|   | 
Details
   web
Records
Author (down) Zhang, X.B.; Van Tendeloo, G.; van Landuyt, J.; van Dyck, D.; Briers, J.; Bao, Y.; Geise, H.J.
Title An electron microscopic study of highly oriented undoped and FeCl3-doped poly (p-phenylenevinylene) Type A1 Journal article
Year 1996 Publication Macromolecules Abbreviated Journal Macromolecules
Volume 29 Issue 5 Pages 1554-1561
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos A1996TY13900024 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0024-9297;1520-5835; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.8 Times cited 10 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15452 Serial 939
Permanent link to this record
 

 
Author (down) Xu, Q.; Zandbergen, H.W.; van Dyck, D.
Title Applying an information transmission approach to extract valence electron information from reconstructed exit waves Type A1 Journal article
Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 7 Pages 912-919
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The knowledge of the valence electron distribution is essential for understanding the properties of materials. However this information is difficult to obtain from HREM images because it is easily obscured by the large scattering contribution of core electrons and by the strong dynamical scattering process. In order to develop a sensitive method to extract the information of valence electrons, we have used an information transmission approach to describe the electron interaction with the object. The scattered electron wave is decomposed in a set of basic functions, which are the eigen functions of the Hamiltonian of the projected electrostatic object potential. Each basic function behaves as a communication channel that transfers the information of the object with its own transmission characteristic. By properly combining the components of the different channels, it is possible to design a scheme to extract the information of valence electron distribution from a series of exit waves. The method is described theoretically and demonstrated by means of computer simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461000024 Publication Date 2011-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 1 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:93623 Serial 146
Permanent link to this record
 

 
Author (down) Xu, Q.; Zandbergen, H.W.; van Dyck, D.
Title Imaging from atomic structure to electronic structure Type A1 Journal article
Year 2012 Publication Micron Abbreviated Journal Micron
Volume 43 Issue 4 Pages 524-531
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract This paper discusses the possibility of retrieving the electron distribution (with highlighted valence electron distribution information) of materials from recorded HREM images. This process can be achieved by solving two inverse problems: reconstruction of the exit wave and reconstruction of the electron distribution from exit waves. The first inverse problem can be solved using a focal series reconstruction method. We show that the second inverse problem can be solved by combining a series of exit waves recorded at different thickness conditions. This process is designed based on an improved understanding of the dynamical scattering process. It also explains the fundamental difficulty of obtaining the valence electron distribution information and the basis of our solution.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000301702400005 Publication Date 2011-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record
Impact Factor 1.98 Times cited Open Access
Notes Fwo Approved Most recent IF: 1.98; 2012 IF: 1.876
Call Number UA @ lucian @ c:irua:93634 Serial 1553
Permanent link to this record
 

 
Author (down) Wang, A.; Van Aert, S.; Goos, P.; van Dyck, D.
Title Precision of three-dimensional atomic scale measurements from HRTEM images : what are the limits? Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 114 Issue Pages 20-30
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT); Vision lab
Abstract In this paper, we investigate to what extent high resolution transmission electron microscopy images can be used to measure the mass, in terms of thickness, and surface profile, corresponding to the defocus offset, of an object at the atomic scale. Therefore, we derive an expression for the statistical precision with which these object parameters can be estimated in a quantitative analysis. Evaluating this expression as a function of the microscope settings allows us to derive the optimal microscope design. Acquiring three-dimensional structure information in terms of thickness turns out to be much more difficult than obtaining two-dimensional information on the projected atom column positions. The attainable precision is found to be more strongly affected by processes influencing the image contrast, such as phonon scattering, than by the specific choice of microscope settings. For a realistic incident electron dose, it is expected that atom columns can be distinguished with single atom sensitivity up to a thickness of the order of the extinction distance. A comparable thickness limit is determined to measure surface steps of one atom. An increase of the electron dose shifts the limiting thickness upward due to an increase in the signal-to-noise ratio.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000301954300003 Publication Date 2012-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 5 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:94116 Serial 2692
Permanent link to this record
 

 
Author (down) Wang, A.; Turner, S.; Van Aert, S.; van Dyck, D.
Title An alternative approach to determine attainable resolution directly from HREM images Type A1 Journal article
Year 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 133 Issue Pages 50-61
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The concept of resolution in high-resolution electron microscopy (HREM) is the power to resolve neighboring atoms. Since the resolution is related to the width of the point spread function of the microscope, it could in principle be determined from the image of a point object. However, in electron microscopy there are no ideal point objects. The smallest object is an individual atom. If the width of an atom is much smaller than the resolution of the microscope, this atom can still be considered as a point object. As the resolution of the microscope enters the sub-Å regime, information about the microscope is strongly entangled with the information about the atoms in HREM images. Therefore, we need to find an alternative method to determine the resolution in an object-independent way. In this work we propose to use the image wave of a crystalline object in zone axis orientation. Under this condition, the atoms of a column act as small lenses so that the electron beam channels through the atom column periodically. Because of this focusing, the image wave of the column can be much more peaked than the constituting atoms and can thus be a much more sensitive probe to measure the resolution. Our approach is to use the peakiness of the image wave of the atom column to determine the resolution. We will show that the resolution can be directly linked to the total curvature of the atom column wave. Moreover, we can then directly obtain the resolution of the microscope given that the contribution from the object is known, which is related to the bounding energy of the atom. The method is applied on an experimental CaTiO3 image wave.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000324471800007 Publication Date 2013-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record
Impact Factor 2.843 Times cited Open Access
Notes FWO; Hercules; Esteem2; esteem2_jra2 Approved Most recent IF: 2.843; 2013 IF: 2.745
Call Number UA @ lucian @ c:irua:109919 Serial 90
Permanent link to this record
 

 
Author (down) Wang, A.; Chen, F.R.; Van Aert, S.; van Dyck, D.
Title Direct structure inversion from exit waves: part 1: theory and simulations Type A1 Journal article
Year 2010 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 110 Issue 5 Pages 527-534
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract In order to interpret the amplitude and phase of the exit wave in terms of mass and position of the atoms, one has to invert the dynamic scattering of the electrons in the object so as to obtain a starting structure which can then be used as a seed for further quantitative structure refinement. This is especially challenging in case of a zone axis condition when the interaction of the electrons with the atom column is very strong. Based on the channelling theory we will show that the channelling map not only yields a circle on the Argand plot but also a circular defocus curve for every column. The former gives the number of atoms in each column, while the latter provides the defocus value for each column, which reveals the surface roughness at the exit plane with single atom sensitivity.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000279065700019 Publication Date 2009-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 25 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2010 IF: 2.063
Call Number UA @ lucian @ c:irua:83691 Serial 723
Permanent link to this record
 

 
Author (down) Wang, A.; Chen, F.R.; Van Aert, S.; van Dyck, D.
Title Direct structure inversion from exit waves : part 2 : a practical example Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 116 Issue Pages 77-85
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract This paper is the second part of a two-part paper on direct structure inversion from exit waves. In the first part, a method has been proposed to quantitatively determine structure parameters with atomic resolution such as atom column positions, surface profile and the number of atoms in the atom columns. In this part, the theory will be demonstrated by means of a Au[110] exit wave reconstructed from a set of focal-series images. The procedures to analyze the experimentally reconstructed exit wave in terms of quantitative structure information are described in detail.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000304473700011 Publication Date 2012-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 8 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:96660 Serial 724
Permanent link to this record
 

 
Author (down) Wang, A.; Chen, F.R.; Van Aert, S.; van Dyck, D.
Title A method to determine the local surface profile from reconstructed exit waves Type A1 Journal article
Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 8 Pages 1352-1359
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Reconstructed exit waves are useful to quantify unknown structure parameters such as the position and composition of the atom columns at atomic scale. Existing techniques provide a complex wave in a flat plane which is close to the plane where the electrons leave the atom columns. However, due to local deviation in the flatness of the exit surface, there will be an offset between the plane of reconstruction and the actual exit of a specific atom column. Using the channelling theory, it has been shown that this defocus offset can in principle be determined atom column-by-atom column. As such, the surface roughness could be quantified at atomic scale. However, the outcome strongly depends on the initial plane of reconstruction especially in a crystalline structure. If this plane is further away from the true exit, the waves of the atom columns become delocalized and interfere mutually which strongly complicates the interpretation of the exit wave in terms of the local structure. In this paper, we will study the delocalization with defocus using the channelling theory in a more systematic way.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461100049 Publication Date 2011-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 3 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:88941 Serial 2017
Permanent link to this record
 

 
Author (down) Verbeeck, J.; van Dyck, D.; Van Tendeloo, G.
Title Energy-filtered transmission electron microscopy: an overview Type A1 Journal article
Year 2004 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 59 Issue 10/11 Pages 1529-1534
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract This paper aims to give an overview of the technique of energy-filtered transmission electron microscopy (EFTEM). It explains the basic principles of the technique and points to the relevant literature for more detailed issues. Experimental examples are given to show the power of EFTEM to study the chemical composition of nanoscale samples in materials science. Advanced EFTEM applications like imaging spectroscopy and EFTEM tomography are briefly discussed. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000224848000006 Publication Date 2004-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 37 Open Access
Notes Approved Most recent IF: 3.241; 2004 IF: 3.086
Call Number UA @ lucian @ c:irua:54869UA @ admin @ c:irua:54869 Serial 1038
Permanent link to this record
 

 
Author (down) Verbeeck, J.; van Dyck, D.; Lichte, H.; Potapov, P.; Schattschneider, P.
Title Plasmon holographic experiments: theoretical framework Type A1 Journal article
Year 2005 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 102 Issue 3 Pages 239-255
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract A theoretical framework is described to understand the results of plasmon holography experiments leading to insight in the meaning of the experimental results and pointing out directions for future experiments. The framework is based on the formalism of mutual intensity to describe how coherence is transferred through an optical system. For the inelastic interaction with the object, an expression for the volume. plasmon excitations in a free electron gas is used as a model for the behaviour of aluminium. The formalism leads to a clear graphical intuitive tool for under-standing the experiments. It becomes evident that the measured coherence is solely related to the angular distribution of the plasmon scattering in the case of bulk plasmons. After describing the framework, the special case of coherence outside a spherical particle is treated and the seemingly controversial idea of a plasmon with a limited coherence length obtained front experiments is clarified. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000226436600010 Publication Date 2004-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 43 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2005 IF: 2.490
Call Number UA @ lucian @ c:irua:57133UA @ admin @ c:irua:57133 Serial 2643
Permanent link to this record
 

 
Author (down) Van Tendeloo, G.; Schryvers, D.; van Dyck, D.; van Landuyt, J.; Amelinckx, S.
Title Up close: Center for Electron Microscopy of Materials Science at the University of Antwerp Type A1 Journal article
Year 1994 Publication MRS bulletin Abbreviated Journal Mrs Bull
Volume Issue Pages 57-59
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Pittsburgh, Pa Editor
Language Wos A1994PH66300015 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record;
Impact Factor 5.667 Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:9996 Serial 3821
Permanent link to this record
 

 
Author (down) Van Tendeloo, G.; op de Beeck, M.; De Meulenaere, P.; van Dyck, D.
Title Towards quantitative high resolution electron microscopy? Type A1 Journal article
Year 1995 Publication Institute of physics conference series Abbreviated Journal
Volume 147 Issue Pages 67-72
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The basics of the interpretation of high resolution images showing detail of the order of 0.1 nm are shortly explained here. The use of a field emission source, a CCD camera and an adapted reconstruction method for restoring the projected crystal potential (focus variation method) allows a quantitative interpretation of HREM images. Examples of partially disordered alloys and carbonate ordering in high Tc superconductors are presented.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1995BE67F00014 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-7503-0357-3; 0951-3248; 0305-2346 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:13015 Serial 3688
Permanent link to this record
 

 
Author (down) Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D.
Title Advanced electron microscopy for advanced materials Type A1 Journal article
Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 24 Issue 42 Pages 5655-5675
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab
Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000310602200001 Publication Date 2012-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 107 Open Access
Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved Most recent IF: 19.791; 2012 IF: 14.829
Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70
Permanent link to this record
 

 
Author (down) van Dyck, D.; Van Aert, S.; den Dekker, A.J.; van den Bos, A.
Title Is atomic resolution transmission electron microscopy able to resolve and refine amorphous structures? Type A1 Journal article
Year 2003 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 98 Issue Pages 27-42
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000186831500003 Publication Date 2003-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 26 Open Access
Notes Approved Most recent IF: 2.843; 2003 IF: 1.665
Call Number UA @ lucian @ c:irua:47516 Serial 1749
Permanent link to this record
 

 
Author (down) van Dyck, D.; Van Aert, S.; den Dekker, A.J.
Title Physical limits on atomic resolution Type A1 Journal article
Year 2004 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 10 Issue Pages 153-157
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000188882100022 Publication Date 2004-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 14 Open Access
Notes Approved Most recent IF: 1.891; 2004 IF: 2.389
Call Number UA @ lucian @ c:irua:47515 Serial 2616
Permanent link to this record
 

 
Author (down) van Dyck, D.; Van Aert, S.; Croitoru, M.D.
Title Obstacles on the road towards atomic resolution tomography Type A3 Journal article
Year 2005 Publication Microscoy and microanalysis Abbreviated Journal
Volume 11 Issue S2 Pages 238-239
Keywords A3 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:57129 Serial 2426
Permanent link to this record
 

 
Author (down) van Dyck, D.; Van Aert, S.; Croitoru, M.
Title Atomic resolution electron tomography: a dream? Type A1 Journal article
Year 2006 Publication International journal of materials research Abbreviated Journal Int J Mater Res
Volume 97 Issue 7 Pages 872-879
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000239916700003 Publication Date 2013-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-5282;2195-8556; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.681 Times cited 6 Open Access
Notes Approved Most recent IF: 0.681; 2006 IF: NA
Call Number UA @ lucian @ c:irua:60965 Serial 176
Permanent link to this record
 

 
Author (down) van Dyck, D.; Lobato, I.; Chen, F.-R.; Kisielowski, C.
Title Do you believe that atoms stay in place when you observe them in HREM? Type A1 Journal article
Year 2015 Publication Micron Abbreviated Journal Micron
Volume 68 Issue 68 Pages 158-163
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Recent advancements in aberration-corrected electron microscopy allow for an evaluation of unexpectedly large atom displacements beyond a resolution limit of similar to 0.5 angstrom, which are found to be dose-rate dependent in high resolution images. In this paper we outline a consistent description of the electron scattering process, which explains these unexpected phenomena. Our approach links thermal diffuse scattering to electron beam-induced object excitation and relaxation processes, which strongly contribute to the image formation process. The effect can provide an explanation for the well-known contrast mismatch (“Stobbs factor”) between image calculations and experiments. (C) 2014 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000348016500023 Publication Date 2014-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 11 Open Access
Notes Approved Most recent IF: 1.98; 2015 IF: 1.988
Call Number c:irua:123802 Serial 745
Permanent link to this record
 

 
Author (down) van Dyck, D.; Croitoru, M.D.
Title Statistical method for thickness measurement of amorphous objects Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 90 Issue 24 Pages 241911-241913
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT); Vision lab
Abstract The authors propose a nondestructive method for the determination of the thickness of an amorphous sample. This method is based on the statistics of the phase of the electron exit wave function, which depend on the number of atoms traversed by the incident electron which itself is a function of the thickness of the object. The accuracy of this method has been checked numerically by the multislice method and compared with that based on the mean inner potential. (c) 2007 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000247305400033 Publication Date 2007-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 4 Open Access
Notes Fwo Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:102671 Serial 3158
Permanent link to this record
 

 
Author (down) van den Broek, W.; Van Aert, S.; van Dyck, D.
Title Fully automated measurement of the modulation transfer function of charge-coupled devices above the Nyquist frequency Type A1 Journal article
Year 2012 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 18 Issue 2 Pages 336-342
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The charge-coupled devices used in electron microscopy are coated with a scintillating crystal that gives rise to a severe modulation transfer function (MTF). Exact knowledge of the MTF is imperative for a good correspondence between image simulation and experiment. We present a practical method to measure the MTF above the Nyquist frequency from the beam blocker's shadow image. The image processing has been fully automated and the program is made public. The method is successfully tested on three cameras with various beam blocker shapes.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000302084700011 Publication Date 2012-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 15 Open Access
Notes Fwo Approved Most recent IF: 1.891; 2012 IF: 2.495
Call Number UA @ lucian @ c:irua:96557 Serial 1297
Permanent link to this record
 

 
Author (down) van den Broek, W.; Van Aert, S.; van Dyck, D.
Title A model based atomic resolution tomographic algorithm Type A1 Journal article
Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue 12 Pages 1485-1490
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Tomography with high angular annular dark field scanning transmission electron microscopy at atomic resolution can be greatly improved if one is able to take advantage of prior knowledge. In this paper we present a reconstruction technique that explicitly takes into account the microscope parameters and the atomic nature of the projected object. This results in a more accurate estimate of the atomic positions and in a good resistance to noise. The reconstruction is a maximum likelihood estimator of the object. Moreover, the limits to the precision have been explored, allowing for a prediction of the amount of expected noise in the reconstruction for a certain experimental setup. We believe that the proposed reconstruction technique can be generalized to other tomographic experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000271840200010 Publication Date 2009-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 17 Open Access
Notes Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:78588 Serial 2097
Permanent link to this record
 

 
Author (down) van den Broek, W.; Van Aert, S.; van Dyck, D.
Title A model based reconstruction technique for depth sectioning with scanning transmission electron microscopy Type A1 Journal article
Year 2010 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 110 Issue 5 Pages 548-554
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Depth sectioning in high angular annular dark field scanning transmission electron microscopy is considered a candidate for three-dimensional characterization on the atomic scale. However at present the depth resolution is still far from the atomic level, due to strong limitations in the opening angle of the beam. In this paper we introduce a new, parameter based tomographic reconstruction algorithm that allows to make maximal use of the prior knowledge about the constituent atom types and the microscope settings, so as to retrieve the atomic positions and push the resolution to the atomic level in all three dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000279065700022 Publication Date 2009-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 16 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2010 IF: 2.063
Call Number UA @ lucian @ c:irua:83690 Serial 2104
Permanent link to this record
 

 
Author (down) van den Broek, W.; Van Aert, S.; Goos, P.; van Dyck, D.
Title Throughput maximization of particle radius measurements by balancing size and current of the electron probe Type A1 Journal article
Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 7 Pages 940-947
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT); Vision lab
Abstract In thispaperweinvestigatewhichprobesizemaximizesthethroughputwhenmeasuringtheradiusof nanoparticlesinhighangleannulardarkfieldscanningtransmissionelectronmicroscopy(HAADFSTEM). The sizeandthecorrespondingcurrentoftheelectronprobedeterminetheprecisionoftheestimateofa particlesradius.Maximizingthroughputmeansthatamaximumnumberofparticlesshouldbeimaged withinagiventimeframe,sothataprespecifiedprecisionisattained.WeshowthatBayesianstatistical experimentaldesignisaveryusefulapproachtodeterminetheoptimalprobesizeusingacertainamount of priorknowledgeaboutthesample.Thedependenceoftheoptimalprobesizeonthedetectorgeometry and thediameter,variabilityandatomicnumberoftheparticlesisinvestigated.Anexpressionforthe optimalprobesizeintheabsenceofanykindofpriorknowledgeaboutthespecimenisderivedaswell.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461000026 Publication Date 2010-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 7 Open Access
Notes Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:89657 Serial 3659
Permanent link to this record
 

 
Author (down) Van den Broek, W.; Rosenauer, A.; Van Aert, S.; Sijbers, J.; van Dyck, D.
Title A memory efficient method for fully three-dimensional object reconstruction with HAADF STEM Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 141 Issue Pages 22-31
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The conventional approach to object reconstruction through electron tomography is to reduce the three-dimensional problem to a series of independent two-dimensional slice-by-slice reconstructions. However, at atomic resolution the image of a single atom extends over many such slices and incorporating this image as prior knowledge in tomography or depth sectioning therefore requires a fully three-dimensional treatment. Unfortunately, the size of the three-dimensional projection operator scales highly unfavorably with object size and readily exceeds the available computer memory. In this paper, it is shown that for incoherent image formation the memory requirement can be reduced to the fundamental lower limit of the object size, both for tomography and depth sectioning. Furthermore, it is shown through multislice calculations that high angle annular dark field scanning transmission electron microscopy can be sufficiently incoherent for the reconstruction of single element nanocrystals, but that dynamical diffraction effects can cause classification problems if more than one element is present. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000335766600004 Publication Date 2014-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 6 Open Access
Notes ResearchFoundationFlanders(FWO;G.0393.11; G.0064.10;andG.0374.13); European Union Seventh Frame- workProgramme [FP7/2007-2013]under Grant agreement no. 312483 (ESTEEM2).; esteem2jra2; esteem2jra4 Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:117650 Serial 1992
Permanent link to this record
 

 
Author (down) van den Broek, W.; Rosenauer, A.; Goris, B.; Martinez, G.T.; Bals, S.; Van Aert, S.; van Dyck, D.
Title Correction of non-linear thickness effects in HAADF STEM electron tomography Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 116 Issue Pages 8-12
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract In materials science, high angle annular dark field scanning transmission electron microscopy is often used for tomography at the nanometer scale. In this work, it is shown that a thickness dependent, non-linear damping of the recorded intensities occurs. This results in an underestimated intensity in the interior of reconstructions of homogeneous particles, which is known as the cupping artifact. In this paper, this non-linear effect is demonstrated in experimental images taken under common conditions and is reproduced with a numerical simulation. Furthermore, an analytical derivation shows that these non-linearities can be inverted if the imaging is done quantitatively, thus preventing cupping in the reconstruction.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000304473700002 Publication Date 2012-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 67 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:96558 Serial 518
Permanent link to this record
 

 
Author (down) Van Aert, S.; Verbeeck, J.; Erni, R.; Bals, S.; Luysberg, M.; van Dyck, D.; Van Tendeloo, G.
Title Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue 10 Pages 1236-1244
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract A model-based method is proposed to relatively quantify the chemical composition of atomic columns using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. The method is based on a quantification of the total intensity of the scattered electrons for the individual atomic columns using statistical parameter estimation theory. In order to apply this theory, a model is required describing the image contrast of the HAADF STEM images. Therefore, a simple, effective incoherent model has been assumed which takes the probe intensity profile into account. The scattered intensities can then be estimated by fitting this model to an experimental HAADF STEM image. These estimates are used as a performance measure to distinguish between different atomic column types and to identify the nature of unknown columns with good accuracy and precision using statistical hypothesis testing. The reliability of the method is supported by means of simulated HAADF STEM images as well as a combination of experimental images and electron energy-loss spectra. It is experimentally shown that statistically meaningful information on the composition of individual columns can be obtained even if the difference in averaged atomic number Z is only 3. Using this method, quantitative mapping at atomic resolution using HAADF STEM images only has become possible without the need of simultaneously recorded electron energy loss spectra.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000270015200004 Publication Date 2009-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 166 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:78585UA @ admin @ c:irua:78585 Serial 2748
Permanent link to this record
 

 
Author (down) Van Aert, S.; Verbeeck, J.; Bals, S.; Erni, R.; van Dyck, D.; Van Tendeloo, G.
Title Atomic resolution mapping using quantitative high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
Year 2009 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 15 Issue S:2 Pages 464-465
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000208119100230 Publication Date 2009-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 1 Open Access
Notes Approved Most recent IF: 1.891; 2009 IF: 3.035
Call Number UA @ lucian @ c:irua:96555UA @ admin @ c:irua:96555 Serial 178
Permanent link to this record
 

 
Author (down) Van Aert, S.; van Dyck, D.; den Dekker, A.J.
Title Resolution of coherent and incoherent imaging systems reconsidered: classical criteria and a statistical alternative Type A1 Journal article
Year 2006 Publication Optics express Abbreviated Journal Opt Express
Volume 14 Issue 9 Pages 3830-3839
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000237296200013 Publication Date 2006-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 45 Open Access
Notes Fwo Approved Most recent IF: 3.307; 2006 IF: 4.009
Call Number UA @ lucian @ c:irua:58262 Serial 2883
Permanent link to this record
 

 
Author (down) Van Aert, S.; van Dyck, D.
Title Do smaller probes in a scanning transmission electron microscope result in more precise measurement of the distances between atom columns? Type A1 Journal article
Year 2001 Publication Philosophical magazine: B: physics of condensed matter: electronic, optical and magnetic properties Abbreviated Journal
Volume 81 Issue 11 Pages 1833-1846
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000172199700016 Publication Date 2007-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-2812;1463-6417; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 11 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:47519 Serial 744
Permanent link to this record
 

 
Author (down) Van Aert, S.; van den Broek, W.; Goos, P.; van Dyck, D.
Title Model-based electron microscopy : from images toward precise numbers for unknown structure parameters Type A1 Journal article
Year 2012 Publication Micron Abbreviated Journal Micron
Volume 43 Issue 4 Pages 509-515
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT); Vision lab
Abstract Statistical parameter estimation theory is proposed as a method to quantify electron microscopy images. It aims at obtaining precise and accurate values for the unknown structure parameters including, for example, atomic column positions and types. In this theory, observations are purely considered as data planes, from which structure parameters have to be determined using a parametric model describing the images. The method enables us to measure positions of atomic columns with a precision of the order of a few picometers even though the resolution of the electron microscope is one or two orders of magnitude larger. Moreover, small differences in averaged atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark field scanning transmission electron microscopy images. Finally, it is shown how to optimize the experimental design so as to attain the highest precision. As an example, the optimization of the probe size for nanoparticle radius measurements is considered. It is also shown how to quantitatively balance signal-to-noise ratio and resolution by adjusting the probe size.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000301702400003 Publication Date 2011-11-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 7 Open Access
Notes Fwo Approved Most recent IF: 1.98; 2012 IF: 1.876
Call Number UA @ lucian @ c:irua:94114 Serial 2099
Permanent link to this record