|   | 
Details
   web
Records
Author Bal, K.M.; Cautereels, J.; Blockhuys, F.
Title Structures and spectroscopic properties of sulfur-nitrogen-pnictogen chains : R2P-N=S=N-PR2 and R2P-N=S=N-AsR2 Type A1 Journal article
Year 2017 Publication Journal of molecular structure Abbreviated Journal J Mol Struct
Volume 1132 Issue Pages 102-108
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The conformational and configurational preferences of Me2PNSNPMe2 (3) and Me2PNSNAsMe2 (4) have been identified using quantum chemical calculations at the DFT/B3LYP/6-311+G* level of theory. An approach in which energetic, structural (geometries and bond orders), electronic (analysis of the electron density) and spectroscopic properties are combined leads to the conclusion that these sulfur-nitrogen-pnictogen chains share many of the properties of their chalcogen-nitrogen analogues but that the through-space intramolecular interactions favouring the Z,Z configuration are even weaker than in these latter compounds. The results of this analysis also lead to an unambiguous assignment of the variable-temperature 31P and 15N NMR spectra of these compounds and their structures both in solution and in the solid state.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000393254400015 Publication Date 2016-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2860 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.753 Times cited Open Access Not_Open_Access: Available from 03.10.2019
Notes Approved Most recent IF: 1.753
Call Number (down) UA @ lucian @ c:irua:145533 Serial 4726
Permanent link to this record
 

 
Author Dutta, S.; Sankaran, K.; Moors, K.; Pourtois, G.; Van Elshocht, S.; Bommels, J.; Vandervorst, W.; Tokei, Z.; Adelmann, C.
Title Thickness dependence of the resistivity of platinum-group metal thin films Type A1 Journal article
Year 2017 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 122 Issue 2 Pages 025107
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We report on the thin film resistivity of several platinum-group metals (Ru, Pd, Ir, and Pt). Platinum-group thin films show comparable or lower resistivities than Cu for film thicknesses below about 5 nm due to a weaker thickness dependence of the resistivity. Based on experimentally determined mean linear distances between grain boundaries as well as ab initio calculations of the electron mean free path, the data for Ru, Ir, and Cu were modeled within the semiclassical Mayadas-Shatzkes model [Phys. Rev. B 1, 1382 (1970)] to assess the combined contributions of surface and grain boundary scattering to the resistivity. For Ru, the modeling results indicated that surface scattering was strongly dependent on the surrounding material with nearly specular scattering at interfaces with SiO2 or air but with diffuse scattering at interfaces with TaN. The dependence of the thin film resistivity on the mean free path is also discussed within the Mayadas-Shatzkes model in consideration of the experimental findings. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000405663800038 Publication Date 2017-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 42 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.068
Call Number (down) UA @ lucian @ c:irua:145213 Serial 4729
Permanent link to this record
 

 
Author Domingos, J.L.C.; Peeters, F.M.; Ferreira, W.P.
Title Self-assembly of rigid magnetic rods consisting of single dipolar beads in two dimensions Type A1 Journal article
Year 2017 Publication Physical review E Abbreviated Journal Phys Rev E
Volume 96 Issue 1 Pages 012603
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Molecular dynamics simulations are used to investigate the structural properties of a two-dimensional ensemble of magnetic rods, which are modeled as aligned single dipolar beads. The obtained self-assembled configurations can be characterized as (1) clusters, (2) percolated, and (3) ordered structures, and their structural properties are investigated in detail. By increasing the aspect ratio of the magnetic rods, we show that the percolation transition is suppressed due to the reduced mobility of the rods in two dimensions. Such a behavior is opposite to the one observed in three dimensions. A magnetic bulk phase is found with local ferromagnetic order and an unusual nonmonotonic behavior of the nematic order is observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405713900014 Publication Date 2017-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 8 Open Access
Notes ; This work was supported by the Brazilian agencies FUNCAP, CAPES, program Science without borders, and CNPq (Project No. 400748/2013-4), the joint CNPq-FWO bilateral project, and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 2.366
Call Number (down) UA @ lucian @ c:irua:145210 Serial 4723
Permanent link to this record
 

 
Author Van der Donck, M.; Zarenia, M.; Peeters, F.M.
Title Excitons and trions in monolayer transition metal dichalcogenides : a comparative study between the multiband model and the quadratic single-band model Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 3 Pages 035131
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic and structural properties of excitons and trions in monolayer transition metal dichalcogenides are investigated using both a multiband and a single- band model. In the multiband model we construct the excitonic Hamiltonian in the product base of the single-particle states at the conduction and valence band edges. We decouple the corresponding energy eigenvalue equation and solve the resulting differential equation self-consistently, using the finite element method (FEM), to determine the energy eigenvalues and the wave functions. As a comparison, we also consider the simple single-band model which is often used in numerical studies. We solve the energy eigenvalue equation using the FEM as well as with the stochastic variational method (SVM) in which a variational wave function is expanded in a basis of a large number of correlated Gaussians. We find good agreement between the results of both methods, as well as with other theoretical works for excitons, and we also compare with available experimental data. For trions the agreement between both methods is not as good due to our neglect of angular correlations when using the FEM. Finally, when comparing the two models, we see that the presence of the valence bands in the mutiband model leads to differences with the single- band model when (interband) interactions are strong.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000405706600005 Publication Date 2017-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access
Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD. ; Approved Most recent IF: 3.836
Call Number (down) UA @ lucian @ c:irua:145209 Serial 4716
Permanent link to this record
 

 
Author Vets, C.; Neyts, E.C.
Title Stabilities of bimetallic nanoparticles for chirality-selective carbon nanotube growth and the effect of carbon interstitials Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 28 Pages 15430-15436
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Bimetallic nanoparticles play a crucial role in various applications. A better understanding of their properties would facilitate these applications and possibly even enable chirality-specific growth of carbon nanotubes (CNTs). We here examine the stabilities of NiFe, NiGa, and FeGa nanoparticles and the effect of carbon dissolved in NiFe nanoparticles through density functional theory (DFT) calculations and Born Oppenheimer molecular dynamics (BOMD) simulations. We establish that nanoparticles with more Fe in the core and more Ga on the surface are more stable and compare these results with well-known properties such as surface energy and atom size. Furthermore, we find that the nanoparticles become more stable with increasing carbon content, both at 0 K and at 700 K. These results provide a basis for further research into the chirality-specific growth of CNT's.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000406355700050 Publication Date 2017-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 4.536
Call Number (down) UA @ lucian @ c:irua:145206 Serial 4725
Permanent link to this record
 

 
Author Zhou, Y.; Ramaneti, R.; Anaya, J.; Korneychuk, S.; Derluyn, J.; Sun, H.; Pomeroy, J.; Verbeeck, J.; Haenen, K.; Kuball, M.
Title Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 111 Issue 4 Pages 041901
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline diamond (PCD) was grown onto high-k dielectric passivated AlGaN/GaN-on-Si high electron mobility transistor (HEMT) structures, with film thicknesses ranging from 155 to 1000 nm. Transient thermoreflectance results were combined with device thermal simulations to investigate the heat spreading benefit of the diamond layer. The observed thermal conductivity (k(Dia)) of PCD films is one-to-two orders of magnitude lower than that of bulk PCD and exhibits a strong layer thickness dependence, which is attributed to the grain size evolution. The films exhibit a weak temperature dependence of k(Dia) in the measured 25-225 degrees C range. Device simulation using the experimental jDia and thermal boundary resistance values predicts at best a 15% reduction in peak temperature when the source-drain opening of a passivated AlGaN/GaN-on-Si HEMT is overgrown with PCD. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000406779700008 Publication Date 2017-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 78 Open Access Not_Open_Access
Notes ; The authors are grateful to Professor Michael Uren and Dr. Roland B. Simon (University of Bristol) for helpful discussions and to Dr. Sien Drijkoningen (Hasselt University) for taking the SEM micrographs. This work was in part supported by DARPA under Contract No. FA8650-15-C-7517, monitored by Dr. Avram Bar Cohen and Dr. John Blevins, and supported by Dr. Joseph Maurer and Dr. Abirami Sivananthan. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA. Y.Z. acknowledges China Scholarship Council for the financial support. S.K. and J.V. acknowledge the FWO-Vlaanderen for financial support under contract G.0044.13N “Charge ordering.” ; Approved Most recent IF: 3.411
Call Number (down) UA @ lucian @ c:irua:145203 Serial 4728
Permanent link to this record
 

 
Author Milovanović, S.P.; Tadic, M.Z.; Peeters, F.M.
Title Graphene membrane as a pressure gauge Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 111 Issue 4 Pages 043101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Straining graphene results in the appearance of a pseudo-magnetic field which alters its local electronic properties. Applying a pressure difference between the two sides of the membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000406779700035 Publication Date 2017-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 11 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem program, the Erasmus+ programme, and the Serbian Ministry of Education, Science and Technological Development. ; Approved Most recent IF: 3.411
Call Number (down) UA @ lucian @ c:irua:145202 Serial 4718
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Huygh, S.; Surmenev, R.A.; Neyts, E.C.
Title Density functional theory study of interface interactions in hydroxyapatite/rutile composites for biomedical applications Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 29 Pages 15687-15695
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract To gain insight into the nature of the adhesion mechanism between hydroxyapatite (HA) and rutile (rTiO(2)), the mutual affinity between their surfaces was systematically studied using density functional theory (DFT). We calculated both bulk and surface properties of HA and rTiO(2), and explored the interfacial bonding mechanism of amorphous HA (aHA) surface onto amorphous as well as stoichiometric and nonstoichiometric crystalline rTiO(2). Formation energies of bridging and subbridging oxygen vacancies considered in the rTiO(2)(110) surface were evaluated and compared with other theoretical and experimental results. The interfacial interaction was evaluated through the work of adhesion. For the aHA/rTiO(2)(110) interfaces, the work of adhesion is found to depend strongly on the chemical environment of the rTiO(2)(110) surface. Electronic analysis indicates that the charge transfer is very small in the case of interface formation between aHA and crystalline rTiO(2)(110). In contrast, significant charge transfer occurs between aHA and amorphous rTiO(2) (aTiO(2)) slabs during the formation of the interface. Charge density difference (CDD) analysis indicates that the dominant interactions in the interface have significant covalent character, and in particular the Ti-O and Ca-O bonds. Thus, the obtained results reveal that the aHA/aTiO(2) interface shows a more preferable interaction and is thermodynamically more stable than other interfaces. These results are particularly important for improving the long-term stability of HA-based implants.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000406726200022 Publication Date 2017-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 5 Open Access Not_Open_Access
Notes Approved Most recent IF: 4.536
Call Number (down) UA @ lucian @ c:irua:145195 Serial 4715
Permanent link to this record
 

 
Author Longo, R.; Ferrarotti, M.; Garcia Sánchez, C.; Derudi, M.; Parente, A.
Title Advanced turbulence models and boundary conditions for flows around different configurations of ground-mounted buildings Type A1 Journal article
Year 2017 Publication Journal of wind engineering and industrial aerodynamics Abbreviated Journal J Wind Eng Ind Aerod
Volume 167 Issue Pages 160-182
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract When dealing with Atmospheric Boundary Layer (ABL) simulations, commercial computational fluid dynamics (CFD) acquires a strategic resonance. Thanks to its good compromise between accuracy of results and calculation time, RANS still represents a valid alternative to more resource-demanding methods. However, focusing on the models' performances in urban studies, LES generally outmatches RANS results, even if the former is at least one order of magnitude more expensive. Consequently, the present work aims to propose a variety of approaches meant to solve some of the major problems linked to RANS simulations and to further improve its accuracy in typical urban contexts. All of these models are capable of switching from an undisturbed flux formulation to a disturbed one through a local deviation or a marker function. For undisturbed flows, a comprehensive approach is adopted, solving the issue of the erroneous stream-wise gradients affecting the turbulent profiles. Around obstacles, Non-Linear Eddy-Viscosity closures are adopted, due to their prominent capability in capturing the anisotropy of turbulence. The purpose of this work is then to propose a new Building Influence Area concept and to offer more affordable alternatives to LES simulations without sacrificing a good grade of accuracy.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000405766600013 Publication Date 2017-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-6105 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.049 Times cited 9 Open Access Not_Open_Access
Notes ; ; Approved Most recent IF: 2.049
Call Number (down) UA @ lucian @ c:irua:145191 Serial 4713
Permanent link to this record
 

 
Author Ata, I.; Ben Dkhil, S.; Pfannmoeller, M.; Bals, S.; Duche, D.; Simon, J.-J.; Koganezawa, T.; Yoshimoto, N.; Videlot-Ackermann, C.; Margeat, O.; Ackermann, J.; Baeuerle, P.
Title The influence of branched alkyl side chains in A-D-A oligothiophenes on the photovoltaic performance and morphology of solution-processed bulk-heterojunction solar cells Type A1 Journal article
Year 2017 Publication Organic chemistry frontiers : an international journal of organic chemistry Abbreviated Journal Org Chem Front
Volume 4 Issue 4 Pages 1561-1573
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Besides providing sufficient solubility, branched alkyl chains also affect the film-forming and packing properties of organic semiconductors. In order to avoid steric hindrance as it is present in wide-spread alkyl chains comprising a branching point position at the C2-position, i.e., 2-ethylhexyl, the branching point can be moved away from the pi-conjugated backbone. In this report, we study the influence of the modification of the branching point position from the C2-position in 2-hexyldecylamine (1) to the C4-position in 4-hexyldecylamine (2) connected to the central dithieno[3,2-b: 2', 3'-d] pyrrole (DTP) moiety in a well-studied A-D-A oligothiophene on the optoelectronic properties and photovoltaic performance in solution- processed bulk heterojunction solar cells (BHJSCs) with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor material. Post-treatment of the photoactive layers is performed via solvent vapor annealing (SVA) in order to improve the film microstructure of the bulk heterojunction. The time evolution of nanoscale morphological changes is followed by combining scanning transmission electron microscopy with low-energy-loss spectroscopic imaging (STEM-SI), solid-state absorption spectroscopy, and two-dimensional grazing incidence X-ray diffraction (2D-GIXRD). Our results show an improvement of the photovoltaic performance that is dependent on the branching point position in the donor oligomer. Optical spacers are utilized to increase light absorption inside the co-oligomer 2-based BHJSCs leading to increased power conversion efficiencies (PCEs) of 8.2% when compared to the corresponding co-oligomer 1-based devices. A STEM-SI analysis of the respective device cross-sections of active layers containing 1 and 2 as donor materials indeed reveals significant differences in their respective active layer morphologies.
Address
Corporate Author Thesis
Publisher RSC Publishing Place of Publication London Editor
Language Wos 000406374800013 Publication Date 2017-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2052-4129 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.955 Times cited 24 Open Access OpenAccess
Notes ; We acknowledge financial support by the European Commission under the project “SUNFLOWER” (FP7-ICT-2011-7, grant number: 287594) and S.B. acknowledges the ERC Starting Grant Colouratoms (335078). ; Approved Most recent IF: 4.955
Call Number (down) UA @ lucian @ c:irua:145176UA @ admin @ c:irua:145176 Serial 4727
Permanent link to this record
 

 
Author Ghorbanfekr-Kalashami, H.; Peeters, F.M.; Novoselov, K.S.; Neek-Amal, M.
Title Spatial design and control of graphene flake motion Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 6 Pages 060101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000406860300001 Publication Date 2017-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. M.N.-A. was supported by Iran National Science Foundation (INSF). K.S.N. was supported by the EU Graphene Flagship Program, European Research Council Synergy Grant Hetero2D, the Royal Society, Engineering and Physical Research Council (UK), US Army Research Office. ; Approved Most recent IF: 3.836
Call Number (down) UA @ lucian @ c:irua:145166 Serial 4724
Permanent link to this record
 

 
Author Sevik, C.; Wallbank, J.R.; Gulseren, O.; Peeters, F.M.; Çakir, D.
Title Gate induced monolayer behavior in twisted bilayer black phosphorus Type A1 Journal article
Year 2017 Publication 2D materials Abbreviated Journal 2D Mater
Volume 4 Issue 3 Pages 035025
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90 degrees. These calculations are complemented with a simple (k) over right arrow . (p) over right arrow model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90 degrees twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90 degrees simply by changing the direction of the applied electric field. In particular, a +0.4 (-0.4) V angstrom(1) out-of-plane electric field results in a similar to 60% increase in the hole effective mass along the y (x) axis and enhances the m(y)*/m(x)* (m(x)*/m(y)*) ratio as much as by a factor of 40. Our DFT and (k) over right arrow . (p) over right arrow simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000406926600001 Publication Date 2017-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 13 Open Access
Notes ; This work was supported by the bilateral project between the The Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from TUBITAK (Grant No. 115F024), ERC Synergy grant Hetero2D and the EU Graphene Flagship Project. We also thank Vladimir Fal'ko for helpful discussions. ; Approved Most recent IF: 6.937
Call Number (down) UA @ lucian @ c:irua:145151 Serial 4717
Permanent link to this record
 

 
Author Magnus, W.; Lemmens, L.; Brosens, F.
Title Quantum canonical ensemble : a projection operator approach Type A1 Journal article
Year 2017 Publication Physica: A : theoretical and statistical physics Abbreviated Journal Physica A
Volume 482 Issue Pages 1-13
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function Z(N) and the Helmholtz free energy F-N as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 – F-N, as illustrated for a two-dimensional fermion gas. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000405885500001 Publication Date 2017-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4371 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.243 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 2.243
Call Number (down) UA @ lucian @ c:irua:145145 Serial 4722
Permanent link to this record
 

 
Author Vladimirova, S.A.; Rumyantseva, M.N.; Filatova, D.G.; Chizhov, A.S.; Khmelevsky, N.O.; Konstantinova, E.A.; Kozlovsky, V.F.; Marchevsky, A.V.; Karakulina, O.M.; Hadermann, J.; Gaskov, A.M.
Title Cobalt location in p-CoOxIn-SnO2 nanocomposites : correlation with gas sensor performances Type A1 Journal article
Year 2017 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
Volume 721 Issue Pages 249-260
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanocomposites CoOx/SnO2 based on tin oxide powders with different crystallinity have been prepared by wet chemical synthesis and characterized in detail by ICP-MS, XPS, EPR, XRD, HAADF-STEM imaging and EDX-STEM mapping. It was shown that cobalt is distributed differently between the bulk and surface of SnO2 nanocrystals, which depends on the crystallinity of the SnO2 matrix. The measurements of gas sensor properties have been carried out during exposure to CO (10 ppm), and H2S (2 ppm) in dry air. The decrease of sensor signal toward CO was attributed to high catalytic activity of Co3O4 leading to oxidation of carbon monoxide entirely on the surface of catalyst particles. The formation of a p-CoOx/n-SnO2 heterojunction results in high sensitivity of nanocomposites in H2S detection. The conductance significantly changed in the presence of H2S, which was attributed to the formation of metallic cobalt sulfide and removal of the p – n junction. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited Open Access Not_Open_Access: Available from 10.10.2019
Notes ; This work was supported by ERA-Net.Plus grant N 096 FON-SENS. EPR experiments were performed using the facilities of the Collective Use Center at the Moscow State University. ; Approved Most recent IF: 3.133
Call Number (down) UA @ lucian @ c:irua:145142 Serial 4714
Permanent link to this record
 

 
Author Bartolome, E.; Cayado, P.; Solano, E.; Mocuta, C.; Ricart, S.; Mundet, B.; Coll, M.; Gazquez, J.; Meledin, A.; Van Tendeloo, G.; Valvidares, S.M.; Herrero-Martin, J.; Gargiani, P.; Pellegrin, E.; Magen, C.; Puig, T.; Obradors, X.
Title Hybrid YBa2Cu3O7 superconducting-ferromagnetic nanocomposite thin films prepared from colloidal chemical solutions Type A1 Journal article
Year 2017 Publication Advanced Electronic Materials Abbreviated Journal Adv Electron Mater
Volume 3 Issue 7 Pages 1700037
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract High T-c superconductor-ferromagnetic heterostructures constitute an appealing playground to study the interplay between flux vortices and magnetic moments. Here, the capability of a solution-derived route to grow hybrid YBa2Cu3O7-ferromagnetic nanocomposite epitaxial thin films from preformed spinel ferrite (MFe2O4, M = Mn, Co) nanoparticles (NPs) is explored. The characterization, performed using a combination of structural and magnetic techniques, reveals the complexity of the resulting nanocomposites. Results show that during the YBCO growth process, most of the NPs evolve to ferromagnetic double-perovskite (DP) phases (YBaCu2-x-yFexCoyO5/YBaCoFeO5), while a residual fraction of preformed ferrite NPs may remain in the YBCO matrix. Magnetometry cycles reflect the presence of ferromagnetic structures associated to the DPs embedded in the superconducting films. In addition, a superparamagnetic signal that may be associated with a diluted system of ferromagnetic clusters around complex defects has been detected, as previously observed in standard YBCO films and nanocomposites. The hybrid nanocomposites described in this work will allow studying several fundamental issues like the nucleation of superconductivity and the mechanisms of magnetic vortex pinning in superconducting/ferromagnetic heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405205300010 Publication Date 2017-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-160x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.193 Times cited 7 Open Access Not_Open_Access
Notes ; The authors acknowledge financial support from Spanish Ministry of Economy and Competitiveness through the “Severo Ochoa” Programme for Centres of Excellence in R& D (SEV-2015-0496), CONSOLIDER Excellence Network (MAT2015-68994-REDC), COACHSUPENERGY project (MAT2014-51778-C21-R, cofinanced by the European Regional Development Fund), and from the Catalan Government with 2014-SGR753 and Xarmae. Some of the electron microscopy work has also been conducted in the Laboratorio de Microscopias Avanzadas (LMA) at Instituto de Nanociencia de Aragcn (INA) at the University of Zaragoza. Part of the electron microscopy work in EMAT group ( University of Antwerp) was performed within the framework of the EUROTAPES project (FP7-NMP. 2011.2.2-1 Grant No. 280432), funded by the European Union. Work at INA-LMA was supported by NanoAraCat. Research at UCM (J.S.) was supported by the ERC starting Investigator Award, Grant No. 239739 STEMOX and Juan de la Cierva Program JCI2011-09428 (MICINN-Spain). The XMCD experiments were performed at the BOREAS beamline of the ALBA Synchrotron Light Facility with the collaboration of ALBA staff. The authors would like to thank SOLEIL synchrotron for allocating beamtime and the DiffAbs beamline staff for help during the experiments. ; Approved Most recent IF: 4.193
Call Number (down) UA @ lucian @ c:irua:144852 Serial 4719
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Leenaerts, O.; Liu, X.-J.; Peeters, F.M.
Title New group-V elemental bilayers : a tunable structure model with four-, six-, and eight-atom rings Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 3 Pages 035123
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional group-V elemental materials have attracted widespread attention due to their nonzero band gap while displaying high electron mobility. Using first-principles calculations, we propose a series of new elemental bilayers with group-V elements (Bi, Sb, As). Our study reveals the dynamical stability of four-, six-, and eight-atom ring structures, demonstrating their possible coexistence in such bilayer systems. The proposed structures for Sb and As are large-gap semiconductors that are potentially interesting for applications in future nanodevices. The Bi structures have nontrivial topological properties with a direct nontrivial band gap. The nontrivial gap is shown to arise from a band inversion at the Brillouin zone center due to the strong intrinsic spin-orbit coupling in Bi atoms. Moreover, we demonstrate the possibility of tuning the properties of these materials by enhancing the ratio of six-atom rings to four-and eight-atom rings, which results in wider nontrivial band gaps and lower formation energies.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000405363900005 Publication Date 2017-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work is supported by Ministry of Science and Technology of China (MOST) (Grant No. 2016YFA0301604), National Natural Science Foundation of China (NSFC) ( No. 11574008), the Thousand-Young-Talent Program of China, and the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. ; Approved Most recent IF: 3.836
Call Number (down) UA @ lucian @ c:irua:144834 Serial 4721
Permanent link to this record
 

 
Author Lundeberg, M.B.; Gao, Y.; Asgari, R.; Tan, C.; Van Duppen, B.; Autore, M.; Alonso-Gonzalez, P.; Woessner, A.; Watanabe, K.; Taniguchi, T.; Hillenbrand, R.; Hone, J.; Polini, M.; Koppens, F.H.L.
Title Tuning quantum nonlocal effects in graphene plasmonics Type A1 Journal article
Year 2017 Publication Science Abbreviated Journal Science
Volume 357 Issue 6347 Pages 187-190
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The response of electron systems to electrodynamic fields that change rapidly in space is endowed by unique features, including an exquisite spatial nonlocality. This can reveal much about the materials' electronic structure that is invisible in standard probes that use gradually varying fields. Here, we use graphene plasmons, propagating at extremely slow velocities close to the electron Fermi velocity, to probe the nonlocal response of the graphene electron liquid. The near-field imaging experiments reveal a parameter-free match with the full quantum description of the massless Dirac electron gas, which involves three types of nonlocal quantum effects: single-particle velocity matching, interaction-enhanced Fermi velocity, and interaction-reduced compressibility. Our experimental approach can determine the full spatiotemporal response of an electron system.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000405391700042 Publication Date 2017-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 37.205 Times cited 87 Open Access
Notes ; F.H.L.K., M.P., and R.H. acknowledge support by the European Union Seventh Framework Programme under grant agreement no. 696656 Graphene Flagship. M. P. acknowledges support by Fondazione Istituto Italiano di Tecnologia. F. H. L. K. acknowledges financial support from the European Union Seventh Framework Programme under the ERC starting grant (307806, CarbonLight) and project GRASP (FP7-ICT-2013-613024-GRASP). F. H. L. K. acknowledges support from the Spanish Ministry of Economy and Competitiveness, through the “ Severo Ochoa” Programme for Centres of Excellence in R& D (SEV-2015-0522), support by Fundacio Cellex Barcelona, CERCA Programme/Generalitat de Catalunya, the Mineco grants Ramon y Cajal (RYC-2012-12281), Plan Nacional (FIS2013-47161-P and FIS2014-59639-JIN), and support from the Government of Catalonia through the SGR grant (2014-SGR-1535). R. H. acknowledges support from the Spanish Ministry of Economy and Competitiveness (national project MAT-2015-65525-R). P. A-G. acknowledges financial support from the national project FIS2014-60195-JIN and the ERC starting grant 715496, 2DNANOPTICA. K. W. and T. T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, and JSPS KAKENHI grant numbers JP26248061, JP15K21722, and JP25106006. Y. G., C. T., and J. H. acknowledge support from the U. S. Office of Naval Research N00014-13-1-0662. C. T. was supported under contract FA9550-11-C-0028 and awarded by the Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. This research used resources of the Center for Functional Nanomaterials, which is a U. S. Department of Energy Office of Science Facility at Brookhaven National Laboratory under contract no. DE-SC0012704. B. V. D. acknowledges support from the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. M. P. is extremely grateful for the financial support granted by ICFO during a visit in August 2016. This work used open source software (www. python. org, www. matplotlib. org, and www. blender. org). R. H. is cofounder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems such as the ones used in this study. All other authors declare no competing financial interests. ; Approved Most recent IF: 37.205
Call Number (down) UA @ lucian @ c:irua:144833 Serial 4730
Permanent link to this record
 

 
Author Embon, L.; Anahory, Y.; Jelić, Z.L.; Lachman, E.O.; Myasoedov, Y.; Huber, M.E.; Mikitik, G.P.; Silhanek, A.V.; Milošević, M.V.; Gurevich, A.; Zeldov, E.
Title Imaging of super-fast dynamics and flow instabilities of superconducting vortices Type A1 Journal article
Year 2017 Publication Nature communications Abbreviated Journal Nat Commun
Volume 8 Issue Pages 85
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Quantized magnetic vortices driven by electric current determine key electromagnetic properties of superconductors. While the dynamic behavior of slow vortices has been thoroughly investigated, the physics of ultrafast vortices under strong currents remains largely unexplored. Here, we use a nanoscale scanning superconducting quantum interference device to image vortices penetrating into a superconducting Pb film at rates of tens of GHz and moving with velocities of up to tens of km/s, which are not only much larger than the speed of sound but also exceed the pair-breaking speed limit of superconducting condensate. These experiments reveal formation of mesoscopic vortex channels which undergo cascades of bifurcations as the current and magnetic field increase. Our numerical simulations predict metamorphosis of fast Abrikosov vortices into mixed Abrikosov-Josephson vortices at even higher velocities. This work offers an insight into the fundamental physics of dynamic vortex states of superconductors at high current densities, crucial for many applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405900400002 Publication Date 2017-07-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 124 Open Access
Notes ; We would like to thank M.L. Rappaport for fruitful discussions and technical support. This work was supported by the US-Israel Binational Science Foundation (BSF) grant No. 2014155 and the Israel Science Foundation grant No. 132/14. A.G. was also supported by the United States Department of Energy under Grant No. DE-SC0010081. M.V.M. acknowledges support from Research Foundation-Flanders (FWO). The work of Z.L.J. and A.V.S. was partially supported by “Mandat d'Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. This work benefited from the support of COST action MP-1201. ; Approved Most recent IF: 12.124
Call Number (down) UA @ lucian @ c:irua:144832 Serial 4720
Permanent link to this record
 

 
Author Verhulst, A.S.; Verreck, D.; Smets, Q.; Kao, K.-H.; Van de Put, M.; Rooyackers, R.; Sorée, B.; Vandooren, A.; De Meyer, K.; Groeseneken, G.; Heyns, M.M.; Mocuta, A.; Collaert, N.; Thean, A.V.-Y.
Title Perspective of tunnel-FET for future low-power technology nodes Type P1 Proceeding
Year 2014 Publication 2014 Ieee International Electron Devices Meeting (iedm) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4799-8000-0 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number (down) UA @ lucian @ c:irua:144789 Serial 4679
Permanent link to this record
 

 
Author Shestakov, M.V.; Meledina, M.; Turner, S.; Baekelant, W.; Verellen, N.; Chen, X.; Hofkens, J.; Van Tendeloo, G.; Moshchalkov, V.V.
Title Luminescence of fixed site Ag nanoclusters in a simple oxyfluoride glass host and plasmon absorption of amorphous Ag nanoparticles in a complex oxyfluoride glass host Type P1 Proceeding
Year 2015 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers T2 – 8th International Conference on Photonics, Devices, and System VI, AUG 27-29, 2014, Prague, CZECH REPUBLIC Abbreviated Journal
Volume Issue Pages Unsp 94501n
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract Ag nanocluster-doped glasses have been prepared by a conventional melt-quenching method. The effect of melt temperature and dwell time on the formation of Ag nanoclusters and Ag nanoparticles in simple host oxyfluoride glasses has been studied. The increase of melt temperature and dwell time results in the dissolution of Ag nanoparticles and substantial red-shift of absorption and photoluminescence spectra of the prepared glasses. The quantum yield of the glasses is similar to 5% and does not depend on melt temperature and dwell time. The prepared glasses may be used as red phosphors or down-conversion layers for solar-cells.
Address
Corporate Author Thesis
Publisher Spie-int soc optical engineering Place of Publication Bellingham Editor
Language Wos 000349404500057 Publication Date 2015-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume 9450 Series Issue Edition
ISSN 978-1-62841-566-7 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number (down) UA @ lucian @ c:irua:144783 Serial 4668
Permanent link to this record
 

 
Author Moors, K.; Soree, B.; Tokei, Z.; Magnus, W.
Title Electron relaxation times and resistivity in metallic nanowires due to tilted grain boundary planes Type P1 Proceeding
Year 2015 Publication On Ultimate Integration On Silicon (eurosoi-ulis) Abbreviated Journal
Volume Issue Pages 201-204
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We calculate the resistivity contribution of tilted grain boundaries with varying parameters in sub-10nm diameter metallic nanowires. The results have been obtained with the Boltzmann transport equation and Fermi's golden rule, retrieving correct state-dependent relaxation times. The standard approximation schemes for the relaxation times are shown to fail when grain boundary tilt is considered. Grain boundaries tilted under the same angle or randomly tilted induce a resistivity decrease.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4799-6911-1 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number (down) UA @ lucian @ c:irua:144776 Serial 4651
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Gulseren, O.; Peeters, F.M.
Title Mo2C as a high capacity anode material: a first-principles study Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 16 Pages 6029-6035
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The adsorption and diffusion of Li, Na, K and Ca atoms on a Mo2C monolayer are systematically investigated by using first principles methods. We found that the considered metal atoms are strongly bound to the Mo2C monolayer. However, the adsorption energies of these alkali and earth alkali elements decrease as the coverage increases due to the enhanced repulsion between the metal ions. We predict a significant charge transfer from the ad-atoms to the Mo2C monolayer, which indicates clearly the cationic state of the metal atoms. The metallic character of both pristine and doped Mo2C ensures a good electronic conduction that is essential for an optimal anode material. Low migration energy barriers are predicted as small as 43 meV for Li, 19 meV for Na and 15 meV for K, which result in the very fast diffusion of these atoms on Mo2C. For Mo2C, we found a storage capacity larger than 400 mA h g(-1) by the inclusion of multilayer adsorption. Mo2C expands slightly upon deposition of Li and Na even at high concentrations, which ensures the good cyclic stability of the atomic layer. The calculated average voltage of 0.68 V for Li and 0.30 V for Na ions makes Mo2C attractive for low charging voltage applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000374790700033 Publication Date 2016-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 202 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C. S. acknowledges the support from Turkish Academy of Sciences (TUBA-GEBIP). C. S acknowledges the support from Anadolu University (Grant No. 1407F335). We acknowledge the support from TUBITAK, The Scientific and Technological Research Council of Turkey (Grant No. 115F024). ; Approved Most recent IF: 8.867
Call Number (down) UA @ lucian @ c:irua:144763 Serial 4669
Permanent link to this record
 

 
Author Sankaran, K.J.; Duc Quang Hoang; Korneychuk, S.; Kunuku, S.; Thomas, J.P.; Pobedinskas, P.; Drijkoningen, S.; Van Bael, M.K.; D'Haen, J.; Verbeeck, J.; Leou, K.-C.; Leung, K.T.; Lin, I.-N.; Haenen, K.
Title Hierarchical hexagonal boron nitride nanowall-diamond nanorod heterostructures with enhanced optoelectronic performance Type A1 Journal article
Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 6 Issue 93 Pages 90338-90346
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A superior field electron emission (FEE) source made from a hierarchical heterostructure, where two-dimensional hexagonal boron nitride (hBN) nanowalls were coated on one-dimensional diamond nanorods (DNRs), is fabricated using a simple and scalable method. FEE characteristics of hBN-DNR display a low turn-on field of 6.0 V mu m(-1), a high field enhancement factor of 5870 and a high life-time stability of 435 min. Such an enhancement in the FEE properties of hBN-DNR derives from the distinctive material combination, i.e., high aspect ratio of the heterostructure, good electron transport from the DNR to the hBN nanowalls and efficient field emission of electrons from the hBN nanowalls. The prospective application of these heterostructures is further evidenced by enhanced microplasma devices using hBN-DNR as a cathode, in which the threshold voltage was lowered to 350 V, affirming the role of hBN-DNR in the improvement of electron emission.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385451800044 Publication Date 2016-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 8 Open Access
Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Projects G.0456.12 and G.0044.13N, the Methusalem “NANO” network. KJ Sankaran, and P Pobedinskas are Postdoctoral Fellows of the Research Foundation-Flanders (FWO). Approved Most recent IF: 3.108
Call Number (down) UA @ lucian @ c:irua:144757UA @ admin @ c:irua:144757 Serial 4662
Permanent link to this record
 

 
Author Van Eynde, E.; Hu, Z.-Y.; Tytgat, T.; Verbruggen, S.W.; Watte, J.; Van Tendeloo, G.; Van Driessche, I.; Blust, R.; Lenaerts, S.
Title Diatom silica-titania photocatalysts for air purification by bio-accumulation of different titanium sources Type A1 Journal article
Year 2016 Publication Environmental science : nano Abbreviated Journal Environ Sci-Nano
Volume 3 Issue 5 Pages 1052-1061
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract We present a green, biological production route for silica-titania photocatalysts using diatom microalgae. Diatoms are single-celled, eukaryotic microalgae (2-2000 mu m) that self-assemble soluble silicon (Si(OH)(4)) into intricate silica cell walls, called frustules. These diatom frustules are formed under ambient conditions and consist of hydrated silica with specific 3D morphologies and micro-meso or macroporosity. A remarkable characteristic of diatoms is their ability to bioaccumulate soluble titanium from cell culture medium and incorporate them into their nanostructured silica cell wall. Controlled cultivation of the diatom Pinnularia sp. on soluble titanium in a batch process resulted in the biological immobilisation of titanium dioxide in the porous 3D architecture of the frustules. Six different titanium sources are tested. The silica-titania frustules were isolated by treating the harvested Pinnularia cells with nitric acid (65%) or by high temperature treatment. Thermal annealing converted the amorphous titania into crystalline titania. The produced silica-titania material is evaluated towards photocatalytic activity for acetaldehyde (C2H4O) abatement. Frustules cultivated with TiBaldH showed the highest photocatalytic performance. Comparison of the photocatalytic activity with P25 reveals that P25 has a 4 fold higher photocatalytic activity, but when photocatalytic activity is normalized for titania content, the frustules show double activity. Further material characterization (morphology, crystallinity, surface area and elemental distribution) of the TiBaldH silica-titania frustules provides additional insight into their structure-activity relationship. These natural biosilicatitania materials have excellent properties for photocatalytic purposes, including high surface area (108 m(2) g(-1)) and good porosity, and show reliable immobilization of TiO2 in the ordered structure of the diatom frustule.
Address
Corporate Author Thesis
Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
Language Wos 000385257900011 Publication Date 2016-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2051-8153; 2051-8161 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.047 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 6.047
Call Number (down) UA @ lucian @ c:irua:144751 Serial 4644
Permanent link to this record
 

 
Author Lu, A.K.A.; Pourtois, G.; Agarwal, T.; Afzalian, A.; Radu, I.P.; Houssa, M.
Title Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study Type A1 Journal article
Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 108 Issue 4 Pages 043504
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs. (C) 2016 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000375217200061 Publication Date 2016-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 4 Open Access
Notes Approved Most recent IF: 3.411
Call Number (down) UA @ lucian @ c:irua:144750 Serial 4677
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Cahangirov, S.; Rubio, A.; Peeters, F.M.
Title Anisotropic electronic, mechanical, and optical properties of monolayer WTe2 Type A1 Journal article
Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 119 Issue 7 Pages 074307
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations, we investigate the electronic, mechanical, and optical properties of monolayer WTe2. Atomic structure and ground state properties of monolayer WTe2 (T-d phase) are anisotropic which are in contrast to similar monolayer crystals of transition metal dichalcogenides, such as MoS2, WS2, MoSe2, WSe2, and MoTe2, which crystallize in the H-phase. We find that the Poisson ratio and the in-plane stiffness is direction dependent due to the symmetry breaking induced by the dimerization of the W atoms along one of the lattice directions of the compound. Since the semimetallic behavior of the T-d phase originates from this W-W interaction (along the a crystallographic direction), tensile strain along the dimer direction leads to a semimetal to semiconductor transition after 1% strain. By solving the Bethe-Salpeter equation on top of single shot G(0)W(0) calculations, we predict that the absorption spectrum of T-d-WTe2 monolayer is strongly direction dependent and tunable by tensile strain. (C) 2016 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000375158000022 Publication Date 2016-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 62 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-V1) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. S.C. and A.R. acknowledge the financial support from the Marie Curie grant FP7-PEOPLE-2013-IEF Project No. 628876, European Research Council (ERC-2010-AdG-267374), Spanish grant (FIS2013-46159-C3-1-P), Grupos Consolidados (IT578-13), and AFOSR Grant No. FA2386-15-1-0006 AOARD 144088, H2020-NMP-2014 project MOSTOPHOS, GA No. SEP-210187476, and COST Action MP1306 (EUSpec). S.C. acknowledges the support from The Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 115F388. ; Approved Most recent IF: 2.068
Call Number (down) UA @ lucian @ c:irua:144747 Serial 4640
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Iordanidou, K.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title Functional silicene and stanene nanoribbons compared to graphene: electronic structure and transport Type A1 Journal article
Year 2016 Publication 2D materials Abbreviated Journal 2D Mater
Volume 3 Issue 1 Pages 015001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Since the advent of graphene, other 2D materials have garnered interest; notably the single element materials silicene, germanene, and stanene. Weinvestigate the ballistic current-voltage (I-V) characteristics of armchair silicene and stanene armchair nanoribbons (AXNRs with X = Si, Sn) using a combination of density functional theory and non-equilibrium Green's functions. The impact of out-of-plane electric field and in-plane uniaxial strain on the ribbon geometries, electronic structure, and (I-V)s are considered and contrasted with graphene. Since silicene and stanene are sp(2)/sp(3) buckled layers, the electronic structure can be tuned by an electric field that breaks the sublattice symmetry, an effect absent in graphene. This decreases the current by similar to 50% for Sn, since it has the largest buckling. Uniaxial straining of the ballistic channel affects the AXNR electronic structure in multiple ways: it changes the bandgap and associated effective carrier mass, and creates a local buckling distortion at the lead-channel interface which induces a interface dipole. Due to the increasing sp(3) hybridization character with increasing element mass, large reconstructions rectify the strained systems, an effect absent in sp(2) bonded graphene. This results in a smaller strain effect on the current: a decrease of 20% for Sn at 15% tensile strain compared to a similar to 75% decrease for C.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000373936300021 Publication Date 2016-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 19 Open Access
Notes Approved Most recent IF: 6.937
Call Number (down) UA @ lucian @ c:irua:144746 Serial 4658
Permanent link to this record
 

 
Author De Dobbelaere, C.; Lourdes Calzada, M.; Bretos, I.; Jimenez, R.; Ricote, J.; Hadermann, J.; Hardy, A.; Van Bael, M.K.
Title Gaining new insight into low-temperature aqueous photochemical solution deposited ferroelectric PbTiO3 films Type A1 Journal article
Year 2016 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys
Volume 174 Issue Pages 28-40
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The nature of the low-temperature photochemical assisted formation process of ferroelectric lead titanate (PbTiO3) films is studied in the present work. Films are obtained by the deposition of an aqueous solution containing citric acid based (citrato) metal ion complexes with intrinsic UV activity. This UV activity is crucial for the aqueous photochemical solution deposition (aqueous PCSD) route being used. UV irradiation enhances the early decomposition of organics and results in improved electrical properties for the crystalline oxide film, even if the film is crystallized at low temperature. GATR-FTIR shows that UV irradiation promotes the decomposition of organic precursor components, resulting in homogeneous films if applied in the right temperature window during film processing. The organic content, morphology and crystallinity of the irradiated films, achieved at different processing atmospheres and temperatures, is studied and eventually correlated to the functional behavior of the obtained films. This is an important issue, as crystalline films obtained at low temperatures often lack ferroelectric responses. In this work, the film prepared in pure oxygen at the very low temperature of 400 degrees C and after an optimized UV treatment presents a significant remanent polarization value of P-r = 8.8 mu C cm(-2). This value is attributed to the better crystallinity, the larger grain size and the reduced porosity obtained thanks to the early film crystallization effectively achieved through the UV treatment in oxygen. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000373865700005 Publication Date 2016-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0254-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.084 Times cited 4 Open Access
Notes Approved Most recent IF: 2.084
Call Number (down) UA @ lucian @ c:irua:144729 Serial 4659
Permanent link to this record
 

 
Author Semkina, A.S.; Abakumov, M.A.; Abakumov, A.M.; Nukolova, N.V.; Chekhonin, V.P.
Title Relationship between the Size of Magnetic Nanoparticles and Efficiency of MRT Imaging of Cerebral Glioma in Rats Type A1 Journal article
Year 2016 Publication Bulletin of experimental biology and medicine Abbreviated Journal B Exp Biol Med+
Volume 161 Issue 2 Pages 292-295
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract BSA-coated Fe3O4 nanoparticles with different hydrodynamic diameters (36 +/- 4 and 85 +/- 10 nm) were synthesized, zeta potential and T2 relaxivity were determined, and their morphology was studied by transmission electron microscopy. Studies on rats with experimental glioma C6 showed that smaller nanoparticles more effectively accumulated in the tumor and circulated longer in brain vessels. Optimization of the hydrodynamic diameter improves the efficiency of MRT contrast agent.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000380118500022 Publication Date 2016-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0007-4888 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.456 Times cited 5 Open Access
Notes Approved Most recent IF: 0.456
Call Number (down) UA @ lucian @ c:irua:144707 Serial 4684
Permanent link to this record
 

 
Author Shen, Y.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.; Song, X.; Yu, X.; Wang, Q.; Chen, H.; Dayeh, S.A.; Wu, T.
Title Size-Induced Switching of Nanowire Growth Direction: a New Approach Toward Kinked Nanostructures Type A1 Journal article
Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 26 Issue 21 Pages 3687-3695
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Exploring self-assembled nanostructures with controllable architectures has been a central theme in nanoscience and nanotechnology because of the tantalizing perspective of directly integrating such bottom-up nanostructures into functional devices. Here, the growth of kinked single-crystal In2O3 nanostructures consisting of a nanocone base and a nanowire tip with an epitaxial and defect-free transition is demonstrated for the first time. By tailoring the growth conditions, a reliable switching of the growth direction from [111] to [110] or [112] is observed when the Au catalyst nanoparticles at the apexes of the nanocones shrink below approximate to 100 nm. The natural formation of kinked nanoarchitectures at constant growth pressures is related to the size-dependent free energy that changes for different orientations of the nanowires. The results suggest that the mechanism of forming such kinked nanocone-nanowire nanostructures in well-controlled growth environment may be universal for a wide range of functional materials.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000377597400014 Publication Date 2016-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 2 Open Access
Notes Approved Most recent IF: 12.124
Call Number (down) UA @ lucian @ c:irua:144705 Serial 4687
Permanent link to this record