|   | 
Details
   web
Records
Author (down) Nelissen, K.; Partoens, B.; Peeters, F.M.
Title Influence of a defect particle on the structure of a classical two-dimensional cluster Type A1 Journal article
Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 69 Issue Pages 046605,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000221253000064 Publication Date 2004-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 27 Open Access
Notes Approved Most recent IF: 2.366; 2004 IF: NA
Call Number UA @ lucian @ c:irua:62443 Serial 1611
Permanent link to this record
 

 
Author (down) Nelissen, K.; Partoens, B.; Peeters, F.M.
Title Influence of an ellipsoid on the angular order in a two-dimensional cluster Type A1 Journal article
Year 2011 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 84 Issue 3 Pages 031405,1-031405,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The influence of an ellipsoid on the angular order of two-dimensional classical clusters is investigated through Brownian dynamics simulations. We found the following: (1) The presence of an ellipsoid does not influence the start of the angular melting, but reduces the rate at which the inner rings can rotate with respect to each other. (2) Even a small eccentricity of the ellipsoid leads to a stabilization of the angular order of the system. (3) Depending on the position of the ellipsoid in the cluster, a reentrant behavior in the angular order is observed before full radial melting of the cluster sets in. (4) The ellipsoid can lead to a two-step angular melting process: First, the rotation of the inner rings with respect to each other is hindered by the ellipsoid, but on further increasing the kinetic energy of the system, the ellipsoid just starts to behave as a spherical particle with different mobility. The effect of an ellipsoid on the molten system does not depend crucially on the interparticle interaction, but a softer parabolic confinement reduces the angular stabilization.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000296495000007 Publication Date 2011-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record
Impact Factor 2.366 Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and CNPq. ; Approved Most recent IF: 2.366; 2011 IF: 2.255
Call Number UA @ lucian @ c:irua:93612 Serial 1615
Permanent link to this record
 

 
Author (down) Nelissen, K.; Matulis, A.; Partoens, B.; Kong, M.; Peeters, F.M.
Title Spectrum of classical two-dimensional Coulomb clusters Type A1 Journal article
Year 2006 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 73 Issue 1 Pages 016607,1-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000235008800095 Publication Date 2006-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 33 Open Access
Notes Approved Most recent IF: 2.366; 2006 IF: 2.438
Call Number UA @ lucian @ c:irua:56611 Serial 3075
Permanent link to this record
 

 
Author (down) Munarin, F.F.; Nelissen, K.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M.
Title Hysteresis and reentrant melting of a self-organized system of classical particles confined in a parabolic trap Type A1 Journal article
Year 2008 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 77 Issue Pages 031608,1-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000254539700087 Publication Date 2008-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 11 Open Access
Notes Approved Most recent IF: 2.366; 2008 IF: 2.508
Call Number UA @ lucian @ c:irua:69640 Serial 1544
Permanent link to this record
 

 
Author (down) Morais, E.; Bogaerts, A.
Title Modelling the dynamics of hydrogen synthesis from methane in nanosecond‐pulsed plasmas Type A1 Journal article
Year 2024 Publication Plasma processes and polymers Abbreviated Journal Plasma Processes & Polymers
Volume 21 Issue 1 Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A chemical kinetics model was developed to characterise the gas‐phase dynamics of H<sub>2</sub>production in nanosecond‐pulsed CH<sub>4</sub>plasmas. Pulsed behaviour was observed in the calculated electric field, electron temperature and species densities at all pressures. The model agrees reasonably with experimental results, showing CH<sub>4</sub>conversion at 30% and C<sub>2</sub>H<sub>2</sub>and H<sub>2</sub>as major products. The underlying mechanisms in CH<sub>4</sub>dissociation and H<sub>2</sub>formation were analysed, highlighting the large contribution of vibrationally excited CH<sub>4</sub>and H<sub>2</sub>to coupling energy from the plasma into gas‐phase heating, and revealing that H<sub>2</sub>synthesis is not affected by applied pressure, with selectivity remaining unchanged at ~42% in the 1–5 bar range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001091258700001 Publication Date 2023-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.5 Times cited Open Access Not_Open_Access
Notes We gratefully acknowledge financial support by the Flemish Government through the Moonshot cSBO project “Power‐to‐Olefins” (P2O; HBC.2020.2620) and funding from the Independent Research Fund Denmark (project nr. 0217‐00231B). Approved Most recent IF: 3.5; 2024 IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:201192 Serial 8983
Permanent link to this record
 

 
Author (down) Liu, Y.H.; Chen, Z.Y.; Yu, M.Y.; Wang, L.; Bogaerts, A.
Title Structure of multispecies charged particles in a quadratic trap Type A1 Journal article
Year 2006 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 73 Issue Pages 047402,1-4
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000237146800099 Publication Date 2006-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 25 Open Access
Notes Approved Most recent IF: 2.366; 2006 IF: 2.438
Call Number UA @ lucian @ c:irua:57859 Serial 3312
Permanent link to this record
 

 
Author (down) Liu, Y.H.; Chen, Z.Y.; Yu, M.Y.; Bogaerts, A.
Title Multiple void formation in plasmas containing multispecies charged grains Type A1 Journal article
Year 2006 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 74 Issue Pages 056401,1-6
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000242408800037 Publication Date 2006-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 21 Open Access
Notes Approved Most recent IF: 2.366; 2006 IF: 2.438
Call Number UA @ lucian @ c:irua:60424 Serial 2233
Permanent link to this record
 

 
Author (down) Liu, Y.H.; Chen, Z.Y.; Huang, F.; Yu, M.Y.; Wang, L.; Bogaerts, A.
Title Simulation of disk- and band-like voids in dusty plasma systems Type A1 Journal article
Year 2006 Publication Physics of plasmas Abbreviated Journal Phys Plasmas
Volume 13 Issue Pages 052110,1-6
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Woodbury, N.Y. Editor
Language Wos 000237943000011 Publication Date 2006-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited 20 Open Access
Notes Approved Most recent IF: 2.115; 2006 IF: 2.258
Call Number UA @ lucian @ c:irua:57858 Serial 3011
Permanent link to this record
 

 
Author (down) Liu, Y.-X.; Zhang, Q.-Z.; Liu, L.; Song, Y.-H.; Bogaerts, A.; Wang, Y.-N.
Title Electron bounce resonance heating in dual-frequency capacitively coupled oxygen discharges Type A1 Journal article
Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 22 Issue 2 Pages 025012-11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The electron bounce resonance heating (BRH) in dual-frequency capacitively coupled plasmas operated in oxygen is studied by different experimental methods and a particle-in-cell/Monte Carlo collision (PIC/MCC) simulation, and compared with the electropositive argon discharge. In comparison with argon, the experimental results show that in an oxygen discharge the resonance peaks in positive-ion density and light intensity tend to occur at larger electrode gaps. Moreover, at electrode gaps L > 2.5 cm, the positive-ion (and electron) density and the light emission drop monotonically in the oxygen discharge upon increasing L, whereas they rise (after an initial drop) in the argon case. At resonance gap the electronegativity reaches its maximum due to the BRH. All these experimental observations are explained by PIC/MCC simulations, which show that in the oxygen discharge the bulk electric field becomes quite strong and is out of phase with the sheath field. Therefore, it retards the resonance electrons when traversing the bulk, resulting in a suppressed BRH. Both experiment and simulation results show that this effect becomes more pronounced at lower high-frequency power, when the discharge mode changes from electropositive to electronegative. In a pure oxygen discharge, the BRH is suppressed with increasing pressure and almost diminishes at 12 Pa. Finally, the driving frequency significantly affects the BRH, because it determines the phase relation between bulk electric field and sheath electric field.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000317275400014 Publication Date 2013-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 20 Open Access
Notes Approved Most recent IF: 3.302; 2013 IF: 3.056
Call Number UA @ lucian @ c:irua:106534 Serial 911
Permanent link to this record
 

 
Author (down) Lin, A.; Truong, B.; Fridman, G.; Friedman, A.A.; Miller, V.
Title Immune cells enhance selectivity of nanosecond-pulsed DBD plasma against tumor cells Type A1 Journal article
Year 2017 Publication Plasma medicine Abbreviated Journal
Volume 7 Issue 1 Pages 85-96
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cancer immunotherapy is a promising strategy that engages the patient's immune system to kill cancer cells selectively while sparing normal tissue. Treatment of macrophages with a nanosecond-pulsed dielectric barrier discharge directly enhanced their cytotoxic activity against tumor cells but not normal cells. These results underscore the clinical potential of plasma for cancer immunotherapy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2017-08-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:155657 Serial 8058
Permanent link to this record
 

 
Author (down) Lin, A.; Gromov, M.; Nikiforov, A.; Smits, E.; Bogaerts, A.
Title Characterization of Non-Thermal Dielectric Barrier Discharges for Plasma Medicine: From Plastic Well Plates to Skin Surfaces Type A1 Journal Article
Year 2023 Publication Plasma Chemistry and Plasma Processing Abbreviated Journal Plasma Chem Plasma Process
Volume 43 Issue 6 Pages 1587-1612
Keywords A1 Journal Article; Non-thermal plasma · Plasma medicine · Dielectric barrier discharge · Plasma diagnostics · Plasma surface interaction · In situ plasma monitoring; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract technologies have been expanding, and one of the most exciting and rapidly growing

applications is in biology and medicine. Most biomedical studies with DBD plasma systems are performed in vitro, which include cells grown on the surface of plastic well plates, or in vivo, which include animal research models (e.g. mice, pigs). Since many DBD systems use the biological target as the secondary electrode for direct plasma generation and treatment, they are sensitive to the surface properties of the target, and thus can be altered based on the in vitro or in vivo system used. This could consequently affect biological response from plasma treatment. Therefore, in this study, we investigated the DBD plasma behavior both in vitro (i.e. 96-well flat bottom plates, 96-well U-bottom plates, and 24-well flat bottom plates), and in vivo (i.e. mouse skin). Intensified charge coupled device (ICCD) imaging was performed and the plasma discharges were visually distinguishable between the different systems. The geometry of the wells did not affect DBD plasma generation for low application distances (≤ 2 mm), but differentially affected plasma uniformity on the bottom of the well at greater distances. Since DBD plasma treatment in vitro is rarely performed in dry wells for plasma medicine experiments, the effect of well wetness was also investigated. In all in vitro cases, the uniformity of the DBD plasma was affected when comparing wet versus dry wells, with the plasma in the wide-bottom wells appearing the most similar to plasma generated on mouse skin. Interestingly, based on quantification of ICCD images, the DBD plasma intensity per surface area demonstrated an exponential one-phase decay with increasing application distance, regardless of the in vitro or in vivo system. This trend is similar to that of the energy per pulse of plasma, which is used to determine the total plasma treatment energy for biological systems. Optical emission spectroscopy performed on the plasma revealed similar trends in radical species generation between the plastic well plates and mouse skin. Therefore, taken together, DBD plasma intensity per surface area may be a valuable parameter to be used as a simple method for in situ monitoring during biological treatment and active plasma treatment control, which can be applied for in vitro and in vivo systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001072607700001 Publication Date 2023-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.6 Times cited Open Access Not_Open_Access
Notes This work was partially funded by the Research Foundation—Flanders (FWO) and supported by the following Grants: 12S9221N (A. L.), G044420N (A. L. and A. B.), and G033020N (A.B.). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on “Therapeutical applications of Cold Plasmas” (CA20114; PlasTHER). Approved Most recent IF: 3.6; 2023 IF: 2.355
Call Number PLASMANT @ plasmant @c:irua:200285 Serial 8970
Permanent link to this record
 

 
Author (down) Lin, A.; Biscop, E.; Gorbanev, Y.; Smits, E.; Bogaerts, A.
Title Toward defining plasma treatment dose : the role of plasma treatment energy of pulsed‐dielectric barrier discharge in dictating in vitro biological responses Type A1 Journal article
Year 2022 Publication Plasma Processes And Polymers Abbreviated Journal Plasma Process Polym
Volume 19 Issue 3 Pages e2100151
Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The energy dependence of a pulsed-dielectric barrier discharge (DBD) plasma treatment on chemical species production and biological responses was investigated. We hypothesized that the total plasma energy delivered during treatment encompasses the influence of major application parameters. A microsecond-pulsed DBD system was used to treat three different cancer cell lines and cell viability was analyzed. The energy per pulse was measured and the total plasma treatment energy was controlled by adjusting the pulse frequency, treatment time, and application distance. Our data suggest that the delivered plasma energy plays a predominant role in stimulating a biological response in vitro. This study aids in developing steps toward defining a plasma treatment unit and treatment dose for biomedical and clinical research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000711907800001 Publication Date 2021-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.5
Call Number UA @ admin @ c:irua:182916 Serial 7219
Permanent link to this record
 

 
Author (down) Liang, Y.-S.; Xue, C.; Zhang, Y.-R.; Wang, Y.-N.
Title Investigation of active species in low-pressure capacitively coupled N-2/Ar plasmas Type A1 Journal article
Year 2021 Publication Physics Of Plasmas Abbreviated Journal Phys Plasmas
Volume 28 Issue 1 Pages 013510
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, a self-consistent fluid model is developed focusing on the plasma parameters in capacitively coupled 20% N 2-80% Ar discharges. Measurements of ion density are performed with the help of a floating double probe, and the emission intensities from Ar(4p) and N 2 ( B ) transitions are detected by an optical emission spectroscopy to estimate their relative densities. The consistency between the numerical and experimental results confirms the reliability of the simulation. Then the plasma characteristics, specifically the reaction mechanisms of active species, are analyzed under various voltages. The increasing voltage leads to a monotonous increase in species density, whereas a less homogeneous radial distribution is observed at a higher voltage. Due to the high concentration of Ar gas, Ar + becomes the main ion, followed by the N 2 +</mml:msubsup> ion. Besides the electron impact ionization of neutrals, the charge transfer processes of Ar +/ N 2 and N 2 +</mml:msubsup>/Ar are found to have an impact on the ionic species. The results indicate that adopting the lower charge transfer reaction rate coefficients weakens the Ar + ion density and yields a higher N 2 +</mml:msubsup> ion density. However, the effect on the species spatial distributions and other species densities is limited. As for the excited-state species, the electron impact excitation of background gases remains overwhelming in the formation of Ar(4p), N 2 ( B ), and N 2 ( a ' ), whereas the <mml:msub> N 2 ( A ) molecules are mainly formed by the decay of <mml:msub> N 2 ( B ). In addition, the dissociation of <mml:msub> N 2 collided by excited-state Ar atoms dominates the N generation, which are mostly depleted to produce N + ions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000629931300002 Publication Date 2021-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.115
Call Number UA @ admin @ c:irua:177669 Serial 6767
Permanent link to this record
 

 
Author (down) Leigh, S.; Doyle, S.J.; Smith, G.J.; Gibson, A.R.; Boswell, R.W.; Charles, C.; Dedrick, J.P.
Title Ionization and neutral gas heating efficiency in radio frequency electrothermal microthrusters : the role of driving frequency Type A1 Journal article
Year 2024 Publication Physics of plasmas Abbreviated Journal
Volume 31 Issue 2 Pages 023509-23513
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The development of compact, low power, charge-neutral propulsion sources is of significant recent interest due to the rising application of micro-scale satellite platforms. Among such sources, radio frequency (rf) electrothermal microthrusters present an attractive option due to their scalability, reliability, and tunable control of power coupling to the propellant. For micropropulsion applications, where available power is limited, it is of particular importance to understand how electrical power can be transferred to the propellant efficiently, a process that is underpinned by the plasma sheath dynamics. In this work, two-dimensional fluid/Monte Carlo simulations are employed to investigate the effects of applied voltage frequency on the electron, ion, and neutral heating in an rf capacitively coupled plasma microthruster operating in argon. Variations in the electron and argon ion densities and power deposition, and their consequent effect on neutral-gas heating, are investigated with relation to the phase-averaged and phase-resolved sheath dynamics for rf voltage frequencies of 6-108 MHz at 450 V. Driving voltage frequencies above 40.68 MHz exhibit enhanced volumetric ionization from bulk electrons at the expense of the ion heating efficiency. Lower driving voltage frequencies below 13.56 MHz exhibit more efficient ionization due to secondary electrons and an increasing fraction of rf power deposition into ions. Thermal efficiencies are improved by a factor of 2.5 at 6 MHz as compared to the more traditional 13.56 MHz, indicating a favorable operating regime for low power satellite applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001207449000001 Publication Date 2024-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664x ISBN Additional Links UA library record; WoS full record
Impact Factor 2.2 Times cited Open Access
Notes Approved Most recent IF: 2.2; 2024 IF: 2.115
Call Number UA @ admin @ c:irua:205506 Serial 9156
Permanent link to this record
 

 
Author (down) Laroussi, M.; Bogaerts, A.; Barekzi, N.
Title Plasma processes and polymers third special issue on plasma and cancer Type Editorial
Year 2016 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 13 Issue 13 Pages 1142-1143
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393131600001 Publication Date 2016-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 1 Open Access
Notes Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:141546 Serial 4474
Permanent link to this record
 

 
Author (down) Laroussi, M.; Bekeschus, S.; Keidar, M.; Bogaerts, A.; Fridman, A.; Lu, X.; Ostrikov, K.; Hori, M.; Stapelmann, K.; Miller, V.; Reuter, S.; Laux, C.; Mesbah, A.; Walsh, J.; Jiang, C.; Thagard, S.M.; Tanaka, H.; Liu, D.; Yan, D.; Yusupov, M.
Title Low-Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap Type A1 Journal article
Year 2022 Publication IEEE transactions on radiation and plasma medical sciences Abbreviated Journal IEEE Trans. Radiat. Plasma Med. Sci.
Volume 6 Issue 2 Pages 127-157
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma, the fourth and most pervasive state of matter in the visible universe, is a fascinating medium that is connected to the beginning of our universe itself. Man-made plasmas are at the core of many technological advances that include the fabrication of semiconductor devices, which enabled the modern computer and communication revolutions. The introduction of low temperature, atmospheric pressure plasmas to the biomedical field has ushered a new revolution in the healthcare arena that promises to introduce plasma-based therapies to combat some thorny and long-standing medical challenges. This article presents an overview of where research is at today and discusses innovative concepts and approaches to overcome present challenges and take the field to the next level. It is written by a team of experts who took an in-depth look at the various applications of plasma in hygiene, decontamination, and medicine, made critical analysis, and proposed ideas and concepts that should help the research community focus their efforts on clear and practical steps necessary to keep the field advancing for decades to come.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000750257400005 Publication Date 2021-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-7311 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Research Foundation—Flanders, 1200219N ; Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:185875 Serial 6907
Permanent link to this record
 

 
Author (down) Kozák, T.; Bogaerts, A.
Title Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 24 Issue 24 Pages 015024
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We use a zero-dimensional reaction kinetics model to simulate CO2 conversion in microwave discharges where the excitation of the vibrational levels plays a significant role in the dissociation kinetics. The model includes a description of the CO2 vibrational kinetics, taking into account state-specific VT and VV relaxation reactions and the effect of vibrational excitation on other chemical reactions. The model is used to simulate a general tubular microwave reactor, where a stream of CO2 flows through a plasma column generated by microwave radiation. We study the effects of the internal plasma parameters, namely the reduced electric field, electron density and the total specific energy input, on the CO2 conversion and its energy efficiency. We report the highest energy efficiency (up to 30%) for a specific energy input in the range 0.41.0 eV/molecule and a reduced electric field in the range 50100 Td and for high values of the electron density (an ionization degree greater than 10−5). The energy efficiency is mainly limited by the VT relaxation which contributes dominantly to the vibrational energy losses and also contributes significantly to the heating of the reacting gas. The model analysis provides useful insight into the potential and limitations of CO2 conversion in microwave discharges.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000348298200025 Publication Date 2014-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 100 Open Access
Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:122243 Serial 1087
Permanent link to this record
 

 
Author (down) Kozák, T.; Bogaerts, A.
Title Splitting of CO2 by vibrational excitation in non-equilibrium plasmas : a reaction kinetics model Type A1 Journal article
Year 2014 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 23 Issue 4 Pages 045004
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present a zero-dimensional kinetic model of CO2 splitting in non-equilibrium plasmas. The model includes a description of the CO2 vibrational kinetics (25 vibrational levels up to the dissociation limit of the molecule), taking into account state-specific VT and VV relaxation reactions and the effect of vibrational excitation on other chemical reactions. The model is applied to study the reaction kinetics of CO2 splitting in an atmospheric-pressure dielectric barrier discharge (DBD) and in a moderate-pressure microwave discharge. The model results are in qualitative agreement with published experimental works. We show that the CO2 conversion and its energy efficiency are very different in these two types of discharges, which reflects the important dissociation mechanisms involved. In the microwave discharge, excitation of the vibrational levels promotes efficient dissociation when the specific energy input is higher than a critical value (2.0 eV/molecule under the conditions examined). The calculated energy efficiency of the process has a maximum of 23%. In the DBD, vibrationally excited levels do not contribute significantly to the dissociation of CO2 and the calculated energy efficiency of the process is much lower (5%).
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000345761500014 Publication Date 2014-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 170 Open Access
Notes Approved Most recent IF: 3.302; 2014 IF: 3.591
Call Number UA @ lucian @ c:irua:117398 Serial 3108
Permanent link to this record
 

 
Author (down) Kong, M.; Vagov, A.; Partoens, B.; Peeters, F.M.; Ferreira, W.P.; Farias, G.A.
Title Nonlinear screening in large two-dimensional Coulomb clusters Type A1 Journal article
Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 70 Issue Pages 051807,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000225970500071 Publication Date 2004-11-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 4 Open Access
Notes Approved Most recent IF: 2.366; 2004 IF: NA
Call Number UA @ lucian @ c:irua:62444 Serial 2358
Permanent link to this record
 

 
Author (down) Kong, M.; Partoens, B.; Peeters, F.M.
Title Topological defects and nonhomogeneous melting of large two-dimensional Coulomb clusters Type A1 Journal article
Year 2003 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 67 Issue 2 Pages 021608,1-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000181520200051 Publication Date 2003-02-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 45 Open Access
Notes Approved Most recent IF: 2.366; 2003 IF: 2.202
Call Number UA @ lucian @ c:irua:62441 Serial 3677
Permanent link to this record
 

 
Author (down) Kong, M.; Partoens, B.; Peeters, F.M.
Title Transition between ground state and metastable states in classical two-dimensional atoms Type A1 Journal article
Year 2002 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 65 Issue 4 Pages 046602,1-13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000175146600036 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 51 Open Access
Notes Approved Most recent IF: 2.366; 2002 IF: 2.397
Call Number UA @ lucian @ c:irua:62440 Serial 3697
Permanent link to this record
 

 
Author (down) Kong, M.; Partoens, B.; Matulis, A.; Peeters, F.M.
Title Structure and spectrum of two-dimensional clusters confined in a hard wall potential Type A1 Journal article
Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 69 Issue Pages 036412,1-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000220729400077 Publication Date 2004-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 42 Open Access
Notes Approved Most recent IF: 2.366; 2004 IF: NA
Call Number UA @ lucian @ c:irua:62442 Serial 3298
Permanent link to this record
 

 
Author (down) Kong, M.; Ferreira, W.P.; Partoens, B.; Peeters, F.M.
Title Magnetic field dependence of the normal mode spectrum of a planar complex plasma cluster Type A1 Journal article
Year 2004 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci
Volume 32 Issue 2,2 Pages 569-572
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000222278400007 Publication Date 2004-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.052 Times cited 4 Open Access
Notes Approved Most recent IF: 1.052; 2004 IF: 1.042
Call Number UA @ lucian @ c:irua:62453 Serial 1871
Permanent link to this record
 

 
Author (down) Kolev, S.; Sun, S.; Trenchev, G.; Wang, W.; Wang, H.; Bogaerts, A.
Title Quasi-Neutral Modeling of Gliding Arc Plasmas: Quasi-Neutral Modeling of Gliding Arc Plasmas Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600110
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The modelling of a gliding arc discharge (GAD) is studied by means of the quasineutral (QN) plasma modelling approach. The model is first evaluated for reliability and proper description of a gliding arc discharge at atmospheric pressure, by comparing with a more elaborate non-quasineutral (NQN) plasma model in two different geometries – a 2D axisymmetric and a Cartesian geometry. The NQN model is considered as a reference, since it provides a continuous self-consistent plasma description, including the near electrode regions. In general, the results of the QN model agree very well with those obtained from the NQN model. The small differences between both models are attributed to the approximations in the derivation of the QN model. The use of the QN model provides a substantial reduction of the computation time compared to the NQN model, which is crucial for the development of more complex models in three dimensions or with complicated chemistries. The latter is illustrated for (i) a reverse vortex flow(RVF) GAD in argon, and (ii) a GAD in CO2. The RVF discharge is modelled in three dimensions and the effect of the turbulent heat transport on the plasma and gas characteristics is

discussed. The GAD model in CO2 is in a 1D geometry with axial symmetry and provides results for the time evolution of the electron, gas and vibrational temperature of CO2, as well as for the molar fractions of the different species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403074000011 Publication Date 2016-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 9 Open Access Not_Open_Access
Notes Methusalem financing of the University of Antwerp; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:142982 Serial 4570
Permanent link to this record
 

 
Author (down) Kolev, S.; Bogaerts, A.
Title A 2D model for a gliding arc discharge Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 24 Issue 24 Pages 015025
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this study we report on a 2D fluid model of a gliding arc discharge in argon. Despite the 3D nature of the discharge, 2D models are found to be capable of providing very useful information about the operation of the discharge. We employ two modelsan axisymmetric and a Cartesian one. We show that for the considered experiment and the conditions of a low current arc (around 30 mA) in argon, there is no significant heating of the cathode surface and the discharge is sustained by field electron emission from the cathode accompanied by the formation of a cathode spot. The obtained discharge power and voltage are relatively sensitive to the surface properties and particularly to the surface roughness, causing effectively an amplification of the normal electric field. The arc body and anode region are not influenced by this and depend mainly on the current value. The gliding of the arc is modelled by means of a 2D Cartesian model. The arcelectrode contact points are analysed and the gliding mechanism along the electrode surface is discussed. Following experimental observations, the cathode spot is simulated as jumping from one point to another. A complete arc cycle is modelled from initial ignition to arc decay. The results show that there is no interaction between the successive gliding arcs.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000348298200026 Publication Date 2014-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 34 Open Access
Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:122538 c:irua:122538 c:irua:122538 c:irua:122538 Serial 3
Permanent link to this record
 

 
Author (down) Kolev, S.; Bogaerts, A.
Title Similarities and differences between gliding glow and gliding arc discharges Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 24 Issue 24 Pages 065023
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work we have analyzed the properties of a gliding dc discharge in argon at atmospheric pressure. Despite the usual designation of these discharges as ‘gliding arc discharges’, it was found previously that they operate in two different regimes—glow and arc. Here we analyze the differences in both regimes by means of two dimensional fluid modeling. In order to address different aspects of the discharge operation, we use two models—Cartesian and axisymmetric in a cylindrical coordinate system. The obtained results show that the two types of discharges produce a similar plasma column for a similar discharge current. However, the different mechanisms of plasma channel attachment to the cathode could produce certain differences in the plasma parameters (i.e. arc elongation), and this can affect gas treatments applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368117100028 Publication Date 2015-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 12 Open Access
Notes This work is financially supported by the Methusalem financing and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:129214 Serial 3952
Permanent link to this record
 

 
Author (down) Kolev, S.; Bogaerts, A.
Title Three-dimensional modeling of energy transport in a gliding arc discharge in argon Type A1 Journal Article
Year 2018 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 12 Pages 125011
Keywords A1 Journal Article; gliding arc discharge, sliding arc discharge, energy transport, fluid plasma model, atmospheric pressure plasmas; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract In this work we study energy transport in a gliding arc discharge with two diverging flat

electrodes in argon gas at atmospheric pressure. The discharge is ignited at the shortest electrode

gap and it is pushed downstream by a forced gas flow. The current values considered are

relatively low and therefore a non-equilibrium plasma is produced. We consider two cases, i.e.

with high and low discharge current (28 mA and 2.8mA), and a constant gas flow of 10 lmin −1 ,

with a significant turbulent component to the velocity. The study presents an analysis of the

various energy transport mechanisms responsible for the redistribution of Joule heating to the

plasma species and the moving background gas. The objective of this work is to provide a

general understanding of the role of the different energy transport mechanisms in arc formation

and sustainment, which can be used to improve existing or new discharge designs. The work is

based on a three-dimensional numerical model, combining a fluid plasma model, the shear stress

transport Reynolds averaged Navier–Stokes turbulent gas flow model, and a model for gas

thermal balance. The obtained results show that at higher current the discharge is constricted

within a thin plasma column several hundred kelvin above room temperature, while in the low-

current discharge the combination of intense convective cooling and low Joule heating prevents

discharge contraction and the plasma column evolves to a static non-moving diffusive plasma,

continuously cooled by the flowing gas. As a result, the energy transport in the two cases is

determined by different mechanisms. At higher current and a constricted plasma column, the

plasma column is cooled mainly by turbulent transport, while at low current and an unconstricted

plasma, the major cooling mechanism is energy transport due to non-turbulent gas convection. In

general, the study also demonstrates the importance of turbulent energy transport in

redistributing the Joule heating in the arc and its significant role in arc cooling and the formation

of the gas temperature profile. In general, the turbulent energy transport lowers the average gas

temperature in the arc, thus allowing additional control of thermal non-equilibrium in the

discharge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454555600005 Publication Date 2018-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited Open Access Not_Open_Access
Notes This work was supported by the European Regional Devel- opment Fund within the Operational Programme ’Science and Education for Smart Growth 2014 – 2020’ under the Project CoE ’National center of mechatronics and clean technologies’ BG05M2OP001-1.001-0008-C01, and by the Flemish Fund for Scientific Research (FWO); grant no G.0383.16N. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:155973 Serial 5140
Permanent link to this record
 

 
Author (down) Kolev, I.; Bogaerts, A.; Gijbels, R.
Title Influence of electron recapture by the cathode upon the discharge characteristics in dc planar magnetrons Type A1 Journal article
Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 72 Issue Pages 056402,1-11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In dc magnetrons the electrons emitted from the cathode may return there due to the applied magnetic field. When that happens, they can be recaptured or reflected back into the discharge, depending on the value of the reflection coefficient (RC). A 2d3v (two-dimensional in coordinate and three-dimensional in velocity space) particle-in-cellMonte Carlo model, including an external circuit, is developed to determine the role of the electron recapture in the discharge processes. The detailed discharge structure as a function of RC for two pressures (4 and 25mtorr) is studied. The importance of electron recapture is clearly manifested, especially at low pressures. The results indicate that the discharge characteristics are dramatically changed with varying RC between 0 and 1. Thus, the electron recapture at the cathode appears to be a significant mechanism in magnetron discharges and RC a very important parameter in their correct quantitative description that should be dealt with cautiously.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000233603200089 Publication Date 2005-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 29 Open Access
Notes Approved Most recent IF: 2.366; 2005 IF: 2.418
Call Number UA @ lucian @ c:irua:54667 Serial 1621
Permanent link to this record
 

 
Author (down) Kolev, I.; Bogaerts, A.
Title Detailed numerical investigation of a DC sputter magnetron Type A1 Journal article
Year 2006 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci
Volume 34 Issue 3 Pages 886-894
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000238582700019 Publication Date 2006-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.052 Times cited 28 Open Access
Notes Approved Most recent IF: 1.052; 2006 IF: 1.144
Call Number UA @ lucian @ c:irua:58198 Serial 667
Permanent link to this record
 

 
Author (down) Kolev, I.; Bogaerts, A.
Title Numerical models of the planar magnetron glow discharges Type A1 Journal article
Year 2004 Publication Contributions to plasma physics Abbreviated Journal Contrib Plasm Phys
Volume 44 Issue 7/8 Pages 582-588
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000225541000003 Publication Date 2004-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0863-1042;1521-3986; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.44 Times cited 22 Open Access
Notes Approved Most recent IF: 1.44; 2004 IF: 0.701
Call Number UA @ lucian @ c:irua:49069 Serial 2402
Permanent link to this record