toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Neyts, E.C. pdf  doi
openurl 
  Title Atomistic simulations of plasma catalytic processes Type A1 Journal article
  Year 2018 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng  
  Volume 12 Issue 1 Pages 145-154  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this interest, there is, however, a lack in fundamental understanding of the underlying processes in such systems. While a lot of experimental research is already being carried out to gain this understanding, only recently the first simulations have appeared in the literature. In this contribution, an overview is presented on atomic scale simulations of plasma catalytic processes as carried out in our group. In particular, this contribution focusses on plasma-assisted catalyzed carbon nanostructure growth, and plasma catalysis for greenhouse gas conversion. Attention is paid to what can routinely be done, and where challenges persist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425156500017 Publication Date 2017-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.712 Times cited 5 Open Access (up) Not_Open_Access  
  Notes Approved Most recent IF: 1.712  
  Call Number UA @ lucian @ c:irua:149233 Serial 4927  
Permanent link to this record
 

 
Author Chin, C.-M.; Battle, P.D.; Blundell, S.J.; Hunter, E.; Lang, F.; Hendrickx, M.; Sena, R.P.; Hadermann, J. pdf  doi
openurl 
  Title Comparative study of the magnetic properties of La3Ni2B'O9 for B' = Nb, Ta or Sb Type A1 Journal article
  Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 258 Issue 258 Pages 825-834  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (mu SR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random 1/3Ni/2/3B' mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B'O-9 (B' = Nb or Ta) at 5 K although in each case mu SR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2NbO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000423650400107 Publication Date 2017-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 6 Open Access (up) Not_Open_Access  
  Notes ; We thank EPSRC for funding through Grants EP/M0189541 and EP/N023803. CMC thanks the Croucher Foundation and Oxford University for a graduate scholarship. We are grateful E. Suard for experimental assistance at ILL. ; Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:149284 Serial 4928  
Permanent link to this record
 

 
Author Istomin, S.Y.; Morozov, A.V.; Abdullayev, M.M.; Batuk, M.; Hadermann, J.; Kazakov, S.M.; Sobolev, A.V.; Presniakov, I.A.; Antipov, E.V. pdf  doi
openurl 
  Title High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3-\delta perovskites as prospective electrode materials for symmetrical SOFC Type A1 Journal article
  Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 258 Issue 258 Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract La1-yCayFe0.5+x(Mg,Mo)(0.5-x)O3-delta oxides with the orthorhombic GdFeO3-type perovskite structure have been synthesized at 1573 K. Transmission electron microscopy study for selected samples shows the coexistence of domains of perovskite phases with ordered and disordered B-cations. Mossbauer spectroscopy studies performed at 300 K and 573 K show that while compositions with low Ca-content (La0.55Ca0.45Fe0.5Mg0.2625Mo0.2375O3-delta and La0.5Ca0.5Fe0.6Mg0.175Mo0.225O3-delta) are nearly oxygen stoichiometric, La0.2Ca0.8Fe0.5Mg0.2625Mo0.2375O3-delta is oxygen deficient with delta approximate to 0.15. Oxides are stable in reducing atmosphere (Ar/H-2, 8%) at 1173 K for 12 h. No additional phases have been observed at XRPD patterns of all studied perovskites and Ce1-xGdxO2-x/2 electrolyte mixtures treated at 1173-1373K, while Fe-rich compositions (x >= 0.1) react with Zr1-xYxO2-x/2 electrolyte above 1273 K. Dilatometry studies reveal that all samples show rather low thermal expansion coefficients (TECs) in air of 11.4-12.7 ppm K-1. In reducing atmosphere their TECs were found to increase up to 12.1-15.4 ppm K-1 due to chemical expansion effect. High-temperature electrical conductivity measurements in air and Ar/H-2 atmosphere show that the highest conductivity is observed for Fe- and Ca-rich compositions. Moderate values of electrical conductivity and TEC together with stability towards chemical interaction with typical SOFC electrolytes make novel Fe-containing perovskites promising electrode materials for symmetrical solid oxide fuel cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000423650400001 Publication Date 2017-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 5 Open Access (up) Not_Open_Access  
  Notes ; This work was financially supported by Russian Science Foundation (project number 16-13-10327). ; Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:149283 Serial 4936  
Permanent link to this record
 

 
Author Grimaud, A.; Iadecola, A.; Batuk, D.; Saubanere, M.; Abakumov, A.M.; Freeland, J.W.; Cabana, J.; Li, H.; Doublet, M.-L.; Rousse, G.; Tarascon, J.-M. pdf  doi
openurl 
  Title Chemical activity of the peroxide/oxide redox couple : case study of Ba5Ru2O11 in aqueous and organic solvents Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 11 Pages 3882-3893  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The finding that triggering the redox activity of oxygen ions within the lattice of transition metal oxides can boost the performances of materials used in energy storage and conversion devices such as Li-ion batteries or oxygen evolution electrocatalysts has recently spurred intensive and innovative research in the field of energy. While experimental and theoretical efforts have been critical in understanding the role of oxygen nonbonding states in the redox activity of oxygen ions, a clear picture of the redox chemistry of the oxygen species formed upon this oxidation process is still missing. This can be, in part, explained by the complexity in stabilizing and studying these species once electrochemically formed. In this work, we alleviate this difficulty by studying the phase Ba5Ru2O11, which contains peroxide O-2(2-) groups, as oxygen evolution reaction electrocatalyst and Li-ion battery material. Combining physical characterization and electrochemical measurements, we demonstrate that peroxide groups can easily be oxidized at relatively low potential, leading to the formation of gaseous dioxygen and to the instability of the oxide. Furthermore, we demonstrate that, owing to the stabilization at high energy of peroxide, the high-lying energy of the empty sigma* antibonding O-O states limits the reversibility of the electrochemical reactions when the O-2(2-)/O2- redox couple is used as redox center for Li-ion battery materials or as OER redox active sites. Overall, this work suggests that the formation of true peroxide O-2(2-) states are detrimental for transition metal oxides used as OER catalysts and Li-ion battery materials. Rather, oxygen species with O-O bond order lower than 1 would be preferred for these applications.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000435416600038 Publication Date 2018-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 2 Open Access (up) Not_Open_Access  
  Notes ; We thank S. Belin of the ROCK beamline (financed by the French National Research Agency (ANR) as a part of the “Investissements d'Avenir” program, reference: ANR-10-EQPX-45; proposal no. 20160095) of synchrotron SOLEIL for her assistance during XAS measurements. Authors would also like to thank V. Nassif for her assistance on the D1B beamline. A.G, G.R, and J.-M.T. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant Project 670116-ARPEMA. ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:151980 Serial 5016  
Permanent link to this record
 

 
Author Wei, H.; Hu, Z.-Y.; Xiao, Y.-X.; Tian, G.; Ying, J.; Van Tendeloo, G.; Janiak, C.; Yang, X.-Y.; Su, B.-L. pdf  doi
openurl 
  Title Control of the interfacial wettability to synthesize highly dispersed PtPd nanocrystals for efficient oxygen reduction reaction Type A1 Journal article
  Year 2018 Publication Chemistry: an Asian journal Abbreviated Journal Chem-Asian J  
  Volume 13 Issue 9 Pages 1119-1123  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Highly dispersed PtPd bimetallic nanocrystals with enhanced catalytic activity and stability were prepared by adjusting the interfacial wettability of the reaction solution on a commercial carbon support. This approach holds great promise for the development of high-performance and low-cost catalysts for practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000431625200006 Publication Date 2018-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1861-4728; 1861-471x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.083 Times cited 3 Open Access (up) Not_Open_Access  
  Notes ; This work supported by National Key R&D Program of China (2017YFC1103800), PCSIRT (IRT15R52), NSFC (U1663225, U1662134, 51472190, 51611530672, 21711530705, 51503166), ISTCP (2015DFE52870), HPNSF (2016CFA033, 2017CFB487), and Open Project Program of State Key Laboratory of Petroleum Pollution Control (Grant No. PPC2016007), CNPC Research Institute of Safety and Environmental Technology, SKLPPC. ; Approved Most recent IF: 4.083  
  Call Number UA @ lucian @ c:irua:151525 Serial 5018  
Permanent link to this record
 

 
Author Quintanilla, M.; Zhang, Y.; Liz-Marzan, L.M. pdf  doi
openurl 
  Title Subtissue plasmonic heating monitored with CaF2:Nd3+,Y3+ nanothermometers in the second biological window Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 8 Pages 2819-2828  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Measuring temperature in biological environments is an ambitious goal toward supporting medical treatment and diagnosis. Minimally invasive techniques based on optical probes require very specific properties that are difficult to combine within a single material. These include high chemical stability in aqueous environments, optical signal stability, low toxicity, high emission intensity, and, essential, working at wavelengths within the biological transparency windows so as to minimize invasiveness while maximizing penetration depth. We propose CaF2:Nd3+,Y3+ as a candidate for thermometry based on an intraband ratiometric approach, fully working within the biological windows (excitation at 808 nm; emission around 1050 nm). We optimized the thermal probes through the addition of Y3+ as a dopant to improve both emission intensity and thermal sensitivity. To define the conditions under which the proposed technique can be applied, gold nanorods were used to optically generate subtissue hot areas, while the resulting temperature variation was monitored with the new nanothermometers.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000431088400038 Publication Date 2018-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 28 Open Access (up) Not_Open_Access  
  Notes ; The authors would like to thank Dr. Guillermo Gonzalez Rubio for the kind support with the synthesis of gold nanorods. M.Q and L.M.L.-M. acknowledge financial support from the European Commission under the Marie Sklodowska-Curie program (H2020-MSCA-IF-2014_659021 – PHELLINI). Y.Z. acknowledges financial support from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 665501 through a FWO [PEGASUS]^2 Marie Sklodowska-Curie fellowship (12U4917N). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:151576 Serial 5042  
Permanent link to this record
 

 
Author Barreca, D.; Gri, F.; Gasparotto, A.; Altantzis, T.; Gombac, V.; Fornasiero, P.; Maccato, C. url  doi
openurl 
  Title Insights into the Plasma-Assisted Fabrication and Nanoscopic Investigation of Tailored MnO2Nanomaterials Type A1 Journal Article
  Year 2018 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 57 Issue 23 Pages 14564-14573  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Among transition metal oxides, MnO2 is of considerable importance for various technological end-uses,from heterogeneous catalysis to gas sensing, owing to its

structural flexibility and unique properties at the nanoscale. In this work, we demonstrate the successful fabrication of supported MnO2 nanomaterials by a catalyst-free, plasmaassisted process starting from a fluorinated manganese(II)

molecular source in Ar/O2 plasmas. A thorough multitechnique characterization aimed at the systematic investigation of material structure, chemical composition, and

morphology revealed the formation of F-doped, oxygendeficient, MnO2-based nanomaterials, with a fluorine content tunable as a function of growth temperature (TG). Whereas phase-pure β-MnO2 was obtained for 100 °C ≤ TG ≤ 300 °C, the formation of mixed phase MnO2 + Mn2O3 nanosystems took place at 400 °C. In addition, the system nano-organization could be finely tailored, resulting in a controllable evolution from wheat-ear columnar arrays to high aspect ratio pointed-tip nanorod assemblies. Concomitantly, magnetic force microscopy analyses suggested the formation of spin domains with features dependent on material morphology. Preliminary tests in Vislight activated photocatalytic degradation of rhodamine B aqueous solutions pave the way to possible applications of the target materials in wastewater purification.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452344400016 Publication Date 2018-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited Open Access (up) Not_Open_Access  
  Notes The present work was financially supported by Padova University DOR 2016−2018 and P-DiSC #03BIRD2016- UNIPD projects. T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO). Thanks are also due to Prof. Sara Bals (EMAT, University of Antwerp, Belgium) and to Dr. Giorgio Carraro (Department of Chemical Sciences, Padova University, Italy) for valuable support and experimental assistance. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @c:irua:156245 Serial 5147  
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Trenchev, G.; Wang, W. pdf  url
doi  openurl
  Title Modeling for a Better Understanding of Plasma-Based CO2 Conversion Type H1 Book Chapter
  Year 2018 Publication Plasma Chemistry and Gas Conversion Abbreviated Journal  
  Volume Issue Pages  
  Keywords H1 Book Chapter; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This chapter discusses modeling efforts for plasma-based CO2 conversion, which are needed to obtain better insight in the underlying mechanisms, in order to improve this application. We will discuss two types of (complementary) modeling efforts that are most relevant, that is, (i) modeling of the detailed plasma chemistry by zero-dimensional (0D) chemical kinetic models and (ii) modeling of reactor design, by 2D or 3D fluid dynamics models. By showing some characteristic calculation results of both models, for CO2 splitting and in combination with a H-source, and for packed bed DBD and gliding arc plasma, we can illustrate the type of information they can provide.  
  Address  
  Corporate Author Thesis  
  Publisher IntechOpen Place of Publication Rijeka Editor Britun, N.; Silva, T.  
  Language Wos Publication Date 2018-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up) Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @ Bogaerts18c:irua:155915 Serial 5142  
Permanent link to this record
 

 
Author Hasanli, N.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Hayward, M.A. url  doi
openurl 
  Title Small-moment paramagnetism and extensive twinning in the topochemically reduced phase Sr2ReLiO5.5 Type A1 Journal article
  Year 2018 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 47 Issue 44 Pages 15783-15790  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reaction of the cation-ordered double perovskite Sr2ReLiO6 with dilute hydrogen at 475 degrees C leads to the topochemical deintercalation of oxide ions from the host lattice and the formation of a phase of composition Sr2ReLiO5.5, as confirmed by thermogravimetric and EELS data. A combination of neutron and electron diffraction data reveals the reduction process converts the -Sr2O2-ReLiO4-Sr2O2-ReLiO4- stacking sequence of the parent phase into a -Sr2O2-ReLiO3-Sr2O2-ReLiO4-, partially anion-vacant ordered sequence. Furthermore a combination of electron diffraction and imaging reveals Sr2ReLiO5.5 exhibits extensive twinning – a feature which can be attributed to the large, anisotropic volume expansion of the material on reduction. Magnetisation data reveal a strongly reduced moment of (eff) = 0.505(B) for the d(1) Re6+ centres in the phase, suggesting there remains a large orbital component to the magnetism of the rhenium centres, despite their location in low symmetry coordination environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450208000019 Publication Date 2018-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.029 Times cited Open Access (up) Not_Open_Access  
  Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE13284). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC. NH acknowledges funding from the “State Programme on Education of Azerbaijani Youth Abroad in 2007-2015” by the Ministry of Education of Azerbaijan. J. V. and N. G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 4.029  
  Call Number EMAT @ emat @c:irua:155771 Serial 5137  
Permanent link to this record
 

 
Author Morozov, V.; Deyneko, D.; Basoyich, O.; Khaikina, E.G.; Spassky, D.; Morozov, A.; Chernyshev, V.; Abakumov, A.; Hadermann, J. pdf  doi
openurl 
  Title Incommensurately modulated structures and luminescence properties of the AgxSm(2-x)/3WO4 (x=0.286, 0.2) scheelites as thermographic phosphors Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 14 Pages 4788-4798  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ag+ for Sm3+ substitution in the scheelite-type AgxSm(2-x)/3 square(1-2x)/3WO4 tungstates has been investigated for its influence on the cation-vacancy ordering and luminescence properties. A solid state method was used to synthesize the x = 0.286 and x = 0.2 compounds, which exhibited (3 + 1)D incommensurately modulated structures in the transmission electron microscopy study. Their structures were refined using high resolution synchrotron powder X-ray diffraction data. Under near-ultraviolet light, both compounds show the characteristic emission lines for (4)G(5/2) -> H-6(J) (J = 5/2, 7/2, 9/2, and 11/2) transitions of the Sm3+ ions in the range 550-720 nm, with the J = 9/2 transition at the similar to 648 nm region being dominant for all photoluminescence spectra. The intensities of the (4)G(5/2) -> H-6(9/2) and (4)G(5/2) -> H-6(7/2) bands have different temperature dependencies. The emission intensity ratios (R) for these bands vary reproducibly with temperature, allowing the use of these materials as thermographic phosphors.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000440105500037 Publication Date 2018-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 2 Open Access (up) Not_Open_Access  
  Notes ; This research was supported by FWO (Project G039211N), Flanders Research Foundation. The research was carried out within the state assignment of FASO of Russia (Themes No. 0339-2016-0007). V.M. thanks the Russian Foundation for Basic Research (Grant 18-03-00611) for financial support. E.G.K. and O.B. acknowledge financial support from the Russian Foundation for Basic Research (Grant 16-03-00510). D.D. thanks the Foundation of the Russian Federation President (Grant MK-3502.2018.5) for financial support. We are grateful to the ESRF for granting the beamtime. V.C. is grateful for the financial support of the Russian Ministry of Science and Education (Project No. RFMEFI61616X0069). We are grateful to the ESRF for the access to ID22 station (experiment MA-3313). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:153156 Serial 5107  
Permanent link to this record
 

 
Author Tang, Y.; Hunter, E.C.; Battle, P.D.; Hendrickx, M.; Hadermann, J.; Cadogan, J.M. pdf  doi
openurl 
  Title Ferrimagnetism as a consequence of unusual cation ordering in the Perovskite SrLa2FeCoSbO9 Type A1 Journal article
  Year 2018 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 57 Issue 12 Pages 7438-7445  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of SrLa2FeCoSbO9 has been prepared in a solid-state reaction and studied by a combination of electron microscopy, magnetometry, Mossbauer spectroscopy, X-ray diffraction, and neutron diffraction. The compound adopts a monoclinic (space group P2(1)/n; a = 5.6218(6), b = 5.6221(6), c = 7.9440(8) angstrom, beta = 90.050(7)degrees at 300 K) perovskite-like crystal structure with two crystallographically distinct six-coordinate sites. One of these sites is occupied by 2/3 Co-2(+),1/3 Fe3+ and the other by 2/3 Sb5+, 1/3 Fe3+. This pattern of cation ordering results in a transition to a ferrimagnetic phase at 215 K. The magnetic moments on nearest-neighbor, six-coordinate cations align in an antiparallel manner, and the presence of diamagnetic Sb5+ on only one of the two sites results in a nonzero remanent magnetization of similar to 1 mu(B) per formula unit at 5 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000436023800073 Publication Date 2018-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access (up) Not_Open_Access  
  Notes ; PDB, ECH, and JH acknowledge support from EPSRC under grant EP/M0189954/1. We would like to thank the STFC for the award of beamtime at the ISIS Neutron and Muon Source (RB 1610100), and we thank Dr. I. da Silva for the assistance provided. We also thank Dr. R Paria Sena for help with the HAADF-STEM and STEM-EDX experiments. ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:152485 Serial 5103  
Permanent link to this record
 

 
Author Malkov, I., V; Krivetskii, V.V.; Potemkin, D., I; Zadesenets, A., V; Batuk, M.M.; Hadermann, J.; Marikutsa, A., V; Rumyantseva, M.N.; Gas'kov, A.M. pdf  doi
openurl 
  Title Effect of Bimetallic Pd/Pt Clusters on the Sensing Properties of Nanocrystalline SnO2 in the Detection of CO Type A1 Journal article
  Year 2018 Publication Russian journal of inorganic chemistry Abbreviated Journal Russ J Inorg Chem+  
  Volume 63 Issue 8 Pages 1007-1011  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline tin dioxide modified by Pd and Pt clusters or by bimetallic PdPt nanoparticles was synthesized. Distribution of the modifers on the SnO2 surface was studied by high-resolution transmission electron microscopy and energy dispersive X-ray microanalysis with element distribution mapping. It was shown that the Pd/Pt ratio in bimetallic particles varies over a broad range and does not depend on the particle diameter. The effect of platinum metals on the reducibility of nanocrystalline SnO2 by hydrogen was determined. The sensing properties of the resulting materials towards 6.7 ppm CO in air were estimated in situ by electrical conductivity measurements. The sensor response of SnO2 modified with bimetallic PdPt particles was a superposition of the signals of samples with Pt and Pd clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000442749500003 Publication Date 2018-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-0236 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.787 Times cited 3 Open Access (up) Not_Open_Access  
  Notes ; This work was supported by the ERA.Net RUS Plus program (project 096 FONSENS, RFBR grant 16-53-76001). ; Approved Most recent IF: 0.787  
  Call Number UA @ lucian @ c:irua:153752 Serial 5092  
Permanent link to this record
 

 
Author Volykhov, A.A.; Sanchez-Barriga, J.; Batuk, M.; Callaert, C.; Hadermann, J.; Sirotina, A.P.; Neudachina, V.S.; Belova, A.I.; Vladimirova, N.V.; Tamm, M.E.; Khmelevsky, N.O.; Escudero, C.; Perez-Dieste, V.; Knop-Gericke, A.; Yashina, L.V. pdf  doi
openurl 
  Title Can surface reactivity of mixed crystals be predicted from their counterparts? A case study of (Bi1-xSbx)2Te3 topological insulators Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 6 Issue 33 Pages 8941-8949  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The behavior of ternary mixed crystals or solid solutions and its correlation with the properties of their binary constituents is of fundamental interest. Due to their unique potential for application in future information technology, mixed crystals of topological insulators with the spin-locked, gapless states on their surfaces attract huge attention of physicists, chemists and material scientists. (Bi1-xSbx)(2)Te-3 solid solutions are among the best candidates for spintronic applications since the bulk carrier concentration can be tuned by varying x to obtain truly bulk-insulating samples, where the topological surface states largely contribute to the transport and the realization of the surface quantum Hall effect. As this ternary compound will be evidently used in the form of thin-film devices its chemical stability is an important practical issue. Based on the atomic resolution HAADF-TEM and EDX data together with the XPS results obtained both ex situ and in situ, we propose an atomistic picture of the mixed crystal reactivity compared to that of its binary constituents. We find that the surface reactivity is determined by the probability of oxygen attack on the Te-Sb bonds, which is directly proportional to the number of Te atoms bonded to at least one Sb atom. The oxidation mechanism includes formation of an amorphous antimony oxide at the very surface due to Sb diffusion from the first two quintuple layers, electron tunneling from the Fermi level of the crystal to oxygen, oxygen ion diffusion to the crystal, and finally, slow Te oxidation to the +4 oxidation state. The oxide layer thickness is limited by the electron transport, and the overall process resembles the Cabrera-Mott mechanism in metals. These observations are critical not only for current understanding of the chemical reactivity of complex crystals, but also to improve the performance of future spintronic devices based on topological materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443279300007 Publication Date 2018-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 3 Open Access (up) Not_Open_Access  
  Notes ; The authors acknowledge financial support within the bilateral program "Russian-German Laboratory at BESSY II''. We thank Helmholtz-Zentrum Berlin for granting access to the beamlines RGBL, UE112-PGM2a and ISISS. Support of ALBA staff during measurements at the CIRCE beamline is gratefully acknowledged. We thank Dr Ivan Bobrikov for support in the XRD measurements and Daria Tsukanova for the participation in crystal preparation and XPS measurements. A. Volykhov thanks RSF (grant 18-73-00248) for financial support. A. I. Belova acknowledges support from the G-RISC Centre of Excellence. The work was supported by Helmholtz Gemeinschaft (Grant No. HRJRG-408) and RFBR (grant 14-03-31518). J. H. and C. C. acknowledge support from the University of Antwerp through the BOF grant 31445. ; Approved Most recent IF: 5.256  
  Call Number UA @ lucian @ c:irua:153647 Serial 5080  
Permanent link to this record
 

 
Author Vermeiren, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Supersonic Microwave Plasma: Potential and Limitations for Energy-Efficient CO2Conversion Type A1 Journal Article
  Year 2018 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 45 Pages 25869-25881  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Supersonic flows provide a high thermodynamic

nonequilibrium, which is crucial for energy-efficient conversion of

CO 2 in microwave plasmas and are therefore of great interest.

However, the effect of the flow on the chemical reactions is poorly

understood. In this work, we present a combined flow and plasma

chemical kinetics model of a microwave CO 2 plasma in a Laval

nozzle setup. The effects of the flow field on the different dissociation

and recombination mechanisms, the vibrational distribution, and the

vibrational transfer mechanism are discussed. In addition, the effect

of experimental parameters, like position of power deposition, outlet

pressure, and specific energy input, on the CO 2 conversion and

energy efficiency is examined. The short residence time of the gas in

the plasma region, the shockwave, and the maximum critical heat,

and thus power, that can be added to the flow to avoid thermal

choking are the main obstacles to reaching high energy efficiencies.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451101400016 Publication Date 2018-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 5 Open Access (up) Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:155412 Serial 5070  
Permanent link to this record
 

 
Author Gorbanev, Y.; Privat-Maldonado, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Analysis of Short-Lived Reactive Species in Plasma–Air–Water Systems: The Dos and the Do Nots Type A1 Journal Article
  Year 2018 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 90 Issue 22 Pages 13151-13158  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This Feature addresses the analysis of the reactive species generated by nonthermal atmospheric

pressure plasmas, which are widely employed in industrial and biomedical research, as well as first

clinical applications. We summarize the progress in detection of plasma-generated short-lived

reactive oxygen and nitrogen species in aqueous solutions, discuss the potential and limitations of

various analytical methods in plasma−liquid systems, and provide an outlook on the possible future

research goals in development of short-lived reactive species analysis methods for a general

nonspecialist audience.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451246100002 Publication Date 2018-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 17 Open Access (up) Not_Open_Access  
  Notes European Commission, 743151 ; This work was supported by the European Marie Sklodowska- Curie Individual Fellowship within Horizon2020 (“LTPAM”, Grant No. 743151). Approved Most recent IF: 6.32  
  Call Number PLASMANT @ plasmant @c:irua:156301 Serial 5152  
Permanent link to this record
 

 
Author Attri, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Perspectives of Plasma-treated Solutions as Anticancer Drugs Type A1 Journal article
  Year 2019 Publication Anti-cancer agents in medicinal chemistry Abbreviated Journal Anti-Cancer Agent Me  
  Volume 19 Issue 4 Pages 436-438  
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472726300001 Publication Date 2019-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1871-5206 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.598 Times cited 2 Open Access (up) Not_Open_Access  
  Notes Approved Most recent IF: 2.598  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160694 Serial 5189  
Permanent link to this record
 

 
Author Wang, C.; Xin, X.; Shu, M.; Huang, S.; Zhang, Y.; Li, X. pdf  doi
openurl 
  Title Scalable synthesis of one-dimensional Na2Li2Ti6O14 nanofibers as ultrahigh rate capability anodes for lithium-ion batteries Type A1 Journal article
  Year 2019 Publication Inorganic Chemistry Frontiers Abbreviated Journal Inorg Chem Front  
  Volume 6 Issue 3 Pages 646-653  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon anode materials for Li-ion batteries have been operated close to their theoretical rate and cycle limits. Therefore, titanium-based materials have attracted great attention due to their high stability. Here, Na2Li2Ti6O14 nanofibers as anode materials were prepared through a controlled electrospinning method. The Na2Li2Ti6O14 nanofibers presented superior electrochemical performance with high rate capability and long cycle life and can be regarded as a competitive anode candidate for advanced Li-ion batteries. One-dimensional (1D) Na2Li2Ti6O14 nanofibers are able to deliver a capacity of 128.5 mA h g(-1) at 0.5C, and demonstrate superior high-rate charge-discharge capability and cycling stability (the reversible charge capacity is 77.8 mA h g(-1) with a capacity retention of 99.45% at the rate of 10C after 800 cycles). The 1D structure is considered to contribute remarkably to increased rate capability and stability. This simple and scalable method indicates that the Na2Li2Ti6O14 nanofibers have a practical application potential for high performance lithium-ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461092500027 Publication Date 2018-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-1553 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.036 Times cited 3 Open Access (up) Not_Open_Access  
  Notes ; The authors acknowledge financial support from the National Natural Science Foundation of China (21571110), Natural Science Foundation of Zhejiang Province (LY18B010003), and the Ningbo Key Innovation Team (2014B81005), and sponsorship by the K.C. Wong Magna Fund in Ningbo University. ; Approved Most recent IF: 4.036  
  Call Number UA @ admin @ c:irua:158566 Serial 5258  
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Delville, R.; Neuville, D.R.; Hennet, L.; Thiaudiere, D.; Ouisse, T.; Hadermann, J.; Vleugels, J.; Lambrinou, K. pdf  doi
openurl 
  Title Synthesis and Characterization of Double Solid Solution (Zr,Ti)(2)(Al,Sn)C MAX Phase Ceramics Type A1 Journal article
  Year 2019 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 58 Issue 10 Pages 6669-6683  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Quasi phase-pure (>98 wt %) MAX phase solid solution ceramics with the (ZryTi)(2)(Al-0.5,Sn-0.5)C stoichiometry and variable Zr/Ti ratios were synthesized by both reactive hot pressing and pressureless sintering of ZrH2, TiH2, Al, Sn, and C powder mixtures. The influence of the different processing parameters, such as applied pressure and sintering atmosphere, on phase purity and microstructure of the produced ceramics was investigated. The addition of Sn to the (Zr,Ti)(2)AlC system was the key to achieve phase purity. Its effect on the crystal structure of a 211-type MAX phase was assessed by calculating the distortions of the octahedral M6C and trigonal M(6)A prisms due to steric effects. The M(6)A prismatic distortion values were found to be smaller in Sn-containing double solid solutions than in the (Zr,Ti)(2)AlC MAX phases. The coefficients of thermal expansion along the < a > and < c > directions were measured by means of Rietveld refinement of high-temperature synchrotron X-ray diffraction data of (Zr1-x,Ti-x)(2)(Al-0.5,Sn-0.5)C MAX phase solid solutions with x = 0, 0.3, 0.7, and 1. The thermal expansion coefficient data of the Ti-2(Al-0.5,Sn-0.5)C solid solution were compared with those of the Ti2AlC and Ti2SnC ternary compounds. The thermal expansion anisotropy increased in the (Zr,Ti)(2)(Al-0.5,Sn-0.5)C double solid solution MAX phases as compared to the Zr-2(Al-0.5,Sn-0.5)C and Ti-2(Al-0.5,Sn-0.5)C end-members.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469304700014 Publication Date 2019-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access (up) Not_Open_Access  
  Notes ; H. Roussel and D. Pinek are acknowledged for the Ti<INF>2</INF>SnC single-crystal production and high-temperature XRD measurements performed at Grenoble INP-LMGP-CMTC. This research was funded partly by the European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 604862 (FP7MatISSE), and partly by the Euratom research and training programme 2014-2018 under Grant Agreement No. 740415 (H2020 IL TROVATORE). T.L. thanks the Agency for Innovation by Science and Technology (IWT), Flanders, Belgium, for Ph.D. Grant No. 131081. B.T. acknowledges the financial support of the SCK.CEN Academy for Nuclear Science and Technology. All authors gratefully acknowledge Synchrotron SOLEIL for the allocated time at the DIFFABS beamline in association with Project 20161410 entitled “Investigation of (Zr-Ti)-Al-C MAX phases with in-situ high-temperature XRD” and the Hercules Foundation for Project AKUL/1319 (CombiS(T)EM). ; Approved Most recent IF: 4.857  
  Call Number UA @ admin @ c:irua:160318 Serial 5261  
Permanent link to this record
 

 
Author Tan, X.; McCabe, E.E.; Orlandi, F.; Manuel, P.; Batuk, M.; Hadermann, J.; Deng, Z.; Jin, C.; Nowik, I.; Herber, R.; Segre, C.U.; Liu, S.; Croft, M.; Kang, C.-J.; Lapidus, S.; Frank, C.E.; Padmanabhan, H.; Gopalan, V.; Wu, M.; Li, M.-R.; Kotliar, G.; Walker, D.; Greenblatt, M. pdf  doi
openurl 
  Title MnFe0.5Ru0.5O3 : an above-room-temperature antiferromagnetic semiconductor Type A1 Journal article
  Year 2019 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 7 Issue 3 Pages 509-522  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A transition-metal-only MnFe0.5Ru0.5O3 polycrystalline oxide was prepared by a reaction of starting materials MnO, MnO2, Fe2O3, RuO2 at 6 GPa and 1873 K for 30 minutes. A combination of X-ray and neutron powder diffraction refinements indicated that MnFe0.5Ru0.5O3 adopts the corundum (alpha-Fe2O3) structure type with space group R (3) over barc, in which all metal ions are disordered. The centrosymmetric nature of the MnFe0.5Ru0.5O3 structure is corroborated by transmission electron microscopy, lack of optical second harmonic generation, X-ray absorption near edge spectroscopy, and Mossbauer spectroscopy. X-ray absorption near edge spectroscopy of MnFe0.5Ru0.5O3 showed the oxidation states of Mn, Fe, and Ru to be 2+/3+, 3+, and similar to 4+, respectively. Resistivity measurements revealed that MnFe0.5Ru0.5O3 is a semiconductor. Magnetic measurements and magnetic structure refinements indicated that MnFe0.5Ru0.5O3 orders antiferromagnetically around 400 K, with magnetic moments slightly canted away from the c axis. Fe-57 Mossbauer confirmed the magnetic ordering and Fe3+ (S = 5/2) magnetic hyperfine splitting. First principles calculations are provided to understand the electronic structure more thoroughly. A comparison of synthesis and properties of MnFe0.5Ru0.5O3 and related corundum Mn2BB'O-6 derivatives is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458780300004 Publication Date 2018-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 1 Open Access (up) Not_Open_Access  
  Notes ; M. G. thanks the NSF-DMR-1507252 grant of the United States. X. T. was supported by the “Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy'' under DOE Grant No. DE-FOA-0001276. G. K. and C. J. K. were supported by the Air Force Office of Scientific Research. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. EEM is grateful to the Leverhulme Trust (RPG-2017-362). M. R. Li and M. X. Wu are supported by the ”One Thousand Youth Talents'' Program of China. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Part of this research used the ISS, 8-ID and TES, 8-BM beamlines at the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. Without the valuable aid/support of the NSLS-II staff scientists Eli Stavitski, Klaus Attenkofer, and Paul Northrup this phase of the work could not have been performed. The work at IOPCAS was supported by NSF & MOST of China through research projects. H. R. and V. G. acknowledge NSF-MRSEC Center for Nanoscale Science at Penn State through the grant number DMR-1420620. The authors would like to thank Ms Jean Hanley at Lamont-Doherty Earth Observatory in Columbia University for making the high-pressure assemblies. The authors acknowledge the science and technology facility council (STFC) UK for the provision of neutron beam time. The authors would like to thank Daniel Nye for help on the Rigaku SmartLab X-ray diffractometer instrument in the Materials Characterization Laboratory at the ISIS Neutron and Muon Source. ; Approved Most recent IF: 5.256  
  Call Number UA @ admin @ c:irua:157564 Serial 5264  
Permanent link to this record
 

 
Author Dabral, A.; Lu, A.K.A.; Chiappe, D.; Houssa, M.; Pourtois, G. pdf  doi
openurl 
  Title A systematic study of various 2D materials in the light of defect formation and oxidation Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 3 Pages 1089-1099  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The thermodynamic aspects of various 2D materials are explored using Density Functional Theory (DFT). Various metal chalcogenides (MX2, M = metal, chalcogen X = S, Se, Te) are investigated with respect to their interaction and stability under different ambient conditions met in the integration process of a transistor device. Their interaction with high- dielectrics is also addressed, in order to assess their possible integration in Complementary Metal Oxide Semiconductor (CMOS) field effect transistors. 2D materials show promise for high performance nanoelectronic devices, but the presence of defects (vacancies, grain boundaries,...) can significantly impact their electronic properties. To assess the impact of defects, their enthalpies of formation and their signature levels in the density of states have been studied. We find, consistently with literature reports, that chalcogen vacancies are the most likely source of defects. It is shown that while pristine 2D materials are in general stable whenever set in contact with different ambient atmospheres, the presence of defective sites affects the electronic properties of the 2D materials to varying degrees. We observe that all the 2D materials studied in the present work show strong reactivity towards radical oxygen plasma treatments while reactivity towards other common gas phase chemical such as O-2 and H2O and groups present at the high- surface varies significantly between species. While energy band-gaps, effective masses and contact resistivities are key criteria in selection of 2D materials for scaled CMOS and tunneling based devices, the phase and ambient stabilities might also play a very important role in the development of reliable nanoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456147000009 Publication Date 2018-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 1 Open Access (up) Not_Open_Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:156715 Serial 5267  
Permanent link to this record
 

 
Author Brault, P.; Chamorro-Coral, W.; Chuon, S.; Caillard, A.; Bauchire, J.-M.; Baranton, S.; Coutanceau, C.; Neyts, E. pdf  doi
openurl 
  Title Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source Type A1 Journal article
  Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng  
  Volume 13 Issue 2 Pages 324-329  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations are carried out for describing growth of Pd and PdO nanoclusters using the ReaxFF force field. The resulting nanocluster structures are successfully compared to those of nanoclusters experimentally grown in a gas aggregation source. The PdO structure is quasi-crystalline as revealed by high resolution transmission microscope analysis for experimental PdO nanoclusters. The role of the nanocluster temperature in the molecular dynamics simulated growth is highlighted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468848400009 Publication Date 2019-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.712 Times cited 3 Open Access (up) Not_Open_Access  
  Notes Approved Most recent IF: 1.712  
  Call Number UA @ admin @ c:irua:160278 Serial 5276  
Permanent link to this record
 

 
Author Neyts, E.C. pdf  doi
openurl 
  Title Special Issue on future directions in plasma nanoscience Type Editorial
  Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng  
  Volume 13 Issue 2 Pages 199-200  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468848400001 Publication Date 2019-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.712 Times cited Open Access (up) Not_Open_Access  
  Notes Approved Most recent IF: 1.712  
  Call Number UA @ admin @ c:irua:160277 Serial 5280  
Permanent link to this record
 

 
Author Smolders, S.; Willhammar, T.; Krajnc, A.; Şentosun, K.; Wharmby, M.T.; Lomachenko, K.A.; Bals, S.; Mali, G.; Roeffaers, M.B.J.; De Vos, D.E.; Bueken, B. pdf  doi
openurl 
  Title A titanium(IV)-based metal-organic framework featuring defect-rich Ti-O sheets as an oxidative desulfurization catalyst Type A1 Journal article
  Year 2019 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 58 Issue 58 Pages 9160-9165  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract While titanium-based metal-organic frameworks (MOFs) have been widely studied for their (photo) catalytic potential, only a few Ti-IV MOFs have been reported owing to the high reactivity of the employed titanium precursors. The synthesis of COK-47 is now presented, the first Ti carboxylate MOF based on sheets of (TiO6)-O-IV octahedra, which can be synthesized with a range of different linkers. COK-47 can be synthesized as an inherently defective nanoparticulate material, rendering it a highly efficient catalyst for the oxidation of thiophenes. Its structure was determined by continuous rotation electron diffraction and studied in depth by X-ray total scattering, EXAFS, and solid-state NMR. Furthermore, its photoactivity was investigated by electron paramagnetic resonance and demonstrated by catalytic photodegradation of rhodamine 6G.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000476691200034 Publication Date 2019-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 97 Open Access (up) Not_Open_Access  
  Notes ; S.S., B.B., and D.E.D.V. gratefully acknowledge the FWO for funding (Aspirant grant, postdoctoral grant, project funding). T.W. acknowledges a grant from the Swedish research council (VR, 2014-06948). He acknowledges financial support from the Knut and Alice Wallenberg Foundation through the project grant 3DEM-NATUR (no. 2012.0112) as well as for purchasing the TEMs. A.K. and G.M. acknowledge the financial support from the Slovenian Research Agency (research core funding No. P1-0021 and project No. N1-0079). We thank beamline I15-1 (XPDF), Diamond Light Source, for collection of X-ray total scattering data as part of the in-house research program (M.T.W.). A. Venier and O. Mathon are kindly acknowledged for the help during the XAS experiment at BM23 beamline of ESRF. We thank C. Lamberti and L. Braglia for providing the reference EXAFS spectrum of anatase. ; Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:161932 Serial 5382  
Permanent link to this record
 

 
Author Rumyantseva, M.N.; Vladimirova, S.A.; Platonov, V.B.; Chizhov, A.S.; Batuk, M.; Hadermann, J.; Khmelevsky, N.O.; Gaskov, A.M. pdf  url
doi  openurl
  Title Sub-ppm H2S sensing by tubular ZnO-Co3O4 nanofibers Type A1 Journal article
  Year 2020 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 307 Issue Pages 127624  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Tubular ZnO – Co3O4 nanofibers were co-electrospun from polymer solution containing zinc and cobalt acetates. Phase composition, cobalt electronic state and element distribution in the fibers were investigated by XRD, SEM, HRTEM, HAADF-STEM with EDX mapping, and XPS. Bare ZnO has high selective sensitivity to NO and NO2, while ZnO-Co3O4 composites demonstrate selective sensitivity to H2S in dry and humid air. This effect is discussed in terms of transformation of cobalt oxides into cobalt sulfides and change in the acidity of ZnO oxide surface upon cobalt doping. Reduction in response and recovery time is attributed to the formation of a tubular structure facilitating gas transport through the sensitive layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508110400059 Publication Date 2019-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access (up) Not_Open_Access  
  Notes This work was supported by RFBR grants No. 18-03-00091 and No. 18-03-00580. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:166449 Serial 6343  
Permanent link to this record
 

 
Author Anastasiou, I.; Van Velthoven, N.; Tomarelli, E.; Lombi, A.; Lanari, D.; Liu, P.; Bals, S.; De Vos, D.E.; Vaccaro, L. pdf  doi
openurl 
  Title C2-H arylation of indoles catalyzed by palladium-containing metal-organic-framework in γ-valerolactone Type A1 Journal article
  Year 2020 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 13 Issue 10 Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract An efficient and selective procedure was developed for the direct C2-H arylation of indoles using a Pd-loaded metal-organic framework (MOF) as a heterogeneous catalyst and the nontoxic biomass-derived solvent gamma-valerolactone (GVL) as a reaction medium. The developed method allows for excellent yields and C-2 selectivity to be achieved and tolerates various substituents on the indole scaffold. The established conditions ensure the stability of the catalyst as well as recoverability, reusability, and low metal leaching into the solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000520285700001 Publication Date 2020-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited 22 Open Access (up) Not_Open_Access  
  Notes ; The research leading to these results has received funding from the NMBP-01-2016 Programme of the European Union's Horizon 2020 Framework Programme H2020/2014-2020/under grant agreement no [720996]. The Universit degli Studi di Perugia and MIUR are acknowledged for financial support to the project AMIS, through the program “Dipartimenti di Eccellenza -2018-2022”. The XAS experiments were performed on beamline BM26A at the European Synchrotron Radiation Facility (ESRF), Grenoble (France). We are grateful to D. Banerjee at the ESRF for providing assistance in using beamline BM26A. Niels Van Velthoven and Dirk E. De Vos also thank FWO for funding. ; Approved Most recent IF: 8.4; 2020 IF: 7.226  
  Call Number UA @ admin @ c:irua:167678 Serial 6465  
Permanent link to this record
 

 
Author Bigiani, L.; Gasparotto, A.; Maccato, C.; Sada, C.; Verbeeck, J.; Andreu, T.; Morante, J.R.; Barreca, D. pdf  doi
openurl 
  Title Dual improvement of beta-MnO₂ oxygen evolution electrocatalysts via combined substrate control and surface engineering Type A1 Journal article
  Year 2020 Publication Chemcatchem Abbreviated Journal Chemcatchem  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The development of catalysts with high intrinsic activity towards the oxygen evolution reaction (OER) plays a critical role in sustainable energy conversion and storage. Herein, we report on the development of efficient (photo)electrocatalysts based on functionalized MnO(2)systems. Specifically,beta-MnO(2)nanostructures grown by plasma enhanced-chemical vapor deposition on fluorine-doped tin oxide (FTO) or Ni foams were decorated with Co(3)O(4)or Fe(2)O(3)nanoparticles by radio frequency sputtering. Upon functionalization, FTO-supported materials yielded a performance increase with respect to bare MnO2, with current densities at 1.65 Vvs. the reversible hydrogen electrode (RHE) up to 3.0 and 3.5 mA/cm(2)in the dark and under simulated sunlight, respectively. On the other hand, the use of highly porous and conductive Ni foam substrates enabled to maximize cooperative interfacial effects between catalyst components. The best performing Fe2O3/MnO(2)system provided a current density of 17.9 mA/cm(2)at 1.65 Vvs. RHE, an overpotential as low as 390 mV, and a Tafel slope of 69 mV/decade under dark conditions, comparing favorably with IrO(2)and RuO(2)benchmarks. Overall, the control of beta-MnO2/substrate interactions and the simultaneous surface property engineering pave the way to an efficient energy generation from abundant natural resources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000571229000001 Publication Date 2020-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.5 Times cited 5 Open Access (up) Not_Open_Access  
  Notes ; This work has been financially supported by Padova University DOR 2017-2019, P-DiSC #03BIRD2016-UNIPD and #03BIRD2018-UNIPD projects. A.G. acknowledges AMGA Foundation and INSTM Consortium. J.V. gratefully acknowledges funding from the GOA project “Solarpaint” of the University of Antwerp and the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717-ESTEEM3. ; esteem3TA; esteem3reported Approved Most recent IF: 4.5; 2020 IF: 4.803  
  Call Number UA @ admin @ c:irua:171949 Serial 6493  
Permanent link to this record
 

 
Author Parsons, T.G.; Hadermann, J.; Halasyamani, P.S.; Hayward, M.A. pdf  doi
openurl 
  Title Preparation of the noncentrosymmetric ferrimagnetic phase La0.9Ba0.1Mn0.96O2.43 by topochemical reduction Type A1 Journal article
  Year 2020 Publication Journal Of Solid State Chemistry Abbreviated Journal J Solid State Chem  
  Volume 287 Issue Pages 121356-121357  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Topochemical reduction of La0.9Ba0.1MnO3 with NaH at 225 degrees C yields the brownmillerite phase La0.9Ba0.1MnO2.5. However, reduction with CaH2 at 435 degrees C results in the formation of La0.9Ba0.1Mn0.96O2.43 via the deintercalation of both oxide anions and manganese cations from the parent perovskite phase. Electron and neutron diffraction data reveal La0.9Ba0.1Mn0.96O2.43 adopts a complex noncentrosymmetric structure, described in space group I23, confirmed by SHG measurements. Low-temperature neutron diffraction data reveal La0.9Ba0.1Mn0.96O2.43 adopts an ordered magnetic structure in which all the nearest neighbor interactions are antiferromagnetic. However, the presence of ordered manganese cation-vacancies results in a net ferrimagnetic structure with net saturated moment of 0.157(2) mu B per manganese center.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000533632700029 Publication Date 2020-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.3 Times cited Open Access (up) Not_Open_Access  
  Notes ; We thank the EPSRC for funding this work and E. Suard for assisting with the collection of the neutron powder diffraction data. PSH thanks the Welch Foundation (Grant E-1457) for support. ; Approved Most recent IF: 3.3; 2020 IF: 2.299  
  Call Number UA @ admin @ c:irua:169450 Serial 6583  
Permanent link to this record
 

 
Author Han, Y.; Zeng, Y.; Hendrickx, M.; Hadermann, J.; Stephens, P.W.; Zhu, C.; Grams, C.P.; Hemberger, J.; Frank, C.; Li, S.; Wu, M.X.; Retuerto, M.; Croft, M.; Walker, D.; Yao, D.-X.; Greenblatt, M.; Li, M.-R. doi  openurl
  Title Universal a-cation splitting in LiNbO₃-type structure driven by intrapositional multivalent coupling Type A1 Journal article
  Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 142 Issue 15 Pages 7168-7178  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Understanding the electric dipole switching in multiferroic materials requires deep insight of the atomic-scale local structure evolution to reveal the ferroelectric mechanism, which remains unclear and lacks a solid experimental indicator in high-pressure prepared LiNbO3-type polar magnets. Here, we report the discovery of Zn-ion splitting in LiNbO3-type Zn2FeNbO6 established by multiple diffraction techniques. The coexistence of a high-temperature paraelectric-like phase in the polar Zn2FeNbO6 lattice motivated us to revisit other high-pressure prepared LiNbO3-type A(2)BB'O-6 compounds. The A-site atomic splitting (similar to 1.0-1.2 angstrom between the split-atom pair) in B/B'-mixed Zn2FeTaO6 and O/N-mixed ZnTaO2N is verified by both powder X-ray diffraction structural refinements and high angle annular dark field scanning transmission electron microscopy images, but is absent in single-B-site ZnSnO3. Theoretical calculations are in good agreement with experimental results and suggest that this kind of A-site splitting also exists in the B-site mixed Mn-analogues, Mn2FeMO6 (M = Nb, Ta) and anion-mixed MnTaO2N, where the smaller A-site splitting (similar to 0.2 angstrom atomic displacement) is attributed to magnetic interactions and bonding between A and B cations. These findings reveal universal A-site splitting in LiNbO3-type structures with mixed multivalent B/B', or anionic sites, and the splitting-atomic displacement can be strongly suppressed by magnetic interactions and/or hybridization of valence bands between d electrons of the A- and B-site cations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526300600046 Publication Date 2020-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited 1 Open Access (up) Not_Open_Access  
  Notes ; This work was supported by the National Science Foundation of China (NSFC-21875287), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07C069), and an NSF-DMR-1507252 grant (U.S.). Use of the NSLS, Brookhaven National Laboratory, was supported by the DOE BES (DE-AC02-98CH10886). M.R. is thankful for the Spanish Juan de la Cierva grant FPDI-2013-17582. Y.Z. and D.-X.Y. are supported by NKRDPC-2018YFA0306001, NKRDPC-2017YFA0206203, NSFC-11974432, NSFG-2019A1515011337, the National Supercomputer Center in Guangzhou, and the Leading Talent Program of Guangdong Special Projects. Work on IOP, CAS, was supported by NSFC and MOST grants. A portion of this research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. J.H. and M.H. thank the FWO for support for the electron microscopy studies through grant G035619N. We thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing beam time and help during the experiments. ; Approved Most recent IF: 15; 2020 IF: 13.858  
  Call Number UA @ admin @ c:irua:170294 Serial 6646  
Permanent link to this record
 

 
Author Bhaskar, G.; Gvozdetskyi, V.; Batuk, M.; Wiaderek, K.M.; Sun, Y.; Wang, R.; Zhang, C.; Carnahan, S.L.; Wu, X.; Ribeiro, R.A.; Bud'ko, S.L.; Canfield, P.C.; Huang, W.; Rossini, A.J.; Wang, C.-Z.; Ho, K.-M.; Hadermann, J.; Zaikina, J., V pdf  doi
openurl 
  Title Topochemical deintercalation of Li from layered LiNiB : toward 2D MBene Type A1 Journal article
  Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 143 Issue 11 Pages 4213-4223  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li similar to 0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state Li-7 and B-1(1) NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of (Li similar to 0.5NiB) and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB](2) and Li[NiB](3) compositions. The crystal structure of Li similar to 0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB](2), or triple [NiB](3) layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li similar to 0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634761500021 Publication Date 2021-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited Open Access (up) Not_Open_Access  
  Notes Approved Most recent IF: 13.858  
  Call Number UA @ admin @ c:irua:177697 Serial 6790  
Permanent link to this record
 

 
Author Bartholomeeusen, E.; De Cremer, G.; Kennes, K.; Hammond, C.; Hermans, I.; Lu, J.-B.; Schryvers, D.; Jacobs, P.A.; Roeffaers, M.B.J.; Hofkens, J.; Sels, B.F.; Coutino-Gonzalez, E. doi  openurl
  Title Optical encoding of luminescent carbon nanodots in confined spaces Type A1 Journal article
  Year 2021 Publication Chemical Communications Abbreviated Journal Chem Commun  
  Volume 57 Issue 90 Pages 11952-11955  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Stable emissive carbon nanodots were generated in zeolite crystals using near infrared photon irradiation gradually converting the occluded organic template, originally used to synthesize the zeolite crystals, into discrete luminescent species consisting of nano-sized carbogenic fluorophores, as ascertained using Raman microscopy, and steady-state and time-resolved spectroscopic techniques. Photoactivation in a confocal laser fluorescence microscope allows 3D resolved writing of luminescent carbon nanodot patterns inside zeolites providing a cost-effective and non-toxic alternative to previously reported metal-based nanoclusters confined in zeolites, and opens up opportunities in bio-labelling and sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711122000001 Publication Date 2021-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited Open Access (up) Not_Open_Access  
  Notes Approved Most recent IF: 6.319  
  Call Number UA @ admin @ c:irua:184147 Serial 6876  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: