic and optical properties of a selected set of metallic MXene layers based on density functional theory (DFT) and many-body perturbation theory calculations. Our results reveal that the GW corrections are particularly important in regions of the band structure where d and p states hybridize. For some systems, we show that GW corrections open a gap between occupied states, resulting in a band structure that closely resembles that of an intrinsic transparent conductor, thereby opening an additional line of prospective applications for the MXenes family. Nevertheless, GW and Bethe-Salpeter corrections have a minimal influence on the absorption spectra, in contrast to what is typically observed in semiconductor layers. Our present results suggest that calculations within the independent particle approximation (IPA) calculations are sufficiently accurate for assessing the optical characteristics of bulk-layered MXene materials. Finally, our calculated dielectric properties and absorption spectra, in agreement with existing experimental data, confirm the potential of MXenes as effective infrared emitters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001275 Publication Date 2024-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access (up)
Notes Approved Most recent IF: 3.4; 2024 IF: NA
Call Number UA @ admin @ c:irua:207597 Serial 9309
Permanent link to this record
 

 
Author Bacaksiz, C.; Fyta, M.
Title Phthalocyanine adsorbed on monolayer CrI₃ : tailoring their magnetic properties Type A1 Journal article
Year 2024 Publication ACS Omega Abbreviated Journal
Volume 9 Issue 32 Pages 34589-34596
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Metallo-phthalocyanines molecules, especially ironphthalocyanines (Fe-Pc), are often examined due to their rich chemical, magnetic, and optoelectronic features. Due to these, Fe-Pc molecules are promising for applications in gas sensors, field-effect transistors, organic LEDs, and data storage. Motivated by this potential, this study investigates Fe-Pc molecules adsorbed on a magnetic monolayer, CrI3. Using quantum-mechanical simulations, the aim of this work was to find pathways to selectively tune and engineer the magnetic and electronic properties of the molecules when they form hybrid complexes. The results quantitatively underline how adsorption alters the magnetic properties of the Fe-Pc molecules. Interestingly, the analysis points to changes in the molecular magnetic anisotropy when comparing the magnetic moment of the isolated molecule to that of the molecule/monolayer complex formed after adsorption. The presence of iodine vacancies was shown to enhance the magnetic interactions between the iron of the Fe-Pc molecule and the chromium of the monolayer. Our findings suggest ways to control oxygen capture-release properties through material choice and defect creation. Insights into the stability and charge density depletion on the molecule provide critical information for selective tuning of the magnetic properties and engineering of the functionalities of these molecule/material complexes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date 2024-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.1 Times cited Open Access (up)
Notes Approved Most recent IF: 4.1; 2024 IF: NA
Call Number UA @ admin @ c:irua:207512 Serial 9310
Permanent link to this record
 

 
Author Yari, S.; Bird, L.; Rahimisheikh, S.; Reis, A.C.; Mohammad, M.; Hadermann, J.; Robinson, J.; Shearing, P.R.; Safari, M.
Title Probing charge transport and microstructural attributes in solvent- versus water-based electrodes with a spotlight on Li-S battery cathode Type A1 Journal article
Year 2024 Publication Advanced energy materials Abbreviated Journal
Volume Issue Pages 2402163
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In the quest for environmentally benign battery technologies, this study examines the microstructural and transport properties of water-processed electrodes and compares them to conventionally formulated electrodes using the toxic solvent, N-Methyl-2-pyrrolidone (NMP). Special focus is placed on sulfur electrodes utilized in lithium-sulfur batteries for their sustainability and compatibility with diverse binder/solvent systems. The characterization of the electrodes by X-ray micro-computed tomography reveals that in polyvinylidene fluoride (PVDF) Lithium bis(trifluoromethanesulfonyl)imide/NMP, sulfur particles tend to remain in large clusters but break down into finer particles in carboxymethyl cellulose-styrene butadiene rubber (CMC-SBR)/water and lithium polyacrylate (LiPAA)/water dispersions. The findings reveal that in the water-based electrodes, the binder properties dictate the spatial arrangement of carbon particles, resulting in either thick aggregates with short-range connectivity or thin films with long-range connectivity among sulfur particles. Additionally, cracking is found to be particularly prominent in thicker water-based electrodes, propagating especially in regions with larger particle agglomerates and often extending to cause local delamination of the electrodes. These microstructural details are shown to significantly impact the tortuosity and contact resistance of the sulfur electrodes and thereby affecting the cycling performance of the Li-S battery cells. The choice of solvent and binder is crucial in determining particle surface charge, which directly influences active material dispersion and carbon-binder arrangement within the battery porous electrodes. This, in turn, affects ionic and electronic transport properties, ultimately impacting electrochemical performance. Meticulous engineering of the slurry to control these factors is essential for efficient and sustainable water-based electrode processing. image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001291 Publication Date 2024-08-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record
Impact Factor 27.8 Times cited Open Access (up)
Notes Approved Most recent IF: 27.8; 2024 IF: 16.721
Call Number UA @ admin @ c:irua:207624 Serial 9311
Permanent link to this record
 

 
Author Ghosh, S.; Pradhan, B.; Bandyopadhyay, A.; Skvortsova, I.; Zhang, Y.; Sternemann, C.; Paulus, M.; Bals, S.; Hofkens, J.; Karki, K.J.; Materny, A.
Title Rashba-type band splitting effect in 2D (PEA)₂PbI₄ perovskites and its impact on exciton-phonon coupling Type A1 Journal article
Year 2024 Publication The journal of physical chemistry letters Abbreviated Journal
Volume 15 Issue 31 Pages 7970-7978
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Despite a few recent reports on Rashba effects in two-dimensional (2D) Ruddlesden-Popper (RP) hybrid perovskites, the precise role of organic spacer cations in influencing Rashba band splitting remains unclear. Here, using a combination of temperature-dependent two-photon photoluminescence (2PPL) and time-resolved photoluminescence spectroscopy, alongside density functional theory (DFT) calculations, we contribute to significant insights into the Rashba band splitting found for 2D RP hybrid perovskites. The results demonstrate that the polarity of the organic spacer cation is crucial in inducing structural distortions that lead to Rashba-type band splitting. Our investigations show that the intricate details of the Rashba band splitting occur for organic cations with low polarity but not for more polar ones. Furthermore, we have observed stronger exciton-phonon interactions due to the Rashba-type band splitting effect. These findings clarify the importance of selecting appropriate organic spacer cations to manipulate the electronic properties of 2D perovskites.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date 2024-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.7 Times cited Open Access (up)
Notes Approved Most recent IF: 5.7; 2024 IF: 9.353
Call Number UA @ admin @ c:irua:207672 Serial 9313
Permanent link to this record
 

 
Author Thomen, D.M.N.; Sevik, C.; Milošević, M.V.; Teles, L.K.; Chaves, A.
Title Strain and stacking registry effects on the hyperbolicity of exciton polaritons in few-layer black phosphorus Type A1 Journal article
Year 2024 Publication Physical review B Abbreviated Journal
Volume 109 Issue 24 Pages 245413-245419
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We analyze, from first -principles calculations, the excitonic properties of monolayer black phosphorus (BP) under strain, as well as of bilayer BP with different stacking registries, as a base platform for the observation and use of hyperbolic polaritons. In the unstrained case, our results confirm the in -plane hyperbolic behavior of polaritons coupled to the ground -state excitons in both mono- and bilayer systems, as observed in recent experiments. With strain, we reveal that the exciton-polariton hyperbolicity in monolayer BP is enhanced (reduced) by compressive (tensile) strain in the zig-zag direction of the crystal. In the bilayer case, different stacking registries are shown to exhibit hyperbolic exciton polaritons with different dispersion, while also peaking at different frequencies. This renders both mechanical stress and stacking registry control as practical tools for tuning physical properties of hyperbolic exciton polaritons in black phosphorus, which facilitates detection and further optoelectronic use of these quasiparticles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001247621000008 Publication Date 2024-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access (up)
Notes Approved Most recent IF: 3.7; 2024 IF: 3.836
Call Number UA @ admin @ c:irua:206631 Serial 9316
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Bacaksiz, C.; Frauenheim, T.; Milošević, M.V.
Title Strong spin-lattice coupling and high-temperature magnetic ordering in monolayer chromium dichalcogenides Type A1 Journal article
Year 2024 Publication Physical review materials Abbreviated Journal
Volume 8 Issue 6 Pages 064001-64009
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We detail the magnetic properties of monolayer CrX2 and its Janus counterparts CrXY (X, Y = S, Se, Te, with X not equal Y) using ab initio methods and Landau-Lifshitz-Gilbert magnetization dynamics, and uncover the pronouncedly strong interplay between their structure symmetry and the magnetic order. The relaxation of nonmagnetic chalcogen atoms, that carry large spin-orbit coupling, changes the energetically preferential magnetic order between in-plane antiferromagnetic and tilted ferromagnetic one. The considered Janus monolayers exhibit sizable Dzyaloshinskii-Moriya interaction, in some cases above 20% of the isotropic exchange, and critical temperature of the long-range magnetic order in the vicinity or even significantly above the room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001247462600001 Publication Date 2024-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access (up)
Notes Approved Most recent IF: 3.4; 2024 IF: NA
Call Number UA @ admin @ c:irua:206660 Serial 9317
Permanent link to this record
 

 
Author Zhang, Y.; Grünewald, L.; Cao, X.; Abdelbarey, D.; Zheng, X.; Rugeramigabo, E.P.; Zopf, M.; Verbeeck, J.; Ding, F.
Title Supplementary Information and Data for “Unveiling the 3D Morphology of Epitaxial GaAs/AlGaAs Quantum Dots” Type Dataset
Year 2024 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Raw and processed TEM and AFM data for the article Unveiling the 3D Morphology of Epitaxial GaAs/AlGaAs Quantum Dots.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access (up)
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:208086 Serial 9319
Permanent link to this record
 

 
Author Mazurkow, J.M.; Montiel, F.N.; Van Echelpoel, R.; Kusior, A.; De Wael, K.
Title The potential of electrochemical sensors to unveil counterfeits : Xanax as a case study Type A1 Journal article
Year 2024 Publication Electrochimica acta Abbreviated Journal
Volume 494 Issue Pages 144458-8
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)
Abstract The illicit drug market has been constantly evolving in the last decades, with a significant rise in counterfeit medicines posing serious public health risks. Benzodiazepines (BZDs) such as alprazolam (generally sold under the brand name Xanax), have particularly become the target of counterfeiting efforts due to their addictive nature and upsurge of unregulated designer BZDs. These counterfeit versions frequently resemble legitimate products but contain harmful adulterants or other potent illicit substances. Few methods have been developed to tackle counterfeit pills, usually limited to accurate and sophisticated laboratory equipment. This study explores the feasibility of combining electrochemical fingerprinting with data analysis to overcome the limitations of traditional methods. First, the electrochemical behavior of selected BZDs is studied, and analytical parameters such as pH are optimized. Then, the electroanalysis of common adulterants and illicit drugs is addressed and integrated into a user-friendly app, including a flowchart system. The proposed electrochemical strategy enables the detection of counterfeit Xanax by identifying the presence or absence of alprazolam. It also allows determination of the alprazolam content within a pill while meeting the fundamental requirements of the end users. This study represents an on-site methodology to address the growing challenges posed by BZDs, easily transferable to counterfeit medicines from other drug groups.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001244860300001 Publication Date 2024-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.6 Times cited Open Access (up)
Notes Approved Most recent IF: 6.6; 2024 IF: 4.798
Call Number UA @ admin @ c:irua:206519 Serial 9321
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V.
Title Tuning the quantum phase transition of an ultrathin magnetic topological insulator Type A1 Journal article
Year 2024 Publication Physical review materials Abbreviated Journal
Volume 8 Issue 7 Pages 074201-74208
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We explore the effect of thickness, magnetization direction, strain, and gating on the topological quantum phase transition of a thin-film magnetic topological insulator. Reducing the film thickness to the ultrathin regime couples the edge states on the two surfaces, opening a gap known as the hybridization gap, and causing a phase transition from a topological insulator to a normal insulator (NI). An out-of-plane/in-plane magnetization of size proportional to the hybridization gap triggers a phase transition from a normal insulator state to a quantum anomalous Hall (QAH)/semimetal state. A magnetization tilt by angle 0 from the out-of-plane axis influences the topological phase transition in a way that for sufficiently large 0, no phase transition from NI to QAH can be observed regardless of the sample thickness or magnetization, and for 0 close to pi /2 the system transits to a semimetal phase. Furthermore, we demonstrate that compressive/tensile strain can be used to decrease/increase the magnetization threshold for the topological phase transition. Finally, we reveal the effect of a vertical potential acting on the film, be it due to the substrate or applied gating, which breaks inversion symmetry and raises the magnetization threshold for the transition from NI to QAH state.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001281 Publication Date 2024-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access (up)
Notes Approved Most recent IF: 3.4; 2024 IF: NA
Call Number UA @ admin @ c:irua:207598 Serial 9324
Permanent link to this record
 

 
Author Lavor, I.R.; Tao, Z.H.; Dong, H.M.; Chaves, A.; Peeters, F.M.; Milošević, M.V.
Title Ultrasensitive acoustic graphene plasmons in a graphene-transition metal dichalcogenide heterostructure : strong plasmon-phonon coupling and wavelength sensitivity enhanced by a metal screen Type A1 Journal article
Year 2024 Publication Carbon Abbreviated Journal
Volume 228 Issue Pages 119401-119409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Acoustic plasmons in graphene exhibit strong confinement induced by a proximate metal surface and hybridize with phonons of transition metal dichalcogenides (TMDs) when these materials are combined in a van der Waals heterostructure, thus forming screened graphene plasmon-phonon polaritons (SGPPPs), a type of acoustic mode. While SGPPPs are shown to be very sensitive to the dielectric properties of the environment, enhancing the SGPPPs coupling strength in realistic heterostructures is still challenging. Here we employ the quantum electrostatic heterostructure model, which builds upon the density functional theory calculations for monolayers, to show that the use of a metal as a substrate for graphene-TMD heterostructures (i) vigorously enhances the coupling strength between acoustic plasmons and the TMD phonons, and (ii) markedly improves the sensitivity of the plasmon wavelength on the structural details of the host platform in real space, thus allowing one to use the effect of environmental screening on acoustic plasmons to probe the structure and composition of a van der Waals heterostructure down to the monolayer resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001267 Publication Date 2024-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS full record
Impact Factor 10.9 Times cited Open Access (up)
Notes Approved Most recent IF: 10.9; 2024 IF: 6.337
Call Number UA @ admin @ c:irua:207077 Serial 9325
Permanent link to this record
 

 
Author Zhang, Y.; Grunewald, L.; Cao, X.; Abdelbarey, D.; Zheng, X.; Rugeramigabo, E.P.; Verbeeck, J.; Zopf, M.; Ding, F.
Title Unveiling the 3D morphology of epitaxial GaAs/AlGaAs quantum dots Type A1 Journal article
Year 2024 Publication Nano letters Abbreviated Journal
Volume 24 Issue 33 Pages 10106-10113
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Strain-free GaAs/AlGaAs semiconductor quantum dots (QDs) grown by droplet etching and nanohole infilling (DENI) are highly promising candidates for the on-demand generation of indistinguishable and entangled photon sources. The spectroscopic fingerprint and quantum optical properties of QDs are significantly influenced by their morphology. The effects of nanohole geometry and infilled material on the exciton binding energies and fine structure splitting are well-understood. However, a comprehensive understanding of GaAs/AlGaAs QD morphology remains elusive. To address this, we employ high-resolution scanning transmission electron microscopy (STEM) and reverse engineering through selective chemical etching and atomic force microscopy (AFM). Cross-sectional STEM of uncapped QDs reveals an inverted conical nanohole with Al-rich sidewalls and defect-free interfaces. Subsequent selective chemical etching and AFM measurements further reveal asymmetries in element distribution. This study enhances the understanding of DENI QD morphology and provides a fundamental three-dimensional structural model for simulating and optimizing their optoelectronic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date 2024-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record
Impact Factor 10.8 Times cited Open Access (up)
Notes Approved Most recent IF: 10.8; 2024 IF: 12.712
Call Number UA @ admin @ c:irua:207525 Serial 9326
Permanent link to this record
 

 
Author Cadorim, L.R.; Sardella, E.; Milošević, M.V.
Title Vortical versus skyrmionic states in the topological phase of a twisted bilayer with d-wave superconducting pairing Type A1 Journal article
Year 2024 Publication Physical review B Abbreviated Journal
Volume 110 Issue 6 Pages 064508-64511
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract It was recently shown that a chiral topological phase emerges from the coupling of two twisted monolayers of superconducting Bi2Sr2CaCu2O8+delta for 2 Sr 2 CaCu 2 O 8 +delta for certain twist angles. In this work, we reveal the behavior of such twisted superconducting bilayers with d x 2 – y 2 pairing symmetry in the presence of an applied magnetic field. Specifically, we show that the emergent vortex matter can serve as a smoking gun for the detection of topological superconductivity in such bilayers. Moreover, we report two distinct skyrmionic states that characterize the chiral topological phase and provide a full account of their experimental signatures and their evolution with the twist angle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001290 Publication Date 2024-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access (up)
Notes Approved Most recent IF: 3.7; 2024 IF: 3.836
Call Number UA @ admin @ c:irua:208602 Serial 9327
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M.
Title Ag and Au atoms intercalated in bilayer heterostructures of transition metal dichalcogenides and graphene Type A1 Journal article
Year 2014 Publication APL materials Abbreviated Journal Apl Mater
Volume 2 Issue 9 Pages 092801
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The diffusive motion of metal nanoparticles Au and Ag on monolayer and between bilayer heterostructures of transition metal dichalcogenides and graphene are investigated in the framework of density functional theory. We found that the minimum energy barriers for diffusion and the possibility of cluster formation depend strongly on both the type of nanoparticle and the type of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and Au can be tuned by creating various bilayers. Tunability of the diffusion characteristics of adatoms in van der Waals heterostructures holds promise for controllable growth of nanostructures. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342568000020 Publication Date 2014-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 10 Open Access (up)
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. F.I. and R.T.S. acknowledge the support from TUBITAK Project No. 111T318. ; Approved Most recent IF: 4.335; 2014 IF: NA
Call Number UA @ lucian @ c:irua:119950 Serial 82
Permanent link to this record
 

 
Author Ludu, A.; Van Deun, J.; Milošević, M.V.; Cuyt, A.; Peeters, F.M.
Title Analytic treatment of vortex states in cylindrical superconductors in applied axial magnetic field Type A1 Journal article
Year 2010 Publication Journal of mathematical physics Abbreviated Journal J Math Phys
Volume 51 Issue 8 Pages 082903,1-082903,29
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We solve the linear GinzburgLandau (GL) equation in the presence of a uniform magnetic field with cylindrical symmetry and we find analytic expressions for the eigenfunctions in terms of the confluent hypergeometric functions. The discrete spectrum results from an implicit equation associated to the boundary conditions and it is resolved in analytic form using the continued fractions formalism. We study the dependence of the spectrum and the eigenfunctions on the sample size and the surface conditions for solid and hollow cylindrical superconductors. Finally, the solutions of the nonlinear GL formalism are constructed as expansions in the linear GL eigenfunction basis and selected by minimization of the free energy. We present examples of vortex states and their energies for different samples in enhancing/suppressing superconductivity surroundings.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000281905000026 Publication Date 2010-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2488; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.077 Times cited 10 Open Access (up)
Notes ; ; Approved Most recent IF: 1.077; 2010 IF: 1.291
Call Number UA @ lucian @ c:irua:84880 Serial 106
Permanent link to this record
 

 
Author Mueller, K.; Krause, F.F.; Béché, A.; Schowalter, M.; Galioit, V.; Loeffler, S.; Verbeeck, J.; Zweck, J.; Schattschneider, P.; Rosenauer, A.
Title Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction Type A1 Journal article
Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
Volume 5 Issue Pages 5653
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field- induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright- field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347227700003 Publication Date 2014-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 197 Open Access (up)
Notes 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; esteem2ta; ECASJO; Approved Most recent IF: 12.124; 2014 IF: 11.470
Call Number UA @ lucian @ c:irua:122835UA @ admin @ c:irua:122835 Serial 166
Permanent link to this record
 

 
Author Jungbauer, M.; Huehn, S.; Egoavil, R.; Tan, H.; Verbeeck, J.; Van Tendeloo, G.; Moshnyaga, V.
Title Atomic layer epitaxy of Ruddlesden-Popper SrO(SrTiO3)n films by means of metalorganic aerosol deposition Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 105 Issue 25 Pages 251603
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report an atomic layer epitaxial growth of Ruddlesden-Popper (RP) thin films of SrO(SrTiO3)(n) (n = infinity, 2, 3, 4) by means of metalorganic aerosol deposition (MAD). The films are grown on SrTiO3(001) substrates by means of a sequential deposition of Sr-O/Ti-O-2 atomic monolayers, monitored in-situ by optical ellipsometry. X-ray diffraction and transmission electron microscopy (TEM) reveal the RP structure with n = 2-4 in accordance with the growth recipe. RP defects, observed by TEM in a good correlation with the in-situ ellipsometry, mainly result from the excess of SrO. Being maximal at the film/substrate interface, the SrO excess rapidly decreases and saturates after 5-6 repetitions of the SrO(SrTiO3)(4) block at the level of 2.4%. This identifies the SrTiO3 substrate surface as a source of RP defects under oxidizing conditions within MAD. Advantages and limitations of MAD as a solution-based and vacuum-free chemical deposition route were discussed in comparison with molecular beam epitaxy. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000346914000007 Publication Date 2014-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 32 Open Access (up)
Notes 246102 IFOX; 278510 VORTEX; 246791 COUNTATOMS; Hercules; 312483 ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:122830UA @ admin @ c:irua:122830 Serial 172
Permanent link to this record
 

 
Author Verbeeck, J.; Schattschneider, P.; Lazar, S.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Van Tendeloo, G.
Title Atomic scale electron vortices for nanoresearch Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 99 Issue 20 Pages 203109-203109,3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron vortex beams were only recently discovered and their potential as a probe for magnetism in materials was shown. Here we demonstrate a method to produce electron vortex beams with a diameter of less than 1.2 Å. This unique way to prepare free electrons to a state resembling atomic orbitals is fascinating from a fundamental physics point of view and opens the road for magnetic mapping with atomic resolution in an electron microscope.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000297786500058 Publication Date 2011-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 90 Open Access (up)
Notes Hercules Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:93625UA @ admin @ c:irua:93625 Serial 184
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.; Pereira, J.M.
Title Band structure, density of states, and transmission in graphene bilayer superlattices Type A1 Journal article
Year 2009 Publication AIP conference proceedings Abbreviated Journal
Volume 1199 Issue Pages 547-548
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The energy spectrum and density of states of graphene bilayer superlattices (SLs) are evaluated. We take into account doping and/or gating of the layers as well as tunnel coupling between them. In addition, we evaluate the transmission through such SLs and through single or double barriers. The transmission exhibits a strong dependence on the direction of the incident wave vector.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000281590800258 Publication Date 2010-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access (up)
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:84893 Serial 217
Permanent link to this record
 

 
Author Peeters, F.M.; Partoens, B.; Schweigert, V.A.; Schweigert, I.V.
Title Classical atomic bilayers Type H1 Book chapter
Year 1998 Publication Abbreviated Journal
Volume Issue Pages 523-527
Keywords H1 Book chapter; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Plenum Press Place of Publication New York Editor
Language Wos 000083193600095 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access (up)
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:24177 Serial 363
Permanent link to this record
 

 
Author Akamine, H.; Van den Bos, K.H.W.; Gauquelin, N.; Farjami, S.; Van Aert, S.; Schryvers, D.; Nishida, M.
Title Determination of the atomic width of an APB in ordered CoPt using quantified HAADF-STEM Type A1 Journal article
Year 2015 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
Volume 644 Issue 644 Pages 570-574
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Anti-phase boundaries (APBs) in an ordered CoPt alloy are planar defects which disturb the ordered structure in their vicinity and decrease the magnetic properties. However, it has not yet been clarified to what extend the APBs disturb the ordering. In this study, high-resolution HAADF-STEM images are statistically analysed based on the image intensities estimated by the statistical parameter estimation theory. In the procedure, averaging intensities, fitting the intensity profiles to specific functions, and assessment based on a statistical test are performed. As a result, the APBs in the stable CoPt are found to be characterised by two atomic planes, and a contrast transition range as well as the centre of an inclined APB is determined. These results show that the APBs are quite sharp and therefore may have no notable effect on the net magnetic properties due to their small volume fraction. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000357143900083 Publication Date 2015-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited 12 Open Access (up)
Notes FWO G036815N; G036915N; G037413N; 278510 VORTEX; Hercules; ECASJO_; Approved Most recent IF: 3.133; 2015 IF: 2.999
Call Number c:irua:127008 c:irua:127008 Serial 675
Permanent link to this record
 

 
Author Lubk, A.; Javon, E.; Cherkashin, N.; Reboh, S.; Gatel, C.; Hytch, M.
Title Dynamic scattering theory for dark-field electron holography of 3D strain fields Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 136 Issue Pages 42-49
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Dark-held electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000327884700006 Publication Date 2013-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 18 Open Access (up)
Notes European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference312483 – ESTEEM2); esteem2_jra4 Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:112836 Serial 766
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P.
Title Electrical and thermal properties of a two-dimensional electron gas in a one-dimensional periodic potential Type A1 Journal article
Year 1992 Publication Physical review: B Abbreviated Journal Phys Rev B
Volume 46 Issue Pages 4667-4680
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1992JK72500032 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 148 Open Access (up)
Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #
Call Number UA @ lucian @ c:irua:2998 Serial 890
Permanent link to this record
 

 
Author Huijben, M.; Rijnders, G.; Blank, D.H.A.; Bals, S.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Brinkman, A.; Hilgenkamp, H.
Title Electronically coupled complementary interfaces between perovskite band insulators Type A1 Journal article
Year 2006 Publication Nature materials Abbreviated Journal Nat Mater
Volume 5 Issue Pages 556-560
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000238708900021 Publication Date 2006-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 315 Open Access (up)
Notes Fwo Approved Most recent IF: 39.737; 2006 IF: 19.194
Call Number UA @ lucian @ c:irua:59713UA @ admin @ c:irua:59713 Serial 1019
Permanent link to this record