toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author (down) Lubk, A.; Javon, E.; Cherkashin, N.; Reboh, S.; Gatel, C.; Hytch, M.
  Title Dynamic scattering theory for dark-field electron holography of 3D strain fields Type A1 Journal article
  Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 136 Issue Pages 42-49
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Dark-held electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. (C) 2013 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000327884700006 Publication Date 2013-07-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 18 Open Access
  Notes European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference312483 – ESTEEM2); esteem2_jra4 Approved Most recent IF: 2.843; 2014 IF: 2.436
  Call Number UA @ lucian @ c:irua:112836 Serial 766
Permanent link to this record
 

 
Author (down) Lubk, A.; Guzzinati, G.; Börrnert, F.; Verbeeck, J.
  Title Transport of intensity phase retrieval of arbitrary wave fields including vortices Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 111 Issue 17 Pages 173902-173905
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The phase problem can be considered as one of the cornerstones of quantum mechanics intimately connected to the detection process and the uncertainty relation. The latter impose fundamental limits on the manifold phase reconstruction schemes invented to date, in particular, at small magnitudes of the quantum wave. Here, we show that a rigorous solution of the transport of intensity reconstruction (TIE) scheme in terms of a linear elliptic partial differential equation for the phase provides reconstructions even in the presence of wave zeros if particular boundary conditions are given. We furthermore discuss how partial coherence hampers phase reconstruction and show that a modified version of the TIE reconstructs the curl-free current density at arbitrary (in)coherence. Our results open the way for TIE-based phase retrieval of arbitrary wave fields, eventually containing zeros such as phase vortices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000326148400006 Publication Date 2013-10-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited 40 Open Access
  Notes Esteem2; Vortex; esteem2ta ECASJO; Approved Most recent IF: 8.462; 2013 IF: 7.728
  Call Number UA @ lucian @ c:irua:111093 Serial 3726
Permanent link to this record
 

 
Author (down) Lubk, A.; Clark, L.; Guzzinati, G.; Verbeeck, J.
  Title Topological analysis of paraxially scattered electron vortex beams Type A1 Journal article
  Year 2013 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
  Volume 87 Issue 3 Pages 033834-33838
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We investigate topological aspects of subnanometer electron vortex beams upon elastic propagation through atomic scattering potentials. Two main aspects can be distinguished: (i) significantly reduced delocalization compared to a similar nonvortex beam if the beam centers on an atomic column and (ii) site symmetry dependent splitting of higher-order vortex beams. Furthermore, the results provide insight into the complex vortex line fabric within the elastically scattered wave containing characteristic vortex loops predominantly attached to atomic columns and characteristic twists of vortex lines around atomic columns. DOI: 10.1103/PhysRevA.87.033834
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos 000316790600011 Publication Date 2013-03-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.925 Times cited 26 Open Access
  Notes Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2013 IF: 2.991
  Call Number UA @ lucian @ c:irua:108496 Serial 3673
Permanent link to this record
 

 
Author (down) Lubk, A.; Béché, A.; Verbeeck, J.
  Title Electron Microscopy of Probability Currents at Atomic Resolution Type A1 Journal article
  Year 2015 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 115 Issue 115 Pages 176101
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Atomic resolution transmission electron microscopy records the spatially resolved scattered electron density to infer positions, density, and species of atoms. These data are indispensable for studying the relation between structure and properties in solids. Here, we show how this signal can be augmented by the lateral probability current of the scattered electrons in the object plane at similar resolutions and fields of view. The currents are reconstructed from a series of three atomic resolution TEM images recorded under a slight difference of perpendicular line foci. The technique does not rely on the coherence of the electron beam and can be used to reveal electric, magnetic, and strain fields with incoherent electron beams as well as correlations in inelastic transitions, such as electron magnetic chiral dichroism.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000363023700011 Publication Date 2015-10-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited 12 Open Access
  Notes J. V. and A. B. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. The Qu-Ant- EM microscope was partly funded by the Hercules fund from the Flemish Government. All authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483- ESTEEM2. J. V. acknowledges funding from the FWO under Project No. G.0044.13N.; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 8.462; 2015 IF: 7.512
  Call Number c:irua:129190 c:irua:129190UA @ admin @ c:irua:129190 Serial 3954
Permanent link to this record
 

 
Author (down) Lu, Y.; Liu, Y.-X.; He, L.; Wang, L.-Y.; Liu, X.-L.; Liu, J.-W.; Li, Y.-Z.; Tian, G.; Zhao, H.; Yang, X.-H.; Liu, J.; Janiak, C.; Lenaerts, S.; Yang, X.-Y.; Su, B.-L.
  Title Interfacial co-existence of oxygen and titanium vacancies in nanostructured TiO₂ for enhancement of carrier transport Type A1 Journal article
  Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 12 Issue 15 Pages 8364-8370
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract The interfacial co-existence of oxygen and metal vacancies in metal oxide semiconductors and their highly efficient carrier transport have rarely been reported. This work reports on the co-existence of oxygen and titanium vacancies at the interface between TiO2 and rGO via a simple two-step calcination treatment. Experimental measurements show that the oxygen and titanium vacancies are formed under 550 degrees C/Ar and 350 degrees C/air calcination conditions, respectively. These oxygen and titanium vacancies significantly enhance the transport of interfacial carriers, and thus greatly improve the photocurrent performances, the apparent quantum yield, and photocatalysis such as photocatalytic H-2 production from water-splitting, photocatalytic CO2 reduction and photo-electrochemical anticorrosion of metals. A new “interfacial co-existence of oxygen and titanium vacancies” phenomenon, and its characteristics and mechanism are proposed at the atomic-/nanoscale to clarify the generation of oxygen and titanium vacancies as well as the interfacial carrier transport.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000529201500029 Publication Date 2020-02-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.7 Times cited 4 Open Access
  Notes ; This work was supported by the National Natural Science Foundation of China (51861135313, U1663225, U1662134, and 51472190), the International Science & Technology Cooperation Program of China (2015DFE52870), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), the Fundamental Research Funds for the Central Universities (19lgpy113 and 19lgzd16), the Jilin Province Science and Technology Development Plan (20180101208JC) and the Hubei Provincial Natural Science Foundation of China (2016CFA033). ; Approved Most recent IF: 6.7; 2020 IF: 7.367
  Call Number UA @ admin @ c:irua:169578 Serial 6550
Permanent link to this record
 

 
Author (down) Lu, Y.; Liu, X.-L.; He, L.; Zhang, Y.-X.; Hu, Z.-Y.; Tian, G.; Cheng, X.; Wu, S.-M.; Li, Y.-Z.; Yang, X.-H.; Wang, L.-Y.; Liu, J.-W.; Janiak, C.; Chang, G.-G.; Li, W.-H.; Van Tendeloo, G.; Yang, X.-Y.; Su, B.-L.
  Title Spatial heterojunction in nanostructured TiO₂ and its cascade effect for efficient photocatalysis Type A1 Journal article
  Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett
  Volume 20 Issue 5 Pages 3122-3129
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract A highly efficient photoenergy conversion is strongly dependent on the cumulative cascade efficiency of the photogenerated carriers. Spatial heterojunctions are critical to directed charge transfer and, thus, attractive but still a challenge. Here, a spatially ternary titanium-defected TiO2@carbon quantum dots@reduced graphene oxide (denoted as V-Ti@CQDs@rGO) in one system is shown to demonstrate a cascade effect of charges and significant performances regarding the photocurrent, the apparent quantum yield, and photocatalysis such as H-2 production from water splitting and CO2 reduction. A key aspect in the construction is the technologically irrational junction of Ti-vacancies and nanocarbons for the spatially inside-out heterojunction. The new “spatial heterojunctions” concept, characteristics, mechanism, and extension are proposed at an atomic- nanoscale to clarify the generation of rational heterojunctions as well as the cascade electron transfer.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000535255300024 Publication Date 2020-04-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 10.8 Times cited 5 Open Access Not_Open_Access
  Notes ; This work was supported by the joint National Natural Science Foundation of China-Deutsche Forschungsgemeinschaft (NSFC-DFG) project (NSFC grant 51861135313, DFG JA466/39-1), Fundamental Research Funds for the Central Universities (19lgpy113, 19lgzd16), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) and Jilin Province Science and Technology Development Plan (20180101208JC). ; Approved Most recent IF: 10.8; 2020 IF: 12.712
  Call Number UA @ admin @ c:irua:170263 Serial 6608
Permanent link to this record
 

 
Author (down) Lu, Y.; Cheng, X.; Tian, G.; Zhao, H.; He, L.; Hu, J.; Wu, S.-M.; Dong, Y.; Chang, G.-G.; Lenaerts, S.; Siffert, S.; Van Tendeloo, G.; Li, Z.-F.; Xu, L.-L.; Yang, X.-Y.; Su, B.-L.
  Title Hierarchical CdS/m-TiO 2 /G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability Type A1 Journal article
  Year 2018 Publication Nano energy Abbreviated Journal Nano Energy
  Volume 47 Issue Pages 8-17
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Hierarchical semiconductors are the most important photocatalysts, especially for visible light-induced hydrogen production from water splitting. We demonstrate herein a hierarchical electrostatic assembly approach to hierarchical CdS/m-TiO2/G ternary photocatalyst, which exhibits high photoactivity and excellent photostability (more than twice the activity of pure CdS while 82% of initial photoactivity remained after 15 recycles during 80 h irradiation). The ternary nanojunction effect of the photocatalyst has been investigated from orbitals hybrid, bonding energy to atom-stress distortion and nano-interface fusion. And a coherent separation mechanism of charge carriers in the ternary system has been proposed at an atomic/nanoscale. This work offers a promising way to inhibit the photocorrosion of CdS and, more importantly, provide new insights for the design of ternary nanostructured photocatalysts with an ideal heterojunction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000430057000002 Publication Date 2018-02-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.343 Times cited 58 Open Access Not_Open_Access
  Notes This work supported by National Key R&D Program of China (2017YFC1103800), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), National Natural Science Foundation of China (U1663225, U1662134, 51472190, 51611530672, 21711530705, 51503166, 51602236, 21706199), International Science & Technology Cooperation Program of China (2015DFE52870), Natural Science Foundation of Hubei Province (2016CFA033, 2017CFB487), Open 22 Project Program of State Key Laboratory of Petroleum Pollution Control (PPC2016007) CNPC Research Institute of Safety and Environmental Technology., China Postdoctoral Science Foundation (2016M592400), Fundamental Research Funds for the Central Universities (WUT: 2017IVB012). Approved Most recent IF: 12.343
  Call Number EMAT @ lucian @c:irua:150720 Serial 4925
Permanent link to this record
 

 
Author (down) Lu, Y.-G.; Verbeeck, J.; Turner, S.; Hardy, A.; Janssens, S.D.; De Dobbelaere, C.; Wagner, P.; Van Bael, M.K.; Van Tendeloo, G.
  Title Analytical TEM study of CVD diamond growth on TiO2 sol-gel layers Type A1 Journal article
  Year 2012 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
  Volume 23 Issue Pages 93-99
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The early growth stages of chemical vapor deposition (CVD) diamond on a solgel TiO2 film with buried ultra dispersed diamond seeds (UDD) have been studied. In order to investigate the diamond growth mechanism and understand the role of the TiO2 layer in the growth process, high resolution transmission electron microscopy (HRTEM), energy-filtered TEM and electron energy loss spectroscopy (EELS) techniques were applied to cross sectional diamond film samples. We find evidence for the formation of TiC crystallites inside the TiO2 layer at different diamond growth stages. However, there is no evidence that diamond nucleation starts from these crystallites. Carbon diffusion into the TiO2 layer and the chemical bonding state of carbon (sp2/sp3) were both extensively investigated. We provide evidence that carbon diffuses through the TiO2 layer and that the diamond seeds partially convert to amorphous carbon during growth. This carbon diffusion and diamond to amorphous carbon conversion make the seed areas below the TiO2 layer grow and bend the TiO2 layer upwards to form the nucleation center of the diamond film. In some of the protuberances a core of diamond seed remains, covered by amorphous carbon. It is however unlikely that the remaining seeds are still active during the growth process.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000302887600017 Publication Date 2012-01-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.561 Times cited 16 Open Access
  Notes Iap; Esteem 026019; Fwo Approved Most recent IF: 2.561; 2012 IF: 1.709
  Call Number UA @ lucian @ c:irua:95037UA @ admin @ c:irua:95037 Serial 111
Permanent link to this record
 

 
Author (down) Lu, Y.-G.; Turner, S.; Verbeeck, J.; Janssens, S.D.; Wagner, P.; Haenen, K.; Van Tendeloo, G.
  Title Direct visualization of boron dopant distribution and coordination in individual chemical vapor deposition nanocrystalline B-doped diamond grains Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 101 Issue 4 Pages 041907
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The boron dopant distribution in individual heavily boron-doped nanocrystalline diamond film grains, with sizes ranging from 100 to 350nm in diameter, has been studied using a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy. Using these tools, the boron distribution and local boron coordination have been determined. Quantification results reveal embedding of B dopants in the diamond lattice, and a preferential enrichment of boron at defective areas and twin boundaries. Coordination mapping reveals a distinct difference in coordination of the B dopants in “pristine” diamond areas and in defective regions. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738885]
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000306944700030 Publication Date 2012-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 59 Open Access
  Notes This work was performed within the framework of an IAP P6/42 project of the Belgian government. The authors acknowledge financial support from the Fund for Scientific Research Flanders (FWO) under Contract No. G.0568.10N. The authors acknowledge support from the European Union under a Contract from an Integrated Infrastructure Initiative (Reference 262348 ESMI), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). G.V.T. and J.V. acknowledge the ERC Grant N246791-COUNTATOMS and ERC Starting Grant 278510 VORTEX. S.T. gratefully acknowledges financial support from the FWO. The microscope used in this study was partially financed by the Hercules Foundation of the Flemish Government. ECASJO_; Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:100468UA @ admin @ c:irua:100468 Serial 726
Permanent link to this record
 

 
Author (down) Lu, Y.-G.; Turner, S.; Verbeeck, J.; Janssens, S.D.; Haenen, K.; Van Tendeloo, G.
  Title Local bond length variations in boron-doped nanocrystalline diamond measured by spatially resolved electron energy-loss spectroscopy Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 103 Issue 3 Pages 032105-5
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Variations in local bond length and coordination in boron-doped nanocrystalline diamond (NCD) films have been studied through changes in the fine structure of boron and carbon K-edges in electron energy-loss spectra, acquired in a scanning transmission electron microscope. The presence of high concentrations of B in pristine diamond regions and enrichment of B at defects in single NCD grains is demonstrated. Local bond length variations are evidenced through an energy shift of the carbon 1s → σ* edge at B-rich defective regions within single diamond grains, indicating an expansion of the diamond bond length at sites with local high B content.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000322146300049 Publication Date 2013-07-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 15 Open Access
  Notes Iap P6/42; Fwo G056810n; 262348 Esmi; 246791 Countatoms; 278510 Vortex; Fwo ECASJO_; Approved Most recent IF: 3.411; 2013 IF: 3.515
  Call Number UA @ lucian @ c:irua:109210UA @ admin @ c:irua:109210 Serial 1824
Permanent link to this record
 

 
Author (down) Lu, Y.-G.; Turner, S.; Ekimov, E.A.; Verbeeck, J.; Van Tendeloo, G.
  Title Boron-rich inclusions and boron distribution in HPHT polycrystalline superconducting diamond Type A1 Journal article
  Year 2015 Publication Carbon Abbreviated Journal Carbon
  Volume 86 Issue 86 Pages 156-162
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Polycrystalline boron-doped superconducting diamond, synthesized at high pressure and high temperature (HPHT) via a reaction of a single piece of crystalline boron with monolithic graphite, has been investigated by analytical transmission electron microscopy. The local boron distribution and boron environment have been studied by a combination of (scanning) transmission electron microscopy ((S)TEM) and spatially resolved electron energy-loss spectroscopy (EELS). High resolution TEM imaging and EELS elemental mapping have established, for the first time, the presence of largely crystalline diamond-diamond grain boundaries within the material and have evidenced the presence of substitutional boron dopants within individual diamond grains. Confirmation of the presence of substitutional B dopants has been obtained through comparison of acquired boron K-edge EELS fine structures with known references. This confirmation is important to understand the origin of superconductivity in polycrystalline B-doped diamond. In addition to the substitutional boron doping, boron-rich inclusions and triple-points, both amorphous and crystalline, with chemical compositions close to boron carbide B4C, are evidenced. (C) 2015 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000352922700019 Publication Date 2015-01-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.337 Times cited 20 Open Access
  Notes FWO; 246791 COUNTATOMS; 278510 VORTEX; Hercules ECASJO_; Approved Most recent IF: 6.337; 2015 IF: 6.196
  Call Number c:irua:125994UA @ admin @ c:irua:125994 Serial 250
Permanent link to this record
 

 
Author (down) Lu, Y.
  Title Electron energy-loss spectroscopy (EELS) characterization of diamond and related materials Type Doctoral thesis
  Year 2013 Publication Abbreviated Journal
  Volume Issue Pages
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Antwerpen Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:111231 Serial 932
Permanent link to this record
 

 
Author (down) Lu, X.P.; Bruggeman, P.J.; Reuter, S.; Naidis, G.; Bogaerts, A.; Laroussi, M.; Keidar, M.; Robert, E.; Pouvesle, J.-M.; Liu, D.W.; Ostrikov, K.(K.)
  Title Grand challenges in low temperature plasmas Type A1 Journal article
  Year 2022 Publication Frontiers in physics Abbreviated Journal
  Volume 10 Issue Pages 1040658-12
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Low temperature plasmas (LTPs) enable to create a highly reactive environment at near ambient temperatures due to the energetic electrons with typical kinetic energies in the range of 1 to 10 eV (1 eV = 11600K), which are being used in applications ranging from plasma etching of electronic chips and additive manufacturing to plasma-assisted combustion. LTPs are at the core of many advanced technologies. Without LTPs, many of the conveniences of modern society would simply not exist. New applications of LTPs are continuously being proposed. Researchers are facing many grand challenges before these new applications can be translated to practice. In this paper, we will discuss the challenges being faced in the field of LTPs, in particular for atmospheric pressure plasmas, with a focus on health, energy and sustainability.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000878212000001 Publication Date 2022-10-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2296-424x ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.1 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 3.1
  Call Number UA @ admin @ c:irua:192173 Serial 7267
Permanent link to this record
 

 
Author (down) Lu, W.; Cui, W.; Zhao, W.; Lin, W.; Liu, C.; Van Tendeloo, G.; Sang, X.; Zhao, W.; Zhang, Q.
  Title In situ atomistic insight into magnetic metal diffusion across Bi0.5Sb1.5Te3 quintuple layers Type A1 Journal article
  Year 2022 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
  Volume Issue Pages 2102161
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Diffusion and occupancy of magnetic atoms in van der Waals (VDW) layered materials have significant impact on applications such as energy storage, thermoelectrics, catalysis, and topological phenomena. However, due to the weak VDW bonding, most research focus on in-plane diffusion within the VDW gap, while out-of-plane diffusion has rarely been reported. Here, to investigate out-of-plane diffusion in VDW-layered Bi2Te3-based alloys, a Ni/Bi0.5Sb1.5Te3 heterointerface is synthesized by depositing magnetic Ni metal on a mechanically exfoliated Bi0.5Sb1.5Te3 (0001) substrate. Diffusion of Ni atoms across the Bi0.5Sb1.5Te3 quintuple layers is directly observed at elevated temperatures using spherical-aberration-corrected scanning transmission electron microscopy (STEM). Density functional theory calculations demonstrate that the diffusion energy barrier of Ni atoms is only 0.31-0.45 eV when they diffuse through Te-3(Bi, Sb)(3) octahedron chains. Atomic-resolution in situ STEM reveals that the distortion of the Te-3(Bi, Sb)(3) octahedron, induced by the Ni occupancy, drives the formation of coherent NiM (M = Bi, Sb, Te) at the heterointerfaces. This work can lead to new strategies to design novel thermoelectric and topological materials by introducing magnetic dopants to VDW-layered materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000751742300001 Publication Date 2022-02-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.4 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 5.4
  Call Number UA @ admin @ c:irua:186421 Serial 6960
Permanent link to this record
 

 
Author (down) Lu, Q.
  Title Precipitation behavior and heat resistance properties of Al-Cu-Mg-Ag-(Si) alloy Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal
  Volume Issue Pages VIII, 212 p.
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract With the rapid increase in the speed of new-generation aerospace vehicles, conventional heat-resistant aluminum alloys cannot meet the long-term service of the equipment. Therefore, the development of new high-strength heat-resistant aluminum alloys is of great strategic for the sustainable and high-quality development of industries. Al-Cu-Mg-Ag alloy is an age-hardenable heat-resistant aluminum alloy and has high strength and heat resistance. The addition of alloying elements such as Si and Sc to Al-Cu-Mg-Ag alloy introduces a competitive relationship among the σ-Al5Cu6Mg2, θ′-Al2Cu, and Ω phases. Therefore, a systematic investigation of precipitation behavior and heat resistance of Al-Cu-Mg-Ag-(Si) is essential for guiding the design of high-strength heat-resistant aluminum alloys. Combined characterization testing methods such as scanning electron microscopy, transmission electron microscopy, atom probe tomography, microhardness testing, and tensile testing with simulation calculation methods such as calculation of phase diagram, first-principles calculations, and Ab initio molecular dynamics, the effects of heat treatment processes and element content on the precipitation behavior, mechanical properties, and heat resistance of Al-Cu-Mg-Ag-(Si) alloys were systematically investigated. Furthermore, a multiple interface segregation structure was constructed at the θ′/Al interface, and a new Al-Cu-Mg-Ag-Si-Sc alloy with synergistically improved strength and heat resistance was developed. The main conclusions are as follows: (1) Based on the Kampmann-Wagner-Numerical theory, the relationship between the coarsening rate of the Ω phase and the aging process was analyzed, revealing for the first time that the critical size of Ω phase ( ) under thermal exposure temperature was the key factor determining the coarsening rate of Ω phase during long time thermal exposure heat treatment. After artificial ageing, when the size of Ω phase was smaller than the critical size , the dissolution of smaller Ω phase leaded to a rapid decrease in the number density of Ω phases, thereby reducing the heat resistance of the alloy. When the size of Ω phase was greater than or equal to the critical size , the coarsening rate of Ω phase was consistent, but a larger initial size would result in a larger final size after long-term thermal exposure. Therefore, the closer the size of Ω phase in the alloy is to the critical size under heat exposure temperature, the better the heat resistance of the alloy. (2) A concept of constructing a multiple interface segregation structure at the precipitate/matrix interface was proposed, and based on this concept, a multiple interface segregation structure containing the C/L-AlMgSiCu interfacial phase, newly discovered χ-AgMg interfacial phase, and Sc segregation layer was successfully constructed at the θ′/Al interface. The existence of the multiple interface segregation structure ensured that the designed Al-Cu-Mg-Ag-Si-Sc alloy maintains a yield strength of 400 MPa after thermal exposure at 200 C for 100 h, with a strength retention rate of 97%, creating a new record for the synergistic improvement of strength and heat resistance in aluminum alloys. In addition, combining transmission electron microscopy ex-situ/in-situ characterization with first-principles calculations, it is shown that the χ-AgMg interface phase will be destroyed due to the diffusion of the outer Ag layer during thermal exposure, and gradually dissolve into the matrix, but it can still delay the coarsening behavior of θ′-Al2Cu phase. (3) The criteria for determining whether Ω phase can precipitate are updated in Al-Cu-Mg-Ag-Si alloys with low Mg/Si ratio based on phase diagram thermodynamic calculations and multi-scale structural characterization. When W(Mg)/W(Si) > 1.4 and X(Ag)/X(Mgexcess) > 1, Ω phase can precipitate in Al-Cu-Mg-Ag-Si alloys, where X(Mgexcess) represents the atomic percentage of residual Mg elements after the formation of the AlMgSiCu quaternary precipitate phase C/L phase in the supersaturated solid solution, and the W(Mg) is the mass fraction of Mg in the supersaturated solid solution before artificial ageing. (4) The effects of alloy element content on precipitation behavior and heat resistance of Al-Cu-Mg-Ag-Si alloys were systematically analyzed. Critical conditions for the precipitation of σ-Al5Cu6Mg2 and Ω phase in Al-Cu-Mg-Ag-Si alloys are revealed. Based on calculation of phase diagram results, the conditions for precipitating σ-Al5Cu6Mg2 phase in the alloy are: ① W(Mg)/W(Si) > 1.8; ② W(Cu) > 2.7W(Mg) – 5W(Si). When W(Mg)/W(Si) < 1.8, the alloy is mainly precipitated with C/L/Q′-AlMgSiCu. When W(Cu) < 2.7W(Mg) – 5W(Si), the alloy will generate GPB zone. In addition, W(Ag)/W(Si) > 4 is the critical condition which the Ω phase can the main precipitates in Al-Cu-Mg-Ag-Si alloys. Furthermore, the correlation between precipitate types and heat resistance was summarized, showing that Al-Cu-Mg-Ag-(Si) alloys with Ω phase as the main strengthening phase are more suitable for the preparation of structures with short service time but high temperature, while Al-Cu-Mg-Ag-(Si) alloys with low Mg content and multiple segregation structures are more suitable for structures requiring long-term service at medium to high temperatures. This study, for the first time, combines calculation of phase diagram with multi-scale microstructure characterization, systematically unraveling the effects of element content on precipitation behavior, strength, and heat resistance of Al-Cu-Mg-Ag-(Si) alloys. In addition, a concept of constructing a multiple interface segregation structure at the precipitate/matrix interface was proposed to synergistically improve alloy strength and heat resistance. This work provides theoretical guidance for optimizing the composition and processing of Al-Cu-Mg-Ag-(Si) alloy and regulating the microstructure. Furthermore, it also offers new ideas and theoretical guidance for the development of novel high-strength heat-resistant alloys in other systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:206180 Serial 9167
Permanent link to this record
 

 
Author (down) Lu, J.B.; Shi, H.; Sedlakova-Ignacova, S.; Espinoza, R.; Kopeček, J.; Sittner, P.; Bártová, B.; Schryvers, D.
  Title Microstructure and precipitates in annealed Co38Ni33Al29 ferromagnetic shape memory alloy Type A1 Journal article
  Year 2013 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
  Volume 572 Issue Pages 5-10
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Transmission electron microscopy was performed to investigate the microstructure and precipitates in the annealed Co38Ni33Al29 ferromagnetic shape memory alloy. Apart from the dendritic secondary phase in the austenite matrix, micron-sized (up to 100 μm) fcc-based precipitates with partial γ′ L12 ordering and containing none, one or three {1 1 1}p parallel twin planes were found. The orientation relationship between the precipitates and matrix was found to be KurdjumovSachs. STEMEDX analysis indicates that twinned and non-twinned precipitates are Co-rich and Al- and Ni-deficient with respect to the matrix and with a lower Co/Al ratio for the latter. The 3D morphologies of precipitates were reconstructed with focused ion beam/scanning electron microscope dual-beam slice-and-view imaging, showing that the single {1 1 1}p plane twinned precipitates have a plate-like shape while the non-twinned precipitates are lath-like and often bent.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000319209600002 Publication Date 2013-04-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.133 Times cited 10 Open Access
  Notes Approved Most recent IF: 3.133; 2013 IF: 2.726
  Call Number UA @ lucian @ c:irua:107914 Serial 2058
Permanent link to this record
 

 
Author (down) Lu, J.B.; Schryvers, D.
  Title Microstructure and phase composition characterization in a Co38Ni33Al29 ferromagnetic shape memory alloy Type A1 Journal article
  Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 118 Issue 118 Pages 9-13
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Transmission electron microscopy was performed to investigate the microstructures of a secondary phase and its surrounding matrix in a Co38Ni33Al29 ferromagnetic shape memory alloy. The secondary phase shows a γ′ L12 structure exhibiting a dendritic morphology with enclosed B2 austenite regions while the matrix shows the L10 martensitic structure. A secondary phase-austenite-martensite sandwich structure with residual austenite ranging from several hundred nanometers to several micrometers wide is observed at the secondary phase-martensite interface due to the depletion of Co and enrichment of Al in the chemical gradient zone and the effect of the strong martensitic start temperature dependency of the element concentrations. The crystallographic orientation relationship of the secondary phase and the B2 austenite fits the Kurdjumov-Sachs relationship.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000383292000002 Publication Date 2016-05-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.714 Times cited 3 Open Access
  Notes J.B. Lu thanks the Belgian Science Ministry (Belspo) for support of his post-doctoral research stay at EMAT. We thank S. Sedlakova-Ignacova from the Institute of Physics in Prague, Czech Republic, for providing samples. Approved Most recent IF: 2.714
  Call Number c:irua:133100 Serial 4071
Permanent link to this record
 

 
Author (down) Lu, J.; Roeffaers, M.B.J.; Bartholomeeusen, E.; Sels, B.F.; Schryvers, D.
  Title Intergrowth of components and ramps in coffin-shaped ZSM-5 zeolite crystals unraveled by focused ion beam-assisted transmission electron microscopy Type A1 Journal article
  Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
  Volume 20 Issue 1 Pages 42-49
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Scanning electron microscopy, focused ion beam (FIB), and transmission electron microscopy are combined to study the intergrowth of 90 degrees rotational components and of ramps in coffin-shaped ZSM-5 crystals. The 90 degrees rotational boundaries with local zig-zag features between different intergrowth components are observed in the main part of crystal. Also a new kind of displacement boundary is described. At the displacement boundary there is a shift of the unit cells along the boundary without a change in orientation. Based on lamellae prepared with FIB from different positions of the ramps and crystal, the orientation relationships between ramps and the main part of the crystal are studied and the three-dimensional morphology and growth mechanism of the ramp are illustrated.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge, Mass. Editor
  Language Wos 000335378400006 Publication Date 2013-11-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.891 Times cited 7 Open Access
  Notes Approved Most recent IF: 1.891; 2014 IF: 1.877
  Call Number UA @ lucian @ c:irua:117688 Serial 1697
Permanent link to this record
 

 
Author (down) Lu, J.; Martinez, G.T.; Van Aert, S.; Schryvers, D.
  Title Lattice deformations in quasi-dynamic strain glass visualised and quantified by aberration corrected electron microscopy Type A1 Journal article
  Year 2014 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
  Volume 251 Issue 10 Pages 2034-2040
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Advanced transmission electron microscopy and statistical parameter estimated quantification procedures were applied to study the room temperature quasi-dynamical strain glass state in NiTi alloys. Nanosized strain pockets are visualised and the displacements of the atom columns are quantified. A comparison is made with conventional high-resolution transmission electron microscopy images of point defect induced strains in NiAl alloys.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Berlin Editor
  Language Wos 000344360000009 Publication Date 2014-03-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.674 Times cited 2 Open Access
  Notes Fwo Approved Most recent IF: 1.674; 2014 IF: 1.489
  Call Number UA @ lucian @ c:irua:120471 Serial 1801
Permanent link to this record
 

 
Author (down) Lu, J.; Bartholomeeusen, E.; Sels, B.F.; Schryvers, D.
  Title Internal architecture of coffin-shaped ZSM-5 zeolite crystals with hourglass contrast unravelled by focused ion beam-assisted transmission electron microscopy: INTERNAL ARCHITECTURE OF COFFIN-SHAPED Type A1 Journal article
  Year 2017 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford
  Volume 265 Issue 265 Pages 27-33
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Optical microscopy, focused ion beam and transmission electron microscopy are combined to study the internal architecture in a coffin-shaped ZSM-5 crystal showing an hourglass contrast in optical microscopy. Based on parallel lamellas from different positions in the crystal, the orientation relationships between the intergrowth components of the crystal are studied and the internal architecture and growth mechanism are illustrated. The crystal is found to contain two pyramid-like components aside from a central component. Both pyramid-like components are rotated by 90 degrees along the common c-axis and with respect to the central component while the interfaces between the components show local zig-zag feature, the latter indicating variations in relative growth velocity of the two components. The pyramid-like intergrowth components are larger and come closer to one another in the middle of the crystal than at the edges, but they do not connect. A model of multisite nucleation and growth of 90 degrees intergrowth components is proposed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000392487400004 Publication Date 2016-08-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-2720 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.692 Times cited 4 Open Access OpenAccess
  Notes Fonds Wetenschappelijk Onderzoek, G.0603.10N ; Approved Most recent IF: 1.692
  Call Number EMAT @ emat @ c:irua:141015 Serial 4437
Permanent link to this record
 

 
Author (down) Lu, A.K.A.; Pourtois, G.; Luisier, M.; Radu, I.P.; Houssa, M.
  Title On the electrostatic control achieved in transistors based on multilayered MoS2 : a first-principles study Type A1 Journal article
  Year 2017 Publication Journal of applied physics Abbreviated Journal
  Volume 121 Issue 4 Pages 044505
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this work, the electrostatic control in metal-oxide-semiconductor field-effect transistors based on MoS2 is studied, with respect to the number of MoS2 layers in the channel and to the equivalent oxide thickness of the gate dielectric, using first-principles calculations combined with a quantum transport formalism. Our simulations show that a compromise exists between the drive current and the electrostatic control on the channel. When increasing the number of MoS2 layers, a degradation of the device performances in terms of subthreshold swing and OFF currents arises due to the screening of the MoS2 layers constituting the transistor channel. Published by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000393480100030 Publication Date 2017-01-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:152673 Serial 8329
Permanent link to this record
 

 
Author (down) Lu, A.K.A.; Pourtois, G.; Agarwal, T.; Afzalian, A.; Radu, I.P.; Houssa, M.
  Title Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study Type A1 Journal article
  Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 108 Issue 4 Pages 043504
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs. (C) 2016 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000375217200061 Publication Date 2016-01-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 4 Open Access
  Notes Approved Most recent IF: 3.411
  Call Number UA @ lucian @ c:irua:144750 Serial 4677
Permanent link to this record
 

 
Author (down) Lu, A.K.A.; Houssa, M.; Radu, I.P.; Pourtois, G.
  Title Toward an understanding of the electric field-induced electrostatic doping in van der Waals heterostructures : a first-principles study Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
  Volume 9 Issue 8 Pages 7725-7734
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Since the discovery of graphene, a broad range of two-dimensional (2D) materials has captured the attention of the scientific communities. Materials, such as hexagonal boron nitride (hBN) and the transition metal dichalcogenides (TMDs) family, have shown promising semiconducting and insulating properties that are very appealing for the semiconductor industry. Recently, the possibility of taking advantage of the properties of 2D-based heterostructures has been investigated for low-power nanoelectronic applications. In this work, we aim at evaluating the relation between the nature of the materials used in such heterostructures and the amplitude of the layer-to-layer charge transfer induced by an external electric field, as is typically present in nanoelectronic gated devices. A broad range of combinations of TMDs, graphene, and hBN has been investigated using density functional theory. Our results show that the electric field induced charge transfer strongly depends on the nature of the 2D materials used in the van der Waals heterostructures and to a lesser extent on the relative orientation of the materials in the structure. Our findings contribute to the building of the fundamental understanding required to engineer electrostatically the doping of 2D materials and to establish the factors that drive the charge transfer mechanisms in electron tunneling-based devices. These are key ingredients for the development of 2D -based nanoelectronic devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000395494200119 Publication Date 2017-02-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.504 Times cited 10 Open Access Not_Open_Access
  Notes Approved Most recent IF: 7.504
  Call Number UA @ lucian @ c:irua:142483 Serial 4696
Permanent link to this record
 

 
Author (down) Lu, A.K.A.; Houssa, M.; Luisier, M.; Pourtois, G.
  Title Impact of layer alignment on the behavior of MoS2-ZrS2 tunnel field-effect transistors : an ab initio study Type A1 Journal article
  Year 2017 Publication Physical review applied Abbreviated Journal Phys Rev Appl
  Volume 8 Issue 3 Pages 034017
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Tunnel field-effect transistors based on van der Waals heterostructures are emerging device concepts for low-power applications, auguring sub-60 mV/dec subthreshold swing values. In these devices, the channel is built from a stack of several different two-dimensional materials whose nature allows tailoring the band alignments and enables a good electrostatic control of the device. In this work, we propose a theoretical study of the variability of the performances of a MoS2-ZrS2 tunnel field-effect transistor induced by fluctuations of the relative position or the orientation of the layers. Our results indicate that although a steep subthreshold slope (20 mV/dec) is achievable, fluctuations in the relative orientation of the ZrS2 layer with respect to the MoS2 one lead to a significant variability in the tunneling current by about one decade. This arises from changes in the orbital overlap between the layers and from the modulation of the transport direction.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication College Park, Md Editor
  Language Wos 000411460400001 Publication Date 2017-09-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.808 Times cited 6 Open Access OpenAccess
  Notes Approved Most recent IF: 4.808
  Call Number UA @ lucian @ c:irua:146741 Serial 4785
Permanent link to this record
 

 
Author (down) Long, Y.; Wang, X.; Zhang, H.; Wang, K.; Ong, W.-L.; Bogaerts, A.; Li, K.; Lu, C.; Li, X.; Yan, J.; Tu, X.; Zhang, H.
  Title Plasma chemical looping : unlocking high-efficiency CO₂ conversion to clean CO at mild temperatures Type A1 Journal article
  Year 2024 Publication JACS Au Abbreviated Journal
  Volume Issue Pages
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We propose a plasma chemical looping CO2 splitting (PCLCS) approach that enables highly efficient CO2 conversion into O-2-free CO at mild temperatures. PCLCS achieves an impressive 84% CO2 conversion and a 1.3 mmol g(-1) CO yield, with no O-2 detected. Crucially, this strategy significantly lowers the temperature required for conventional chemical looping processes from 650 to 1000 degrees C to only 320 degrees C, demonstrating a robust synergy between plasma and the Ce0.7Zr0.3O2 oxygen carrier (OC). Systematic experiments and density functional theory (DFT) calculations unveil the pivotal role of plasma in activating and partially decomposing CO2, yielding a mixture of CO, O-2/O, and electronically/vibrationally excited CO2*. Notably, these excited CO2* species then efficiently decompose over the oxygen vacancies of the OCs, with a substantially reduced activation barrier (0.86 eV) compared to ground-state CO2 (1.63 eV), contributing to the synergy. This work offers a promising and energy-efficient pathway for producing O-2-free CO from inert CO2 through the tailored interplay of plasma and OCs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001225139200001 Publication Date 2024-05-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:205970 Serial 9166
Permanent link to this record
 

 
Author (down) Lizin, S.; Van Passel, S.; De Schepper, E.; Maes, W.; Lutsen, L.; Manca, J.; Vanderzande, D.
  Title Life cycle analyses of organic photovoltaics : a review Type A1 Journal article
  Year 2013 Publication Energy & Environmental Science Abbreviated Journal Energ Environ Sci
  Volume 6 Issue 11 Pages 3136-3149
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
  Abstract This paper reviews the available life cycle analysis (LCA) literature on organic photovoltaics (OPVs). This branch of OPV research has focused on the environmental impact of single-junction bulk heterojunction polymer solar cells using a P3HT/PC60BM active layer blend processed on semi-industrial pilot lines in ambient surroundings. The environmental impact was found to be strongly decreasing through continuous innovation of the manufacturing procedures. The current top performing cell regarding environmental performance has a cumulative energy demand of 37.58 MJp m(-2) and an energy payback time in the order of months for cells having 2% efficiency, thereby rendering OPV cells one of the best performing PV technologies from an environmental point of view. Nevertheless, we find that LCA literature is lagging behind on the main body of OPV literature due to the lack of readily available input data. Still, LCA research has led us to believe that in the quest for higher efficiencies, environmental sustainability is being disregarded on the materials' side. Hence, we advise the scientific community to take the progress made on environmental sustainability aspects of OPV preparations into account not only because standard procedures put a bigger strain on the environment, but also because these methods may not be transferrable to an industrial process. Consequently, we recommend policy makers to subsidize research that bridges the gaps between fundamental materials research, stability, and scalability given that these constraints have to be fulfilled simultaneously if OPVs are ever to be successful on the market. Additionally, environmental sustainability will have to keep on being monitored to steer future developments in the right direction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000325946400002 Publication Date 2013-10-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 29.518 Times cited 124 Open Access
  Notes ; The authors are much obliged to both the INTERREG ORGAN-EXT project and FP7 MOLESOL project for their financial support, without which it would have been impossible to conduct this research. ; Approved Most recent IF: 29.518; 2013 IF: 15.490
  Call Number UA @ admin @ c:irua:127548 Serial 6223
Permanent link to this record
 

 
Author (down) Li, Y.; Zhang, X.; Shen, L.; Luo, J.; Tao, X.; Liu, F.; Xu, G.; Wang, Y.; Geise, H.J.; Van Tendeloo, G.
  Title Controlling the diameters in large-scale synthesis of single-walled carbon nanotubes by catalytic decomposition of CH4 Type A1 Journal article
  Year 2004 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
  Volume 398 Issue 1-3 Pages 276-282
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract High-quality single-walled carbon nanotubes (SWNTs) are synthesized in gram amount on Fe-Mo/MgO catalysts by catalytic decomposition of CH4 in H-2 or N-2. Raman data reveal that the as-prepared SATNTs have a diameter of about 0.74-1.29 nm. It is found that the diameter of the as-prepared SWNTs can be controlled mainly by adjusting the molar ratio of Fe-Mo versus the MgO support. Several other factors that potentially influence the growth of SWNTs have been studied in detail. The experimental results show that the nature of the catalyst determines the diameter of the as-prepared SWNTs. (C) 2004 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000224720300050 Publication Date 2004-10-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.815 Times cited 45 Open Access
  Notes Approved Most recent IF: 1.815; 2004 IF: 2.438
  Call Number UA @ lucian @ c:irua:103720 Serial 507
Permanent link to this record
 

 
Author (down) Li, S.; Liu, C.; Bogaerts, A.; Gallucci, F.
  Title Editorial: Special issue on CO2 utilization with plasma technology Type Editorial
  Year 2022 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util
  Volume 61 Issue Pages 102017
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma technology has advanced significantly in recent years, with application ranging from chemical conversion, to surface treatment, material development and several other fields. Special attention has been paid to the development of possible novel approaches for the conversion of chemicals in a more sustainable way. Plasma technology offers advantages over thermochemical routes such as high process versatility, mild reaction condition, one-step synthesis, fast reaction and instant control. More importantly, it can be easily combined with elec­tricity generated from various renewable sources and is suitable for energy storage via the conversion of intermittent renewable energy into carbon-neutral fuels or other chemicals. In recent years, there has been a growing interest in the development of plasma technology for CO2 uti­lization. Investigation on different reactions such as CO2 splitting, dry reforming of methane (DRM) and CO2 hydrogenation with different types of plasma reactors and catalysts have been reported by researchers worldwide. Although technological maturity still needs to be increased, the potential of plasma has been well-recognized by the scientific community and industry. More research output in the future is expected as a result of intensive research activities and various kinds of invest­ment. In this context, we present this special issue on CO2 utilization with plasma technology, which collects 22 articles, covering topics in related areas such as plasma reactor design, plasma catalysis, plasmamaterial interaction, modeling and new ideas for possible applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000798071200005 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record
  Impact Factor 7.7 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 7.7
  Call Number PLASMANT @ plasmant @c:irua:188287 Serial 7058
Permanent link to this record
 

 
Author (down) Li, L.L.; Gillen, R.; Palummo, M.; Milošević, M.V.; Peeters, F.M.
  Title Strain tunable interlayer and intralayer excitons in vertically stacked MoSe₂/WSe₂ heterobilayers Type A1 Journal article
  Year 2023 Publication Applied physics letters Abbreviated Journal
  Volume 123 Issue 3 Pages 033102-33106
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Recently, interlayer and intralayer excitons in transition metal dichalcogenide heterobilayers have been studied both experimentally and theoretically. In spite of a growing interest, these layer-resolved excitons in the presence of external stimuli, such as strain, remain not fully understood. Here, using density-functional theory calculations with many-body effects, we explore the excitonic properties of vertically stacked MoSe2/WSe2 heterobilayer in the presence of in-plane biaxial strain of up to 5%. We calculate the strain dependence of exciton absorption spectrum, oscillator strength, wave function, and binding energy by solving the Bethe-Salpeter equation on top of the standard GW approach. We identify the interlayer and intralayer excitons by analyzing their electron-hole weights and spatial wave functions. We show that with the increase in strain magnitude, the absorption spectrum of the interlayer and intralayer excitons is red-shifted and re-ordered, and the binding energies of these layer-resolved excitons decrease monotonically and almost linearly. We derive the sensitivity of exciton binding energy to the applied strain and find that the intralayer excitons are more sensitive to strain than the interlayer excitons. For instance, a sensitivity of -7.9 meV/% is derived for the intra-MoSe2-layer excitons, which is followed by -7.4 meV/% for the intra-WSe2-layer excitons, and by -4.2 meV/% for the interlayer excitons. Our results indicate that interlayer and intralayer excitons in vertically stacked MoSe2/WSe2 heterobilayer are efficiently tunable by in-plane biaxial strain.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001033604700003 Publication Date 2023-07-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4 Times cited 2 Open Access OpenAccess
  Notes Approved Most recent IF: 4; 2023 IF: 3.411
  Call Number UA @ admin @ c:irua:198382 Serial 8823
Permanent link to this record
 

 
Author (down) Li, K.; Idrissi, H.; Sha, G.; Song, M.; Lu, J.; Shi, H.; Wang, W.; Ringer, S.P.; Du, Y.; Schryvers, D.
  Title Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys Type A1 Journal article
  Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 118 Issue 118 Pages 352-362
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cut by the foil surface. The method can be performed on a regular foil specimen with a modem LaB6 or field-emission-gun transmission electron microscope. Precisions around +/- 16% have been obtained for precipitate volume fractions of needle-like beta ''/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is dose to that directly obtained using 3DAP analysis by a misfit of 45%, and the estimated precision for number density measurement is about +/- 11%. The limitations of the method are also discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000383292000042 Publication Date 2016-06-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.714 Times cited 9 Open Access
  Notes This work is financially supported by National Natural Science Foundation of China (51501230 and 51531009) and Postdoctoral Science Foundation of Central South University (502042057). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21 and FWO project G.0576.09N. Approved Most recent IF: 2.714
  Call Number EMAT @ emat @ c:irua:137171 Serial 4334
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: