|   | 
Details
   web
Records
Author Bigiani, L.; Gasparotto, A.; Maccato, C.; Sada, C.; Verbeeck, J.; Andreu, T.; Morante, J.R.; Barreca, D.
Title Dual improvement of beta-MnO₂ oxygen evolution electrocatalysts via combined substrate control and surface engineering Type A1 Journal article
Year 2020 Publication Chemcatchem Abbreviated Journal Chemcatchem
Volume Issue Pages 1-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The development of catalysts with high intrinsic activity towards the oxygen evolution reaction (OER) plays a critical role in sustainable energy conversion and storage. Herein, we report on the development of efficient (photo)electrocatalysts based on functionalized MnO(2)systems. Specifically,beta-MnO(2)nanostructures grown by plasma enhanced-chemical vapor deposition on fluorine-doped tin oxide (FTO) or Ni foams were decorated with Co(3)O(4)or Fe(2)O(3)nanoparticles by radio frequency sputtering. Upon functionalization, FTO-supported materials yielded a performance increase with respect to bare MnO2, with current densities at 1.65 Vvs. the reversible hydrogen electrode (RHE) up to 3.0 and 3.5 mA/cm(2)in the dark and under simulated sunlight, respectively. On the other hand, the use of highly porous and conductive Ni foam substrates enabled to maximize cooperative interfacial effects between catalyst components. The best performing Fe2O3/MnO(2)system provided a current density of 17.9 mA/cm(2)at 1.65 Vvs. RHE, an overpotential as low as 390 mV, and a Tafel slope of 69 mV/decade under dark conditions, comparing favorably with IrO(2)and RuO(2)benchmarks. Overall, the control of beta-MnO2/substrate interactions and the simultaneous surface property engineering pave the way to an efficient energy generation from abundant natural resources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000571229000001 Publication Date 2020-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.5 Times cited 5 Open Access Not_Open_Access
Notes ; This work has been financially supported by Padova University DOR 2017-2019, P-DiSC #03BIRD2016-UNIPD and #03BIRD2018-UNIPD projects. A.G. acknowledges AMGA Foundation and INSTM Consortium. J.V. gratefully acknowledges funding from the GOA project “Solarpaint” of the University of Antwerp and the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717-ESTEEM3. ; esteem3TA; esteem3reported Approved Most recent IF: 4.5; 2020 IF: 4.803
Call Number (down) UA @ admin @ c:irua:171949 Serial 6493
Permanent link to this record
 

 
Author Bafekry, A.; Nguyen, C.; Obeid, M.M.; Ghergherehchi, M.
Title Modulating the electro-optical properties of doped C₃N monolayers and graphene bilayersviamechanical strain and pressure Type A1 Journal article
Year 2020 Publication New Journal Of Chemistry Abbreviated Journal New J Chem
Volume 44 Issue 36 Pages 15785-15792
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this work, we investigated systematically the electronic and optical properties of B doped C3N monolayers as well as B and N doped graphene bilayers (BN-Gr@2L). We found that the doping of B atoms leads to an enlarged band gap of the C3N monolayer and when the dopant concentration reaches 12.5%, an indirect-to-direct band gap switching occurs. In addition, with co-doping of B and N atoms on the graphene monolayer in the hexagonal configuration, an electronic transition from semi-metal to semiconductor occurs. Our optical results for B-C3N show a broad absorption spectrum in a wide visible range starting from 400 nm to 1000 nm with strong absorption intensity, making it a suitable candidate for nanoelectronic and optoelectronic applications. Interestingly, a transition from semi-metal to semiconductor emerges in the graphene monolayer with doping of B and N atoms. Furthermore, our results demonstrate that the in-plane strain and out-of-plane strain (pressure) can modulate the band gap of the BN-Gr@2L. The controllable electronic properties and optical features of the doped graphene bilayer by strain engineering may facilitate their practical performance for various applications in future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000571972400054 Publication Date 2020-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 7 Open Access
Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.3; 2020 IF: 3.269
Call Number (down) UA @ admin @ c:irua:171936 Serial 6561
Permanent link to this record
 

 
Author Pacquets, L.; Irtem, E.; Neukermans, S.; Daems, N.; Bals, S.; Breugelmans, T.
Title Size-controlled electrodeposition of Cu nanoparticles on gas diffusion electrodes in methanesulfonic acid solution Type A1 Journal article
Year 2020 Publication Journal Of Applied Electrochemistry Abbreviated Journal J Appl Electrochem
Volume 51 Issue 2 Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract In this paper electrodeposition is used to obtain Cu nanoparticles, as it allows good control over particle size and distribution. These Cu particles were deposited onto a gas diffusion electrode which increased the resulting surface area. Prior to deposition, the surface was pre-treated with NaOH, HNO3, MQ and TX100 to investigate the influence on the electrodeposition of Cu on the gas diffusion electrode (GDE). When using HNO3, the smallest particles with the most homogeneous distribution and high particle roughness were obtained. Once the optimal substrate was determined, we further demonstrated that by altering the electrodeposition parameters, the particle size and density could be tuned. On the one hand, increasing the nucleation potential led to a higher particle density resulting in smaller particles because of an increased competition between particles. Finally, the Cu particle size increased when applying a greater growth charge and growth potential. This fundamental study thus opens up a path towards the synthesis of supported Cu materials with increased surface areas, which is interesting from a catalytic point of view. Larger surface areas are generally correlated with a better catalyst performance and thus higher product yields. This research can contributed in obtaining new insides into the deposition of metallic nanoparticles on rough surfaces. [GRAPHICS] .
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000568651000001 Publication Date 2020-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-891x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.9 Times cited 3 Open Access OpenAccess
Notes ; L. Pacquets was supported through a PhD fellowship strategic basic research (1S56918N) of the Research Foundation-Flanders (FWO). N. Daems was supported through a postdoctoral fellowship (12Y3919N-ND) of the Research Foundation-Flanders (FWO). S. Neukermans was supported through an FWO project grant (G093317N). This research was financed by the research counsel of the university of Antwerp (BOF-GOA 33928). The authors recognize the contribution of Thomas Kenis for analytical validation and methodology. ; Approved Most recent IF: 2.9; 2020 IF: 2.235
Call Number (down) UA @ admin @ c:irua:171588 Serial 6603
Permanent link to this record
 

 
Author Obeid, M.M.; Stampfl, C.; Bafekry, A.; Guan, Z.; Jappor, H.R.; Nguyen, C., V; Naseri, M.; Hoat, D.M.; Hieu, N.N.; Krauklis, A.E.; Tuan V Vu; Gogova, D.
Title First-principles investigation of nonmetal doped single-layer BiOBr as a potential photocatalyst with a low recombination rate Type A1 Journal article
Year 2020 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys
Volume 22 Issue 27 Pages 15354-15364
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nonmetal doping is an effective approach to modify the electronic band structure and enhance the photocatalytic performance of bismuth oxyhalides. Using density functional theory, we systematically examine the fundamental properties of single-layer BiOBr doped with boron (B) and phosphorus (P) atoms. The stability of the doped models is investigated based on the formation energies, where the substitutional doping is found to be energetically more stable under O-rich conditions than under Bi-rich ones. The results showed that substitutional doping of P atoms reduced the bandgap of pristine BiOBr to a greater extent than that of boron substitution. The calculation of the effective masses reveals that B doping can render the electrons and holes of pristine BiOBr lighter and heavier, respectively, resulting in a slower recombination rate of photoexcited electron-hole pairs. Based on the results of HOMO-LUMO calculations, the introduction of B atoms tends to increase the number of photocatalytically active sites. The top of the valence band and the conduction band bottom of the B doped BiOBr monolayer match well with the water redox potentials in an acidic environment. The absorption spectra propose that B(P) doping causes a red-shift. Overall, the results predict that nonmetal-doped BiOBr monolayers have a reduced bandgap, a slow recombination rate, more catalytically active sites, enhanced optical absorption edges, and reduced work functions, which will contribute to superior photocatalytic performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000549894000018 Publication Date 2020-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 18 Open Access
Notes ; This work was partially supported by the financial support from the Natural Science Foundation of China (Grant No. 11904203) and the Fundamental Research Funds of Shandong University (Grant No. 2019GN065). ; Approved Most recent IF: 3.3; 2020 IF: 4.123
Call Number (down) UA @ admin @ c:irua:171235 Serial 6522
Permanent link to this record
 

 
Author Liu, J.-W.; Wu, S.-M.; Wang, L.-Y.; Tian, G.; Qin, Y.; Wu, J.-X.; Zhao, X.-F.; Zhang, Y.-X.; Chang, G.-G.; Wu, L.; Zhang, Y.-X.; Li, Z.-F.; Guo, C.-Y.; Janiak, C.; Lenaerts, S.; Yang, X.-Y.
Title Pd/Lewis acid synergy in macroporous Pd@Na-ZSM-5 for enhancing selective conversion of biomass Type A1 Journal article
Year 2020 Publication Chemcatchem Abbreviated Journal Chemcatchem
Volume Issue Pages 1-6
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Pd nanometal particles encapsulated in macroporous Na-ZSM-5 with only Lewis acid sites have been successfully synthesized by a steam-thermal approach. The synergistic effect of Pd and Lewis acid sites have been investigated for significant enhancement of the catalytic selectivity towards furfural alcohol in furfural hydroconversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000554645800001 Publication Date 2020-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.5 Times cited 1 Open Access
Notes ; We acknowledge a joint DFG-NSFC project (DFG JA466/39-1, NSFC grant 51861135313). This work was also supported by National Key R&D Program of China (2017YFC1103800), NSFC (U1662134, 21711530705), Jilin Province Science and Technology Development Plan (20180101208JC), HPNSF (2016CFA033), FRFCU (19lgzd16) and ISTCP (2015DFE52870). ; Approved Most recent IF: 4.5; 2020 IF: 4.803
Call Number (down) UA @ admin @ c:irua:171178 Serial 6579
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Bercx, M.; Karakulina, O.M.; Kirsanova, M.A.; Lamoen, D.; Hadermann, J.; Abakumov, A.M.; Van Bael, M.K.; Hardy, A.
Title An in-depth study of Sn substitution in Li-rich/Mn-rich NMC as a cathode material for Li-ion batteries Type A1 Journal article
Year 2020 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal
Volume 49 Issue 30 Pages 10486-10497
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Layered Li-rich/Mn-rich NMC (LMR-NMC) is characterized by high initial specific capacities of more than 250 mA h g(-1), lower cost due to a lower Co content and higher thermal stability than LiCoO2. However, its commercialisation is currently still hampered by significant voltage fade, which is caused by irreversible transition metal ion migration to emptied Li positionsviatetrahedral interstices upon electrochemical cycling. This structural change is strongly correlated with anionic redox chemistry of the oxygen sublattice and has a detrimental effect on electrochemical performance. In a fully charged state, up to 4.8 Vvs.Li/Li+, Mn4+ is prone to migrate to the Li layer. The replacement of Mn4+ for an isovalent cation such as Sn4+ which does not tend to adopt tetrahedral coordination and shows a higher metal-oxygen bond strength is considered to be a viable strategy to stabilize the layered structure upon extended electrochemical cycling, hereby decreasing voltage fade. The influence of Sn4+ on the voltage fade in partially charged LMR-NMC is not yet reported in the literature, and therefore, we have investigated the structure and the corresponding electrochemical properties of LMR-NMC with different Sn concentrations. We determined the substitution limit of Sn4+ in Li1.2Ni0.13Co0.13Mn0.54-xSnxO2 by powder X-ray diffraction and transmission electron microscopy to be x approximate to 0.045. The limited solubility of Sn is subsequently confirmed by density functional theory calculations. Voltage fade for x= 0 andx= 0.027 has been comparatively assessed within the 3.00 V-4.55 V (vs.Li/Li+) potential window, from which it is concluded that replacing Mn4+ by Sn4+ cannot be considered as a viable strategy to inhibit voltage fade within this window, at least with the given restricted doping level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000555330900018 Publication Date 2020-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited Open Access OpenAccess
Notes ; The authors acknowledge Research Foundation Flanders (FWO) project number G040116N for funding. The authors are grateful to Dr Ken Elen and Greet Cuyvers (imo-imomec, UHasselt and imec) for respectively preliminary PXRD measurements and performing ICP-AES on the monometal precursors. Dr Dmitry Rupasov (Skolkovo Institute of Science and Technology) is acknowledged for performing TGA measurements on the metal sulfate precursors. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. ; Approved Most recent IF: 4; 2020 IF: 4.029
Call Number (down) UA @ admin @ c:irua:171149 Serial 6450
Permanent link to this record
 

 
Author Han, Y.; Zeng, Y.; Hendrickx, M.; Hadermann, J.; Stephens, P.W.; Zhu, C.; Grams, C.P.; Hemberger, J.; Frank, C.; Li, S.; Wu, M.X.; Retuerto, M.; Croft, M.; Walker, D.; Yao, D.-X.; Greenblatt, M.; Li, M.-R.
Title Universal a-cation splitting in LiNbO₃-type structure driven by intrapositional multivalent coupling Type A1 Journal article
Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 142 Issue 15 Pages 7168-7178
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Understanding the electric dipole switching in multiferroic materials requires deep insight of the atomic-scale local structure evolution to reveal the ferroelectric mechanism, which remains unclear and lacks a solid experimental indicator in high-pressure prepared LiNbO3-type polar magnets. Here, we report the discovery of Zn-ion splitting in LiNbO3-type Zn2FeNbO6 established by multiple diffraction techniques. The coexistence of a high-temperature paraelectric-like phase in the polar Zn2FeNbO6 lattice motivated us to revisit other high-pressure prepared LiNbO3-type A(2)BB'O-6 compounds. The A-site atomic splitting (similar to 1.0-1.2 angstrom between the split-atom pair) in B/B'-mixed Zn2FeTaO6 and O/N-mixed ZnTaO2N is verified by both powder X-ray diffraction structural refinements and high angle annular dark field scanning transmission electron microscopy images, but is absent in single-B-site ZnSnO3. Theoretical calculations are in good agreement with experimental results and suggest that this kind of A-site splitting also exists in the B-site mixed Mn-analogues, Mn2FeMO6 (M = Nb, Ta) and anion-mixed MnTaO2N, where the smaller A-site splitting (similar to 0.2 angstrom atomic displacement) is attributed to magnetic interactions and bonding between A and B cations. These findings reveal universal A-site splitting in LiNbO3-type structures with mixed multivalent B/B', or anionic sites, and the splitting-atomic displacement can be strongly suppressed by magnetic interactions and/or hybridization of valence bands between d electrons of the A- and B-site cations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526300600046 Publication Date 2020-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited 1 Open Access Not_Open_Access
Notes ; This work was supported by the National Science Foundation of China (NSFC-21875287), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07C069), and an NSF-DMR-1507252 grant (U.S.). Use of the NSLS, Brookhaven National Laboratory, was supported by the DOE BES (DE-AC02-98CH10886). M.R. is thankful for the Spanish Juan de la Cierva grant FPDI-2013-17582. Y.Z. and D.-X.Y. are supported by NKRDPC-2018YFA0306001, NKRDPC-2017YFA0206203, NSFC-11974432, NSFG-2019A1515011337, the National Supercomputer Center in Guangzhou, and the Leading Talent Program of Guangdong Special Projects. Work on IOP, CAS, was supported by NSFC and MOST grants. A portion of this research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. J.H. and M.H. thank the FWO for support for the electron microscopy studies through grant G035619N. We thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing beam time and help during the experiments. ; Approved Most recent IF: 15; 2020 IF: 13.858
Call Number (down) UA @ admin @ c:irua:170294 Serial 6646
Permanent link to this record
 

 
Author Toso, S.; Akkerman, Q.A.; Martin-Garcia, B.; Prato, M.; Zito, J.; Infante, I.; Dang, Z.; Moliterni, A.; Giannini, C.; Bladt, E.; Lobato, I.; Ramade, J.; Bals, S.; Buha, J.; Spirito, D.; Mugnaioli, E.; Gemmi, M.; Manna, L.
Title Nanocrystals of lead chalcohalides : a series of kinetically trapped metastable nanostructures Type A1 Journal article
Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 142 Issue 22 Pages 10198-10211
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on Pb4S3Br2, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr2 phase diagram. The Pb4S3Br2 nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to similar to 30 nm), an indirect bandgap, photoconductivity (responsivity = 4 +/- 1 mA/W), and stability for months in air. A crystal structure is proposed for this new material by combining the information from 3D electron diffraction and electron tomography of a single nanocrystal, X-ray powder diffraction, and density functional theory calculations. Such a structure is closely related to that of the recently discovered high-pressure chalcohalide Pb4S3I2 phase, and indeed we were able to extend our synthesis scheme to Pb4S3I2 colloidal nanocrystals, whose structure matches the one that has been published for the bulk. Finally, we could also prepare nanocrystals of Pb3S2Cl2, which proved to be a structural analogue of the recently reported bulk Pb3Se2Br2 phase. It is remarkable that one high-pressure structure (for Pb4S3I2) and two metastable structures that had not yet been reported (for Pb4S3Br2 and Pb3S2Cl2) can be prepared on the nanoscale by wet-chemical approaches. This highlights the important role of colloidal chemistry in the discovery of new materials and motivates further exploration into metal chalcohalide nanocrystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000538526500035 Publication Date 2020-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited 32 Open Access OpenAccess
Notes ; We would like to thank Dr. A. Toma for the access to the IIT clean room facilities' SEM/FIB and evaporators, the Smart Materials group (IIT) for the access to the ATR-FTIR equipment, S. Marras for the support during XRPD measurements, G. Pugliese for help with the TGA measurements, M. Campolucci for help with the experiments on NC growth kinetics, S. Lauciello for help with the SEM-EDX analyses, and D. Baranov and R. Brescia for the helpful discussions. We also acknowledge funding from the Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement COMPASS No. 691185. I.I. acknowledges the Dutch NWO for financial support under the Vidi scheme (Grant No. 723.013.002). S.B. acknowledges support by means of the ERC Consolidator Grant No. 815128 REALNANO. E. M. and M.G acknowledge the Regione Toscana for funding the purchase of the Timepix detector through the FELIX project (Por CREO FESR 2014-2020 action). ; sygma Approved Most recent IF: 15; 2020 IF: 13.858
Call Number (down) UA @ admin @ c:irua:170218 Serial 6566
Permanent link to this record
 

 
Author Petrishcheva, E.; Tiede, L.; Schweinar, K.; Habler, G.; Li, C.; Gault, B.; Abart, R.
Title Spinodal decomposition in alkali feldspar studied by atom probe tomography Type A1 Journal article
Year 2020 Publication Physics And Chemistry Of Minerals Abbreviated Journal Phys Chem Miner
Volume 47 Issue 7 Pages Unsp 30
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We used atom probe tomography to complement electron microscopy for the investigation of spinodal decomposition in alkali feldspar. To this end, gem-quality alkali feldspar of intermediate composition with a mole fraction of a(K) = 0.43 of the K end-member was prepared from Madagascar orthoclase by ion-exchange with (NaK)Cl molten salt. During subsequent annealing at 550 degrees C and close to ambient pressure the ion-exchanged orthoclase unmixed producing a coherent lamellar intergrowth of Na-rich and K-rich lamellae. The chemical separation was completed, and equilibrium Na-K partitioning between the different lamellae was attained within four days, which was followed by microstructural coarsening. After annealing for 4 days, the wavelength of the lamellar microstructure was approximate to 17 nm and it increased to approximate to 30 nm after annealing for 16 days. The observed equilibrium compositions of the Na-rich and K-rich lamellae are in reasonable agreement with an earlier experimental determination of the coherent solvus. The excess energy associated with compositional gradients at the lamellar interfaces was quantified from the initial wavelength of the lamellar microstructure and the lamellar compositions as obtained from atom probe tomography using the Cahn-Hilliard theory. The capability of atom probe tomography to deliver quantitative chemical compositions at nm resolution opens new perspectives for studying the early stages of exsolution. In particular, it helps to shed light on the phase relations in nm scaled coherent intergrowth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000540150400001 Publication Date 2020-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0342-1791 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.4 Times cited Open Access OpenAccess
Notes ; Open access funding provided by Austrian Science Fund (FWF). This project was funded by the FWF Project P28238-N29. KS acknowledges IMPRS-SurMat for funding. Uwe Tezins, Andreas Sturm and Christian Bross are acknowledged for their support at the FIB & APT facilities at MPIE. We gratefully acknowledge the thorough and constructive reviews by Herbert Kroll and Luis Sanchez Munoz, who substantially contributed to improving an earlier version of the manuscript. ; Approved Most recent IF: 1.4; 2020 IF: 1.521
Call Number (down) UA @ admin @ c:irua:170208 Serial 6611
Permanent link to this record
 

 
Author Mendonça, C.D.; Rahemi, V.; Hereijgers, J.; Breugelmans, T.; Machado, S.A.S.; De Wael, K.
Title Integration of a photoelectrochemical cell in a flow system for quantification of 4-aminophenol with titanium dioxide Type A1 Journal article
Year 2020 Publication Electrochemistry Communications Abbreviated Journal Electrochem Commun
Volume 117 Issue Pages 106767-5
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The photoelectrochemical quantification of phenolic compounds such as hydroquinone (HQ) and 4-aminophenol (4-AP) is accomplished by integrating a photoelectrochemical cell into a flow injection analysis (FIA) setup. It is a well-known fact that during the electroanalysis of phenolic compounds, the electrode surface is susceptible to poisoning. However, electrode fouling can be reduced significantly by using the FIA system with periodic washing of the electrode. Reactive oxygen species (ROS), which are generated on the surface of TiO2 under UV light, can oxidize phenolic compounds such as 4-AP. The oxidized form of 4-AP is reduced back at the electrode surface, generating a measurable signal proportional to its concentration. The factors influencing the perfor-mance of the sensor, such as flow rate, applied potential for back reduction and pH, are investigated in detail. In the concentration range 0.0125-1.0 mu M, a linear correlation between the photocurrent and the concentration of 4-AP was observed with a sensitivity of 0.6 A M-1 cm(-2) and a limit of detection of 18 nM. A straightforward analytical methodology for the on-site, highly sensitive and low-cost quantification of phenolic compounds is presented, based on the use of TiO2 in a photoelectrochemical flow cell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000552618700004 Publication Date 2020-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.4 Times cited 1 Open Access
Notes ; The authors thank FAPESP funding for the fellowship to Camila D. Mendonca (Grant #2018/13724-0) and FWO funding (grant 12T4219N and 28761) for the postdoctoral fellowship to Dr. Vanoushe Rahemi and Dr. Jonas Hereijgers. ; Approved Most recent IF: 5.4; 2020 IF: 4.396
Call Number (down) UA @ admin @ c:irua:169924 Serial 6547
Permanent link to this record
 

 
Author Bafekry, A.; Obeid, M.; Nguyen, C.; Bagheri Tagani, M.; Ghergherehchi, M.
Title Graphene hetero-multilayer on layered platinum mineral Jacutingaite (Pt₂HgSe₃): Van der Waals heterostructures with novel optoelectronic and thermoelectric performances Type A1 Journal article
Year 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A
Volume 8 Issue 26 Pages 13248-13260
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Motivated by the recent successful synthesis of the layered platinum mineral jacutingaite (Pt2HgSe3), we have studied the optoelectronic, mechanical, and thermoelectric properties of graphene hetero-multilayer on Pt(2)HgSe(3)monolayer (PHS) heterostructures (LG/PHS) by using first-principles calculations. PHS is a topological insulator with a band gap of about 160 meV with fully relativistic calculations; when graphene layers are stacked on PHS, a narrow band gap of similar to 10-15 meV opens. In the presence of gate-voltage and out-of plane strain,i.e.pressure, the electronic properties are modified; the Dirac-cone of graphene can be shifted upwards (downward) to a lower (higher) binding energy. The absorption spectrum shows two peaks, which are located around 216 nm (5.74 eV) and protracted to 490 nm (2.53 eV), indicating that PHS could absorb more visible light. Increasing the number of graphene layers on PHS has a positive impact on the UV-vis light absorption and gives a clear red-shift with enhanced absorption intensity. To investigate the electronic performance of the heterostructure, the electrical conductance and thermopower of a device composed of graphene layers and PHS is examined by a combination of DFT and Green function formalism. The number of graphene layers can significantly tune the thermopower and electrical conductance. This analysis reveals that the heterostructures not only significantly affect the electronic properties, but they can also be used as an efficient way to modulate the optic and thermoelectric properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000546391600032 Publication Date 2020-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.9 Times cited 20 Open Access
Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (NRF-2017R1A2B2011989) and Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.01-2019.05. ; Approved Most recent IF: 11.9; 2020 IF: 8.867
Call Number (down) UA @ admin @ c:irua:169755 Serial 6529
Permanent link to this record
 

 
Author Baskurt, M.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H.
Title Stable single-layers of calcium halides (CaX₂, X = F, Cl, Br, I) Type A1 Journal article
Year 2020 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
Volume 152 Issue 16 Pages 164116-164118
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By means of density functional theory based first-principles calculations, the structural, vibrational, and electronic properties of 1H- and 1T-phases of single-layer CaX2 (X = F, Cl, Br, or I) structures are investigated. Our results reveal that both the 1H- and 1T-phases are dynamically stable in terms of their phonon band dispersions with the latter being the energetically favorable phase for all single-layers. In both phases of single-layer CaX2 structures, significant phonon softening occurs as the atomic radius increases. In addition, each structural phase exhibits distinctive Raman active modes that enable one to characterize either the phase or the structure via Raman spectroscopy. The electronic band dispersions of single-layer CaX2 structures reveal that all structures are indirect bandgap insulators with a decrease in bandgaps from fluorite to iodide crystals. Furthermore, the calculated linear elastic constants, in-plane stiffness, and Poisson ratio indicate the ultra-soft nature of CaX2 single-layers, which is quite important for their nanoelastic applications. Overall, our study reveals that with their dynamically stable 1T- and 1H-phases, single-layers of CaX2 crystals can be alternative ultra-thin insulators.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000531819100001 Publication Date 2020-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.4 Times cited 14 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the TUBITAK under Project No. 117F095. H.S. acknowledges support from the Turkish Academy of Sciences under the GEBIP program. M.Y. was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 4.4; 2020 IF: 2.965
Call Number (down) UA @ admin @ c:irua:169543 Serial 6615
Permanent link to this record
 

 
Author Parsons, T.G.; Hadermann, J.; Halasyamani, P.S.; Hayward, M.A.
Title Preparation of the noncentrosymmetric ferrimagnetic phase La0.9Ba0.1Mn0.96O2.43 by topochemical reduction Type A1 Journal article
Year 2020 Publication Journal Of Solid State Chemistry Abbreviated Journal J Solid State Chem
Volume 287 Issue Pages 121356-121357
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Topochemical reduction of La0.9Ba0.1MnO3 with NaH at 225 degrees C yields the brownmillerite phase La0.9Ba0.1MnO2.5. However, reduction with CaH2 at 435 degrees C results in the formation of La0.9Ba0.1Mn0.96O2.43 via the deintercalation of both oxide anions and manganese cations from the parent perovskite phase. Electron and neutron diffraction data reveal La0.9Ba0.1Mn0.96O2.43 adopts a complex noncentrosymmetric structure, described in space group I23, confirmed by SHG measurements. Low-temperature neutron diffraction data reveal La0.9Ba0.1Mn0.96O2.43 adopts an ordered magnetic structure in which all the nearest neighbor interactions are antiferromagnetic. However, the presence of ordered manganese cation-vacancies results in a net ferrimagnetic structure with net saturated moment of 0.157(2) mu B per manganese center.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000533632700029 Publication Date 2020-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.3 Times cited Open Access Not_Open_Access
Notes ; We thank the EPSRC for funding this work and E. Suard for assisting with the collection of the neutron powder diffraction data. PSH thanks the Welch Foundation (Grant E-1457) for support. ; Approved Most recent IF: 3.3; 2020 IF: 2.299
Call Number (down) UA @ admin @ c:irua:169450 Serial 6583
Permanent link to this record
 

 
Author Dubinina, T.V.; Moiseeva, E.O.; Astvatsaturov, D.A.; Borisova, N.E.; Tarakanov, P.A.; Trashin, S.A.; De Wael, K.; Tomilova, L.G.
Title Novel 2-naphthyl substituted zinc naphthalocyanine : synthesis, optical, electrochemical and spectroelectrochemical properties Type A1 Journal article
Year 2020 Publication New Journal Of Chemistry Abbreviated Journal New J Chem
Volume 44 Issue 19 Pages 7849-7857
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract New zinc naphthalocyanine with bulky 2-naphthyl groups was obtained. Aggregation drastically influences its optical and electrochemical behavior. Spectroelectrochemistry helps to establish the oxidation potential and reveals unusual color change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000536157700023 Publication Date 2020-04-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 1 Open Access
Notes ; Synthesis, identification and optical studies of target compounds were supported by the Russian Science Foundation Grant No 19-73-00099. Electrochemical and spectroelectrochemical measurements were supported by ERA.Net RUS Plus Plasmon Electrolight and FWO funding (RFBR No 18-53-76006 ERA). Fluorescence studies were supported by the Council under the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (Grant MD-3847.2019.3). The NMR spectroscopic measurements were carried out in the Laboratory of Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine of Moscow State University. ; Approved Most recent IF: 3.3; 2020 IF: 3.269
Call Number (down) UA @ admin @ c:irua:168952 Serial 6570
Permanent link to this record
 

 
Author Kovács, A.; Billen, P.; Cornet, I.; Wijnants, M.; Neyts, E.C.
Title Modeling the physicochemical properties of natural deep eutectic solvents : a review Type A1 Journal article
Year 2020 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 13 Issue 15 Pages 3789-3804
Keywords A1 Journal article; Engineering sciences. Technology; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Natural deep eutectic solvents (NADES) are mixtures of naturally derived compounds with a significantly decreased melting point due to the specific interactions among the constituents. NADES have benign properties (low volatility, flammability, toxicity, cost) and tailorable physicochemical properties (by altering the type and molar ratio of constituents), hence they are often considered as a green alternative to common organic solvents. Modeling the relation between their composition and properties is crucial though, both for understanding and predicting their behavior. Several efforts were done to this end, yet this review aims at structuring the present knowledge as an outline for future research. First, we reviewed the key properties of NADES and relate them to their structure based on the available experimental data. Second, we reviewed available modeling methods applicable to NADES. At the molecular level, density functional theory and molecular dynamics allow interpreting density differences and vibrational spectra, and computation of interaction energies. Additionally, properties at the level of the bulk media can be explained and predicted by semi-empirical methods based on ab initio methods (COSMO-RS) and equation of state models (PC-SAFT). Finally, methods based on large datasets are discussed; models based on group contribution methods and machine learning. A combination of bulk media and dataset modeling allows qualitative prediction and interpretation of phase equilibria properties on the one hand, and quantitative prediction of melting point, density, viscosity, surface tension and refractive indices on the other hand. In our view, multiscale modeling, combining the molecular and macroscale methods, will strongly enhance the predictability of NADES properties and their interaction with solutes, yielding truly tailorable solvents to accommodate (bio)chemical reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000541499100001 Publication Date 2020-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access
Notes Approved Most recent IF: 8.4; 2020 IF: 7.226
Call Number (down) UA @ admin @ c:irua:168851 Serial 6770
Permanent link to this record
 

 
Author Poma, G.; McGrath, T.J.; Christia, C.; Govindan, M.; Covaci, A.
Title Emerging halogenated flame retardants in the indoor environment Type A1 Journal article
Year 2020 Publication Comprehensive analytical chemistry Abbreviated Journal
Volume 88 Issue Pages 107-140
Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT); Toxicological Centre
Abstract Indoor environments are considered an important contributor to external human exposure to halogenated flame retardants (HFRs) due to the large amounts of chemicals currently incorporated in indoor equipment and the time humans spend every day in indoor environments. In this chapter, the presence and use of novel brominated flame retardants (NBFRs), dechlorane plus (DPs), chlorinated organophosphorus flame retardants (Cl-PFRs) and chlorinated paraffins (CPs) in indoor dust, air and consumer products collected from different indoor microenvironments (homes, public indoor spaces, and vehicles) are discussed. While data on the concentrations of HFRs in indoor dust and air are widely available, figures are still scarce for consumer products, such as textiles and foams, furnishings, flooring, electric and electronic products and building materials. This knowledge gaps still represents the biggest obstacle in linking eventual sources of contamination to the presence and chemical patterns in indoor dust and air.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-11-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-0-444-64339-1 ISBN Additional Links UA library record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number (down) UA @ admin @ c:irua:168776 Serial 6505
Permanent link to this record
 

 
Author Mehta, A.N.; Mo, J.; Pourtois, G.; Dabral, A.; Groven, B.; Bender, H.; Favia, P.; Caymax, M.; Vandervorst, W.
Title Grain-boundary-induced strain and distortion in epitaxial bilayer MoS₂ lattice Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 11 Pages 6472-6478
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Grain boundaries between 60 degrees rotated and twinned crystals constitute the dominant type of extended line defects in two-dimensional transition metal dichalcogenides (2D MX2) when grown on a single crystalline template through van der Waals epitaxy. The two most common 60 degrees grain boundaries in MX2 layers, i.e., beta- and gamma-boundaries, introduce distinct distortion and strain into the 2D lattice. They impart a localized tensile or compressive strain on the subsequent layer, respectively, due to van der Waals coupling in bilayer MX2 as determined by combining atomic resolution electron microscopy, geometric phase analysis, and density functional theory. Based on these observations, an alternate route to strain engineering through controlling intrinsic van der Waals forces in homobilayer MX2 is proposed. In contrast to the commonly used external means, this approach enables the localized application of strain to tune the electronic properties of the 2D semiconducting channel in ultra-scaled nanoelectronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526396000067 Publication Date 2020-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number (down) UA @ admin @ c:irua:168625 Serial 6528
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Akgenc, B.; Mortazavi, B.; Ghergherehchi, M.; Nguyen, C.V.
Title Embedding of atoms into the nanopore sites of the C₆N₆ and C₆N₈ porous carbon nitride monolayers with tunable electronic properties Type A1 Journal article
Year 2020 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys
Volume 22 Issue 11 Pages 6418-6433
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations, we study the effect of embedding various atoms into the nanopore sites of both C6N6 and C6N8 monolayers. Our results indicate that the embedded atoms significantly affect the electronic and magnetic properties of C6N6 and C6N8 monolayers and lead to extraordinary and multifarious electronic properties, such as metallic, half-metallic, spin-glass semiconductor and dilute-magnetic semiconductor behaviour. Our results reveal that the H atom concentration dramatically affects the C6N6 monolayer. On increasing the H coverage, the impurity states also increase due to H atoms around the Fermi-level. C6N6 shows metallic character when the H atom concentration reaches 6.25%. Moreover, the effect of charge on the electronic properties of both Cr@C6N6 and C@C6N8 is also studied. Cr@C6N6 is a ferromagnetic metal with a magnetic moment of 2.40 mu(B), and when 0.2 electrons are added and removed, it remains a ferromagnetic metal with a magnetic moment of 2.57 and 2.77 mu(B), respectively. Interestingly, one can observe a semi-metal, in which the VBM and CBM in both spin channels touch each other near the Fermi-level. C@C6N8 is a semiconductor with a nontrivial band gap. When 0.2 electrons are removed, it remains metallic, and under excess electronic charge, it exhibits half-metallic behaviour.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000523409400037 Publication Date 2020-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 17 Open Access
Notes ; This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.3; 2020 IF: 4.123
Call Number (down) UA @ admin @ c:irua:168617 Serial 6504
Permanent link to this record
 

 
Author Moro, G.; Barich, H.; Driesen, K.; Montiel, N.F.; Neven, L.; Mendonca, C.D.; Thiruvottriyur Shanmugam, S.; Daems, E.; De Wael, K.
Title Unlocking the full power of electrochemical fingerprinting for on-site sensing applications Type A1 Journal article
Year 2020 Publication Analytical And Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem
Volume Issue Pages 1-14
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Electrochemical sensing for the semi-quantitative detection of biomarkers, drugs, environmental contaminants, food additives, etc. shows promising results in point-of-care diagnostics and on-site monitoring. More specifically, electrochemical fingerprint (EF)-based sensing strategies are considered an inviting approach for the on-site detection of low molecular weight molecules. The fast growth of electrochemical sensors requires defining the concept of direct electrochemical fingerprinting in sensing. The EF can be defined as the unique electrochemical signal or pattern, mostly recorded by voltammetric techniques, specific for a certain molecule that can be used for its quantitative or semi-quantitative identification in a given analytical context with specified circumstances. The performance of EF-based sensors can be enhanced by considering multiple features of the signal (i.e., oxidation or reduction patterns), in combination with statistical data analysis or sample pretreatments or by including electrode surface modifiers to enrich the EF. In this manuscript, some examples of EF-based sensors, strategies to improve their performances, and open challenges are discussed to unlock the full power of electrochemical fingerprinting for on-site sensing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000523396300002 Publication Date 2020-04-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.3 Times cited 3 Open Access
Notes ; The presented review is the result of a concerted effort and fruitful discussions among enthusiastic, young, and (for the occasion) female researchers of the AXES research group, each of them with specific expertise and background, under the guidance of the corresponding author. The authors acknowledge FWO-Flanders, BOF-UA, IOF-UA, FAPESP and EU for funding. ; Approved Most recent IF: 4.3; 2020 IF: 3.431
Call Number (down) UA @ admin @ c:irua:168563 Serial 6647
Permanent link to this record
 

 
Author Jorgensen, M.; Shea, P.T.; Tomich, A.W.; Varley, J.B.; Bercx, M.; Lovera, S.; Cerny, R.; Zhou, W.; Udovic, T.J.; Lavallo, V.; Jensen, T.R.; Wood, B.C.; Stavila, V.
Title Understanding superionic conductivity in lithium and sodium salts of weakly coordinating closo-hexahalocarbaborate anions Type A1 Journal article
Year 2020 Publication Chemistry of materials Abbreviated Journal
Volume 32 Issue 4 Pages 1475-1487
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Solid-state ion conductors based on closo-polyborate anions combine high ionic conductivity with a rich array of tunable properties. Cation mobility in these systems is intimately related to the strength of the interaction with the neighboring anionic network and the energy for reorganizing the coordination polyhedra. Here, we explore such factors in solid electrolytes with two anions of the weakest coordinating ability, [HCB11H5Cl6](-) and [HCB11H5Br6](-), and a total of 11 polymorphs are identified for their lithium and sodium salts. Our approach combines ab initio molecular dynamics, synchrotron X-ray powder diffraction, differential scanning calorimetry, and AC impedance measurements to investigate their structures, phase-transition behavior, anion orientational mobilities, and ionic conductivities. We find that M(HCB11H5X6) (M = Li, Na, X = Cl, Br) compounds exhibit order-disorder polymorphic transitions between 203 and 305 degrees C and display Li and Na superionic conductivity in the disordered state. Through detailed analysis, we illustrate how cation disordering in these compounds originates from a competitive interplay among the lattice symmetry, the anion reorientational mobility, the geometric and electronic asymmetry of the anion, and the polarizability of the halogen atoms. These factors are compared to other closo-polyborate-based ion conductors to suggest guidelines for optimizing the cation-anion interaction for fast ion mobility. This study expands the known solid-state poly(carba)borate-based materials capable of liquid-like ionic conductivities, unravels the mechanisms responsible for fast ion transport, and provides insights into the development of practical superionic solid electrolytes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000517351300014 Publication Date 2020-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 5 Open Access OpenAccess
Notes ; The authors gratefully acknowledge support from the Hydrogen Materials-Advanced Research Consortium (HyMARC), established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract no. AC04-94AL85000. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under Contract no. DE-NA-0003525. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract no. ACS2-07NA27344. We also gratefully thank Kyoung Kweon for useful discussions. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Neither the United States Government nor any agency thereof nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. The Danish council for independent research, technology and production, HyNanoBorN (4181-00462) and SOS-MagBat (9041-00226B) and NordForsk, The Nordic Neutron Science Program, project FunHy (81942), and the Carlsberg Foundation are acknowledged for funding. Affiliation with the Center for Integrated Materials Research (iMAT) at Aarhus University is gratefully acknowledged. V.L. acknowledges the NSF for partial support of this project (DMR-1508537). The authors would like to thank the Swiss-Norwegian beamlines (BM01) at the ESRF, Grenoble, for the help with the data collection, DESY for access to Petra III, at beamline P02.1, and Diamond for access to beamline I11. ; Approved Most recent IF: NA
Call Number (down) UA @ admin @ c:irua:167754 Serial 6645
Permanent link to this record
 

 
Author Anastasiou, I.; Van Velthoven, N.; Tomarelli, E.; Lombi, A.; Lanari, D.; Liu, P.; Bals, S.; De Vos, D.E.; Vaccaro, L.
Title C2-H arylation of indoles catalyzed by palladium-containing metal-organic-framework in γ-valerolactone Type A1 Journal article
Year 2020 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 13 Issue 10 Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract An efficient and selective procedure was developed for the direct C2-H arylation of indoles using a Pd-loaded metal-organic framework (MOF) as a heterogeneous catalyst and the nontoxic biomass-derived solvent gamma-valerolactone (GVL) as a reaction medium. The developed method allows for excellent yields and C-2 selectivity to be achieved and tolerates various substituents on the indole scaffold. The established conditions ensure the stability of the catalyst as well as recoverability, reusability, and low metal leaching into the solution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000520285700001 Publication Date 2020-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited 22 Open Access Not_Open_Access
Notes ; The research leading to these results has received funding from the NMBP-01-2016 Programme of the European Union's Horizon 2020 Framework Programme H2020/2014-2020/under grant agreement no [720996]. The Universit degli Studi di Perugia and MIUR are acknowledged for financial support to the project AMIS, through the program “Dipartimenti di Eccellenza -2018-2022”. The XAS experiments were performed on beamline BM26A at the European Synchrotron Radiation Facility (ESRF), Grenoble (France). We are grateful to D. Banerjee at the ESRF for providing assistance in using beamline BM26A. Niels Van Velthoven and Dirk E. De Vos also thank FWO for funding. ; Approved Most recent IF: 8.4; 2020 IF: 7.226
Call Number (down) UA @ admin @ c:irua:167678 Serial 6465
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Boon, N.; Vlaeminck, S.E.
Title Pioneering on single-sludge nitrification/denitrification at 50 °C Type A1 Journal article
Year 2020 Publication Chemosphere Abbreviated Journal Chemosphere
Volume 252 Issue Pages 126527-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Thermophilic nitrification has been proven in lab-scale bioreactors at 50 °C. The challenge is now to develop a solution for thermophilic nitrogen removal, integrating nitrification with denitrification and aerobic carbon removal. This pioneering study aimed at a single-sludge nitrification/denitrification process at 50 °C, through exposing nitrification in a step by step approach to anoxia and/or organics. Firstly, recurrent anoxia was tolerated by a nitrifying community during long-term membrane bioreactor (MBR) operation (85 days), with high ammonium oxidation efficiencies (>98%). Secondly, five organic carbon sources did not affect thermophilic ammonium and nitrite oxidation rates in three-day aerobic batch flask incubations. Moving to long-term tests with sequencing batch reactors (SBR) and MBR (>250 days), good nitrification performance was obtained at increasing COD/Ninfluent ratios (0, 0.5, 1, 2 and 3). Thirdly, combining nitrification, recurrent anoxia and presence of organic carbon resulted in a nitrogen removal efficiency of 92–100%, with a COD/Nremoved of 4.8 ± 0.6 and a nitrogen removal rate of 50 ± 14 mg N g−1 VSS d−1. Overall, this is the first proof of principle thermophilic nitrifiers can cope with redox fluctuations (aerobic/anoxic) and the aerobic or anoxic presence of organic carbon, can functionally co-exist with heterotrophs and that single-sludge nitrification/denitrification can be achieved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000534377000121 Publication Date 2020-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.8 Times cited Open Access
Notes ; The authors acknowledge (i) the Agency for Innovation by Science and Technology (IWT Flanders) [grant number SB-141205] for funding Tom G.L. Vandekerckhove, (ii) Wouter Peleman and Zoe Pesonen for practical support during their master thesis, (iii) Jolien De Paepe for assisting in the reactor operation, and (iv) Jo De Vrieze and Tim Lacoere for their help with qPCR and 16S rRNA gene amplicon sequencing. ; Approved Most recent IF: 8.8; 2020 IF: 4.208
Call Number (down) UA @ admin @ c:irua:167324 Serial 6581
Permanent link to this record
 

 
Author Gorbanev, Y.; Vervloessem, E.; Nikiforov, A.; Bogaerts, A.
Title Nitrogen fixation with water vapor by nonequilibrium plasma : toward sustainable ammonia production Type A1 Journal article
Year 2020 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng
Volume 8 Issue 7 Pages 2996-3004
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ammonia is a crucial nutrient used for plant growth and as a building block in the pharmaceutical and chemical industry, produced via nitrogen fixation of the ubiquitous atmospheric N2. Current industrial ammonia production relies heavily on fossil resources, but a lot of work is put into developing nonfossil-based pathways. Among these is the use of nonequilibrium plasma. In this work, we investigated water vapor as a H source for nitrogen fixation into NH3 by nonequilibrium plasma. The highest selectivity toward NH3 was observed with low amounts of added H2O vapor, but the highest production rate was reached at high H2O vapor contents. We also studied the role of H2O vapor and of the plasma-exposed liquid H2O in nitrogen fixation by using isotopically labeled water to distinguish between these two sources of H2O. We show that added H2O vapor, and not liquid H2O, is the main source of H for NH3 generation. The studied catalyst- and H2-free method offers excellent selectivity toward NH3 (up to 96%), with energy consumption (ca. 95–118 MJ/mol) in the range of many plasma-catalytic H2-utilizing processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000516665500045 Publication Date 2020-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited 14 Open Access
Notes ; This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the Catalisti Moonshot project P2C, and the Methusalem project of the University of Antwerp. ; Approved Most recent IF: 8.4; 2020 IF: 5.951
Call Number (down) UA @ admin @ c:irua:167134 Serial 6568
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Akgenc, B.; Ghergherehchi, M.
Title Control of C3N4 and C4N3 carbon nitride nanosheets' electronic and magnetic properties through embedded atoms Type A1 Journal article
Year 2020 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys
Volume 22 Issue 4 Pages 2249-2261
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In the present work, the effect of various embedded atom impurities on tuning electronic and magnetic properties of C3N4 and C4N3 nanosheets have been studied using first-principles calculations. Our calculations show that C3N4 is a semiconductor and it exhibits extraordinary electronic properties such as dilute-magnetic semiconductor (with H, F, Cl, Be, V, Fe and Co); metal (with N, P, Mg and Ca), half-metal (with Li, Na, K, Al, Sc, Cr, Mn, and Cu) and semiconductor (with O, S, B, C, Si, Ti, Ni and Zn) with the band gaps in the range of 0.3-2.0 eV depending on the species of embedded atom. The calculated electronic properties reveal that C4N3 is a half-metal and it retains half-metallic character with embedded H, O, S, F, B, N, P, Be, Mg, Al, Sc, V, Fe, Ni and Zn atoms. The substitution of Cl, C, Cr and Mn atoms create ferromagnetic-metal character in the C4N3 nanosheet, embedded Co and Cu atoms exhibit a dilute-magnetic semiconductor nature, and embedded Ti atoms result in the system becoming a semiconductor. Therefore, our results reveal the fact that the band gap and magnetism can be modified or induced by various atom impurities, thus, offering effective possibilities to tune the electronic and magnetic properties of C3N4 and C4N3 nanosheets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000510729400042 Publication Date 2019-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 18 Open Access
Notes ; This work has supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). B. Akgenc acknowledges financial support the Kirklareli University-BAP under the Project No 189 and TUBITAK ULAKBIM, High Performance and Grid Computing Center. ; Approved Most recent IF: 3.3; 2020 IF: 4.123
Call Number (down) UA @ admin @ c:irua:166553 Serial 6476
Permanent link to this record
 

 
Author Dooley, K.A.; Chieli, A.; Romani, A.; Legrand, S.; Miliani, C.; Janssens, K.; Delaney, J.K.
Title Molecular fluorescence imaging spectroscopy for mapping low concentrations of red lake pigments : Van Gogh's painting The Olive Orchard Type A1 Journal article
Year 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
Volume Issue Pages
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Vincent van Gogh used fugitive red lake pigments that have faded in some paintings. Mapping their distribution is key to understanding how his paintings have changed with time. While red lake pigments can be identified from microsamples, in situ identification and mapping remain challenging. This paper explores the ability of molecular fluorescence imaging spectroscopy to identify and, more importantly, map residual non-degraded red lakes. The high sensitivity of this method enabled identification of the emission spectra of eosin (tetrabromine fluorescein) lake mixed with lead or zinc white at lower concentrations than elemental X-ray fluorescence (XRF) spectroscopy used on account of bromine. The molecular fluorescence mapping of residual eosin and two carmine red lakes in van Gogh's The Olive Orchard is demonstrated and compared with XRF imaging spectroscopy. The red lakes are consistent with the composition of paint tubes known to have been used by van Gogh.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000512477200001 Publication Date 2020-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 2 Open Access
Notes ; We thank Damon Conover and Roxanne Radpour for help with the fluorescence self-absorption correction, and Ella Hendricks for discussions about van Gogh~s letters and materials. K.J. and S.L. thank the Research Council of the University of Antwerp for financial support (ID grant 25805 to S.L. and GOA project SolarPaint). Also FWO, Brussels provided financial support (grants G056619N and G054719N). The European research project IPERION-CH, funded by the European Commission, H2020-INFRAIA-2014-2015 (Grant agreement n. 654028) is also acknowledged. ; Approved Most recent IF: 16.6; 2020 IF: 11.994
Call Number (down) UA @ admin @ c:irua:166490 Serial 6563
Permanent link to this record
 

 
Author Rahemi, V.; Trashin, S.; Hafideddine, Z.; Van Doorslaer, S.; Meynen, V.; Gorton, L.; De Wael, K.
Title Amperometric flow-injection analysis of phenols induced by reactive oxygen species generated under daylight irradiation of titania impregnated with horseradish peroxidase Type A1 Journal article
Year 2020 Publication Analytical Chemistry Abbreviated Journal Anal Chem
Volume 92 Issue 92 Pages 3643-3649
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Titanium dioxide (TiO2) is a unique material for biosensing applications due to its capability of hosting enzymes. For the first time, we show that TiO2 can accumulate reactive oxygen species (ROS) under daylight irradiation and can support the catalytic cycle of horseradish peroxidase (HRP) without the need of H2O2 to be present in the solution. Phenolic compounds, such as hydroquinone (HQ) and 4-aminophenol (4-AP), were detected amperometrically in flow-injection analysis (FIA) mode via the use of an electrode modified with TiO2 impregnated with HRP. In contrast to the conventional detection scheme, no H2O2 was added to the analyte solution. Basically, the inherited ability of TiO2 to generate reactive oxygen species is used as a strategy to avoid adding H2O2 in the solution during the detection of phenolic compounds. Electron paramagnetic resonance (EPR) spectroscopy indicates the presence of ROS on titania which, in interaction with HRP, initiate the electrocatalysis toward phenolic compounds. The amperometric response to 4-AP was linear in the concentration range between 0.05 and 2 μM. The sensitivity was 0.51 A M–1 cm–2, and the limit of detection (LOD) 26 nM. The proposed sensor design opens new opportunities for the detection of phenolic traces by HRP-based electrochemical biosensors, yet in a more straightforward and sensitive way following green chemistry principles of avoiding the use of reactive and harmful chemical, such as H2O2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000518234700023 Publication Date 2020-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited 3 Open Access
Notes ; The authors thank Scientific Reseatch-Flanders (F-WO) (grant 12T4219N) for funding. ; Approved Most recent IF: 7.4; 2020 IF: 6.32
Call Number (down) UA @ admin @ c:irua:166241 Serial 5463
Permanent link to this record
 

 
Author Rutten, I.; Daems, D.; Lammertyn, J.
Title Boosting biomolecular interactions through DNA origami nano-tailored biosensing interfaces Type A1 Journal article
Year 2020 Publication Journal Of Materials Chemistry B Abbreviated Journal J Mater Chem B
Volume 8 Issue 16 Pages 3606-3615
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The interaction between a bioreceptor and its target is key in developing sensitive, specific and robust diagnostic devices. Suboptimal interbioreceptor distances and bioreceptor orientation on the sensor surface, resulting from uncontrolled deposition, impede biomolecular interactions and lead to a decreased biosensor performance. In this work, we studied and implemented a 3D DNA origami design, for the first time comprised of assay specifically tailored anchoring points for the nanostructuring of the bioreceptor layer on the surface of disc-shaped microparticles in the continuous microfluidic environment of the innovative EvalutionTM platform. This bioreceptor immobilization strategy resulted in the formation of a less densely packed surface with reduced steric hindrance and favoured upward orientation. This increased bioreceptor accessibility led to a 4-fold enhanced binding kinetics and a 6-fold increase in binding efficiency compared to a directly immobilized non-DNA origami reference system. Moreover, the DNA origami nanotailored biosensing concept outperformed traditional aptamer coupling with respect to limit of detection (11 × improved) and signal-to-noise ratio (2.5 × improved) in an aptamer-based sandwich bioassay. In conclusion, our results highlight the potential of these DNA origami nanotailored surfaces to improve biomolecular interactions at the sensing surface, thereby increasing the overall performance of biosensing devices. The combination of the intrinsic advantages of DNA origami together with a smart design enables bottom-up nanoscale engineering of the sensor surface, leading towards the next generation of improved diagnostic sensing devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000548186500032 Publication Date 2020-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-750x; 2050-7518 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7 Times cited 2 Open Access
Notes ; We gratefully acknowledge financial support from Fund for Scientific Research (FWO, FWO-Flanders Doctoral grant Iene Rutten 1S30016N and FWO-Flanders Postdoctoral Fellow Devin Daems 12U1618N). We kindly thank MyCartis for access to their EvalutionTM platform, microparticle supplies and technical support. We would also like to thank Steven De Feyter and Joan Teyssandier (Molecular imaging and Photonics, Department of Chemistry, KU Leuven, Belgium) for providing the AFM facilities and technical support. We thank Peter Vangheluwe (Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven) for access to their gel imaging system, Typhoon FLA 9000. ; Approved Most recent IF: 7; 2020 IF: 4.543
Call Number (down) UA @ admin @ c:irua:166104 Serial 6462
Permanent link to this record
 

 
Author Khan, S.U.; Trashin, S.A.; Korostei, Y.S.; Dubinina, T.V.; Tomilova, L.G.; Verbruggen, S.W.; De Wael, K.
Title Photoelectrochemistry for measuring the photocatalytic activity of soluble photosensitizers Type A1 Journal article
Year 2020 Publication ChemPhotoChem Abbreviated Journal
Volume 4 Issue 4 Pages 300-306
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)
Abstract We introduce a rapid method to test the photocatalytic activity of singlet‐oxygen‐producing photosensitizers using a batch cell, a LED laser and a conventional potentiostat. The strategy is based on coupling of photo‐oxidation of hydroquinone and simultaneous electrochemical reduction of its oxidized form at a carbon electrode in an organic solvent (methanol). This scheme gives an immediate response and avoids complications related to long‐term experiments such as oxidative photo‐degradation of photosensitizers and singlet oxygen traps by reactive oxygen species (ROS). Among the tested compounds, a fluoro‐substituted subphthalocyanine showed the highest photocurrent and singlet oxygen quantum yield (ΦΔ) in comparison to phenoxy‐ and tert‐butyl‐substituted analogues, whereas the lowest photocurrents and yields were observed for aggregated and dimeric phthalocyanine complexes. The method is useful for fast screening of the photosensitizing activity and represents the first example of one‐pot coupling of electrochemical and photocatalytic reactions in organic media.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000520100400001 Publication Date 2020-01-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2367-0932 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 1 Open Access
Notes ; We gratefully acknowledge the financial support by ERA.Net RUS Plus Plasmon Electrolight project (No. 18-53-76006 ERA) and RSF 17-13-01197. ; Approved Most recent IF: 3.7; 2020 IF: NA
Call Number (down) UA @ admin @ c:irua:165912 Serial 5771
Permanent link to this record
 

 
Author De Jong, M.; Sleegers, N.; Florea, A.; Van Loon, J.; van Nuijs, A.L.N.; Samyn, N.; De Wael, K.
Title Unraveling the mechanisms behind the complete suppression of cocaine electrochemical signals by chlorpromazine, promethazine, procaine, and dextromethorphan Type A1 Journal article
Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 91 Issue 24 Pages 15453-15460
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre; Product development
Abstract The present work investigates the challenges accompanied by the electrochemical cocaine detection in physiological conditions (pH 7) in the presence of chlorpromazine, promethazine, procaine, and dextromethorphan, frequently used cutting agents in cocaine street samples. The problem translates into the absence of the cocaine oxidation signal (signal suppression) when in a mixture with one of these compounds, leading to false negative results. Although a solution to this problem was provided through earlier experiments of our group, the mechanisms behind the suppression are now fundamentally investigated via electrochemical and liquid chromatography quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS) strategies. The latter was used to confirm the passivation of the electrodes due to their interaction with promethazine and chlorpromazine. Electron transfer mechanisms were further identified via linear sweep voltammetry. Next, adsorption experiments were performed on the graphite screen printed electrodes both with and without potential assistance in order to confirm if the suppression of the cocaine signals is due to passivation induced by the cutting agents or their oxidized products. The proposed strategies allowed us to identify the mechanisms of cocaine suppression for each cutting agent mentioned. Suppression due to procaine and dextromethorphan is caused by fouling of the electrode surface by their oxidized forms, while for chlorpromazine and promethazine the suppression of the cocaine signal is related to the strong adsorption of these (nonoxidized) cutting agents onto the graphite electrode surface. These findings provide fundamental insights in possible suppression and other interfering mechanisms using electrochemistry in general not only in the drug detection sector.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000503910600018 Publication Date 2019-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited Open Access
Notes ; The authors acknowledge financial support from IOF-SBO/POC (UAntwerp) and the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N. ; Approved Most recent IF: 6.32
Call Number (down) UA @ admin @ c:irua:165727 Serial 5887
Permanent link to this record
 

 
Author Eren, I.; Ozen, S.; Sozen, Y.; Yagmurcukardes, M.; Sahin, H.
Title Vertical van der Waals heterostructure of single layer InSe and SiGe Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 51 Pages 31232-31237
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We present a first-principles investigation on the stability, electronic structure, and mechanical response of ultrathin heterostructures composed of single layers of InSe and SiGe. First, by performing total energy optimization and phonon calculations, we show that single layers of InSe and SiGe can form dynamically stable heterostructures in 12 different stacking types. Valence and conduction band edges of the heterobilayers form a type-I heterojunction having a tiny band gap ranging between 0.09 and 0.48 eV. Calculations on elastic-stiffness tensor reveal that two mechanically soft single layers form a heterostructure which is stiffer than the constituent layers because of relatively strong interlayer interaction. Moreover, phonon analysis shows that the bilayer heterostructure has highly Raman active modes at 205.3 and 43.7 cm(-1), stemming from the out-of-plane interlayer mode and layer breathing mode, respectively. Our results show that, as a stable type-I heterojunction, ultrathin heterobilayer of InSe/SiGe holds promise for nanoscale device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000505632900050 Publication Date 2019-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access
Notes Approved Most recent IF: 4.536
Call Number (down) UA @ admin @ c:irua:165718 Serial 6332
Permanent link to this record