|   | 
Details
   web
Records
Author (up) Grieten, E.; Storme, P.; Caen, J.; Schalm, O.; Schryvers, D.
Title Application of atmospheric plasma-jets for the conservation of cultural heritage Type P3 Proceeding
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords P3 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:149629 Serial 7466
Permanent link to this record
 

 
Author (up) Guzzinati, G.; Altantzis, T.; Batuk, M.; De Backer, A.; Lumbeeck, G.; Samaee, V.; Batuk, D.; Idrissi, H.; Hadermann, J.; Van Aert, S.; Schryvers, D.; Verbeeck, J.; Bals, S.
Title Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp Type A1 Journal article
Year 2018 Publication Materials Abbreviated Journal Materials
Volume 11 Issue 11 Pages 1304
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000444112800041 Publication Date 2018-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.654 Times cited 15 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N AUHA13009 ; European Research Council, COLOURATOM 335078 ; Universiteit Antwerpen, GOA Solarpaint ; G. Guzzinati, T. Altantzis and A. De Backer have been supported by postdoctoral fellowship grants from the Research Foundation Flanders (FWO). Funding was also received from the European Research Council (starting grant no. COLOURATOM 335078), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 770887), the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N, G.0401.16N) and from the University of Antwerp through GOA project Solarpaint. Funding for the TopSPIN precession system under grant AUHA13009, as well as for the Qu-Ant-EM microscope, is acknowledged from the HERCULES Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: 2.654
Call Number EMAT @ emat @c:irua:153737UA @ admin @ c:irua:153737 Serial 5064
Permanent link to this record
 

 
Author (up) Hamon, A.-L.; Verbeeck, J.; Schryvers, D.; Benedikt, J.; van den Sanden, R.M.C.M.
Title ELNES study of carbon K-edge spectra of plasma deposited carbon films Type A1 Journal article
Year 2004 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 14 Issue Pages 2030-2035
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron energy loss spectroscopy was used to investigate the bonding of plasma deposited carbon films. The experimental conditions include the use of a specific collection angle for which the shape of the spectra is free of the orientation dependency usually encountered in graphite due to its anisotropic structure. The first quantification process of the energy loss near-edge structure was performed by a standard fit of the collected spectrum, corrected for background and multiple scattering, with three Gaussian functions followed by a comparison with the graphite spectrum obtained under equivalent experimental conditions. In a second approach a fitting model directly incorporating the background subtraction and multiple scattering removal was applied. The final numerical results are interpreted in view of the deposition conditions of the films and the actual fitting procedure with the related choice of parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000222312500017 Publication Date 2004-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.626 Times cited 61 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48782UA @ admin @ c:irua:48782 Serial 1025
Permanent link to this record
 

 
Author (up) Heidari, H.; Rivero, G.; Idrissi, H.; Ramachandran, D.; Cakir, S.; Egoavil, R.; Kurttepeli, M.; Crabbé, A.C.; Hauffman, T.; Terryn, H.; Du Prez, F.; Schryvers, D.
Title Melamine–Formaldehyde Microcapsules: Micro- and Nanostructural Characterization with Electron Microscopy Type A1 Journal article
Year 2016 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 22 Issue 22 Pages 1222-1232
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A systematic study has been carried out to compare the surface morphology, shell thickness, mechanical properties, and binding behavior of melamine–formaldehyde microcapsules of 5–30 μm diameter size with various amounts of core content by using scanning and transmission electron microscopy including electron tomography, in situ nanomechanical tensile testing, and electron energy-loss spectroscopy. It is found that porosities are present on the outside surface of the capsule shell, but not on the inner surface of the shell. Nanomechanical tensile tests on the capsule shells reveal that Young’s modulus of the shell material is higher than that of bulk melamine–formaldehyde and that the shells exhibit a larger fracture strain compared with the bulk. Core-loss elemental analysis of microcapsules embedded in epoxy indicates that during the curing process, the microcapsule-matrix interface remains uniform and the epoxy matrix penetrates into the surface micro-porosities of the capsule shells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393853100011 Publication Date 2016-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 2 Open Access
Notes This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The authors are also thankful to Stijn Van den Broeck and Dr. Frederic Leroux for help in sample preparation and to S. Bals and J. Verbeeck for valuable discussions. H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. Approved Most recent IF: 1.891
Call Number EMAT @ emat @ c:irua:138980 Serial 4333
Permanent link to this record
 

 
Author (up) Huq, M.Z.; Celis, J.P.; Meneve, J.; Stals, L.; Schryvers, D.
Title Oscillating sliding wear of mono- and multilayer ceramic coatings in air Type A1 Journal article
Year 1999 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech
Volume 113 Issue Pages 242-250
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000079807600007 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.589 Times cited 10 Open Access
Notes Approved Most recent IF: 2.589; 1999 IF: 1.008
Call Number UA @ lucian @ c:irua:29379 Serial 2532
Permanent link to this record
 

 
Author (up) Idrissi, H.; Amin-Ahmadi, B.; Wang, B.; Schryvers, D.
Title Review on TEM analysis of growth twins in nanocrystalline palladium thin films : toward better understanding of twin-related mechanisms in high stacking fault energy metals Type A1 Journal article
Year 2014 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 251 Issue 6 Pages 1111-1124
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Various modes of transmission electron microscopy including aberration corrected imaging were used in order to unravel the fundamental mechanisms controlling the formation of growth twins and the evolution of twin boundaries under mechanical and hydrogen loading modes in nanocrystalline (nc) palladium thin films. The latter were produced by electron-beam evaporation and sputter deposition and subjected to uniaxial tensile deformation as well as hydriding/dehydriding cycles. The results show that the twins form by dissociation of grain boundaries. The coherency of Σ3{111} coherent twin boundaries considerably decreases with deformation due to dislocation/twin boundary interactions while Σ3{112} incoherent twin boundaries dissociate under hydrogen cycling into two-phase boundaries bounding a new and unstable 9R phase. The effect of these elementary mechanisms on the macroscopic behavior of the palladium films is discussed and compared to recent experimental and simulation works in the literature. The results provide insightful information to guide the production of well-controlled population of growth twins in high stacking fault energy nc metallic thin films. The results also indicate directions for further enhancement of the mechanical properties of palladium films as needed for instance in palladium-based membranes in hydrogen applications.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000337608600001 Publication Date 2014-02-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 7 Open Access
Notes Iap P7/21; Fwo G012012n Approved Most recent IF: 1.674; 2014 IF: 1.489
Call Number UA @ lucian @ c:irua:114580 Serial 2905
Permanent link to this record
 

 
Author (up) Idrissi, H.; Béché, A.; Gauquelin, N.; Ul-Haq, I.; Bollinger, C.; Demouchy, S.; Verbeeck, J.; Pardoen, T.; Schryvers, D.; Cordier, P.
Title On the formation mechanisms of intragranular shear bands in olivine by stress-induced amorphization Type A1 Journal article
Year 2022 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 239 Issue Pages 118247-118249
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Intragranular amorphization shear lamellae are found in deformed olivine aggregates. The detailed trans-mission electron microscopy analysis of intragranular lamella arrested in the core of a grain provides novel information on the amorphization mechanism. The deformation field is complex and heteroge-neous, corresponding to a shear crack type instability involving mode I, II and III loading components. The formation and propagation of the amorphous lamella is accompanied by the formation of crystal defects ahead of the tip. These defects are geometrically necessary [001] dislocations, characteristics of high-stress deformation in olivine, and rotational nanodomains which are tentatively interpreted as disclinations. We show that these defects play an important role in dictating the path followed by the amorphous lamella. Stress-induced amorphization in olivine would thus result from a direct crystal-to -amorphous transformation associated with a shear instability and not from a mechanical destabilization due to the accumulation of high number of defects from an intense preliminary deformation. The pref-erential alignment of some lamellae along (010) is a proof of the lower ultimate mechanical strength of these planes.(c) 2022 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000861076600004 Publication Date 2022-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.4 Times cited 5 Open Access OpenAccess
Notes The QuanTEM microscope was partially funded by the Flemish government. The K2 camera was funded by FWO Hercules fund G0H4316N 'Direct electron detector for soft matter TEM'. A. Beche acknowledges funding from FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy'). H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the FNRS under Grant PDR – T011322F and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 787,198 Time Man. J-L Rouviere is acknowledged for his support with the GPA softawre. Approved Most recent IF: 9.4
Call Number UA @ admin @ c:irua:191432 Serial 7186
Permanent link to this record
 

 
Author (up) Idrissi, H.; Bollinger, C.; Boioli, F.; Schryvers, D.; Cordier, P.
Title Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing Type A1 Journal article
Year 2016 Publication Science Advances Abbreviated Journal
Volume 2 Issue 2 Pages e1501671-e1501671
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The rheology of the lithospheric mantle is fundamental to understanding how mantle convection couples with plate tectonics. However, olivine rheology at lithospheric conditions is still poorly understood because experiments are difficult in this temperature range where rocks and mineral become very brittle. We combine techniques of quantitative in situ tensile testing in a transmission electron microscope and numerical modeling of dislocation dynamics to constrain the low-temperature rheology of olivine. We find that the intrinsic ductility of olivine at low temperature is significantly lower than previously reported values, which were obtained under strain-hardened conditions. Using this method, we can anchor rheological laws determined at higher temperature and can provide a better constraint on intermediate temperatures relevant for the lithosphere. More generally, we demonstrate the possibility of characterizing the mechanical properties of specimens, which can be available in the form of submillimeter-sized particles only.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379620200043 Publication Date 2016-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 32 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:134983 Serial 4202
Permanent link to this record
 

 
Author (up) Idrissi, H.; Ghidelli, M.; Béché, A.; Turner, S.; Gravier, S.; Blandin, J.-J.; Raskin, J.-P.; Schryvers, D.; Pardoen, T.
Title Atomic-scale viscoplasticity mechanisms revealed in high ductility metallic glass films Type A1 Journal article
Year 2019 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 9 Issue 1 Pages 13426
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The fundamental plasticity mechanisms in thin freestanding Zr65Ni35 metallic glass films are investigated in order to unravel the origin of an outstanding strength/ductility balance. The deformation process is homogenous until fracture with no evidence of catastrophic shear banding. The creep/relaxation behaviour of the films was characterized by on-chip tensile testing, revealing an activation volume in the range 100–200 Å3. Advanced high-resolution transmission electron microscopy imaging and spectroscopy exhibit a very fine glassy nanostructure with well-defined dense Ni-rich clusters embedded in Zr-rich clusters of lower atomic density and a ~2–3 nm characteristic length scale. Nanobeam electron diffraction analysis reveals that the accumulation of plastic deformation at roomtemperature

correlates with monotonously increasing disruption of the local atomic order. These results provide experimental evidences of the dynamics of shear transformation zones activation in metallic glasses. The impact of the nanoscale structural heterogeneities on the mechanical properties including the rate dependent behaviour is discussed, shedding new light on the governing plasticity mechanisms in metallic glasses with initially heterogeneous atomic arrangement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000486139700008 Publication Date 2019-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited Open Access
Notes H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the FNRS under Grant PDR – T.0178.19. FWO project G093417N (‘Compressed sensing enabling low dose imaging in transmission electron microscopy’) and Hercules fund ‘Direct electron detector for soft matter TEM’ from Flemish Government are acknowledged. Approved Most recent IF: 4.259
Call Number EMAT @ emat @c:irua:162786 Serial 5375
Permanent link to this record
 

 
Author (up) Idrissi, H.; Kobler, A.; Amin-Ahmadi, B.; Coulombier, M.; Galceran, M.; Raskin, J.-P.; Godet, S.; Kuebel, C.; Pardoen, T.; Schryvers, D.
Title Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue 10 Pages 101903
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In-situ bright field transmission electron microscopy (TEM) nanomechanical tensile testing and in-situ automated crystallographic orientation mapping in TEM were combined to unravel the elementary mechanisms controlling the plasticity of ultrafine grained Aluminum freestanding thin films. The characterizations demonstrate that deformation proceeds with a transition from grain rotation to intragranular dislocation glide and starvation plasticity mechanism at about 1% deformation. The grain rotation is not affected by the character of the grain boundaries. No grain growth or twinning is detected. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000333082800022 Publication Date 2014-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 24 Open Access
Notes Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:116866 Serial 2649
Permanent link to this record
 

 
Author (up) Idrissi, H.; Renard, K.; Ryelandt, L.; Schryvers, D.; Jacques, P.J.
Title On the mechanism of twin formation in FeMnC TWIP steels Type A1 Journal article
Year 2010 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 58 Issue 7 Pages 2464-2476
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Although it is well known that FeMnC TWIP steels exhibit high work-hardening rates, the elementary twinning mechanisms controlling the plastic deformation of these steels have still not been characterized. The aim of the present study is to analyse the extended defects related to the twinning occurrence using transmission electron microscopy. Based on these observations, the very early stage of twin nucleation can be attributed to the pole mechanism with deviation proposed by Cohen and Weertman or to the model of Miura, Takamura and Narita, while the twin growth is controlled by the pole mechanism proposed by Venables. High densities of sessile Frank dislocations are observed within the twins at the early stage of deformation, which can affect the growth and the stability of the twins, but also the strength of these twins and their interactions with the gliding dislocations present in the matrix. This experimental evidence is discussed and compared to recent results in order to relate the defects analysis to the macroscopic behaviour of this category of material.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000276523200018 Publication Date 2010-01-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 244 Open Access
Notes Iap Approved Most recent IF: 5.301; 2010 IF: 3.791
Call Number UA @ lucian @ c:irua:82270 Serial 2441
Permanent link to this record
 

 
Author (up) Idrissi, H.; Renard, K.; Schryvers, D.; Jacques, P.J.
Title On the relationship between the twin internal structure and the work-hardening rate of TWIP steels Type A1 Journal article
Year 2010 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 63 Issue 10 Pages 961-964
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract FeMnC and FeMnSiAl TWIP steels deformed under the same conditions exhibit different work-hardening rates. The present study investigates the microstructure of plastically deformed FeMnC and FeMnSiAl samples, particularly the internal structure of the mechanically generated twins and their topology at the grain scale. Twins in the FeMnC steel are finer and full of sessile dislocations, rendering this material distinctly stronger with an improved work-hardening rate.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000282461800003 Publication Date 2010-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 145 Open Access
Notes Iap Approved Most recent IF: 3.747; 2010 IF: 2.820
Call Number UA @ lucian @ c:irua:84472 Serial 2452
Permanent link to this record
 

 
Author (up) Idrissi, H.; Renard, K.; Schryvers, D.; Jacques, P.J.
Title TEM investigation of the formation mechanism of deformation twins in Fe-Mn-Si-Al TWIP steels Type A1 Journal article
Year 2013 Publication Philosophical magazine Abbreviated Journal Philos Mag
Volume 93 Issue 35 Pages 4378-4391
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The microstructure of a Fe-Mn-Si-Al twinning-induced plasticity (TWIP) steel exhibiting remarkable work hardening rate under uniaxial tensile deformation was investigated using transmission electron microscopy to uncover the mechanism(s) controlling the nucleation and growth of the mechanically induced twins. The results show that the stair-rod cross-slip deviation mechanism is necessary for the formation of the twins, while large extrinsic stacking faults homogenously distributed within the grains could act as preferential sources for the activation of the deviation process. The influence of such features on the thickness and strength of the twins and the resulting mechanical behaviour is discussed and compared to similar works recently performed on Fe-Mn-C TWIP steels.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000327478300005 Publication Date 2013-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1478-6435;1478-6443; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.505 Times cited 15 Open Access
Notes Approved Most recent IF: 1.505; 2013 IF: 1.427
Call Number UA @ lucian @ c:irua:112815 Serial 3478
Permanent link to this record
 

 
Author (up) Idrissi, H.; Ryelandt, L.; Veron, M.; Schryvers, D.; Jacques, P.J.
Title Is there a relationship between the stacking fault character and the activated mode of plasticity of FeMn-based austenitic steels? Type A1 Journal article
Year 2009 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 60 Issue 11 Pages 941-944
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract By changing the testing temperature, an austenitic FeMnAlSi alloy presents either å-martensite transformation or mechanical twinning during straining. In order to understand the nucleation and growth mechanisms involved in both phenomena, defects and particularly stacking faults, were characterized by transmission electron microscopy. It is observed that the character of the stacking faults also changes (from extrinsic to intrinsic) together with the temperature and the activated mode of plasticity.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000265359900005 Publication Date 2009-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 84 Open Access
Notes Iap Approved Most recent IF: 3.747; 2009 IF: 2.949
Call Number UA @ lucian @ c:irua:77276 Serial 1751
Permanent link to this record
 

 
Author (up) Idrissi, H.; Samaee, V.; Lumbeeck, G.; van der Werf, T.; Pardoen, T.; Schryvers, D.; Cordier, P.
Title Supporting data for “In situ Quantitative Tensile Tests on Antigorite in a Transmission Electron Microscope” Type Dataset
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract The determination of the mechanical properties of serpentinites is essential towards the understanding of the mechanics of faulting and subduction. Here, we present the first in situ tensile tests on antigorite in a transmission electron microscope. A push-to-pull deformation device is used to perform quantitative tensile tests, during which force and displacement are measured, while the microstructure is imaged with the microscope. The experiments have been performed at room temperature on beams prepared by focused ion beam. The specimens are not single crystals despite their small sizes. Orientation mapping indicated that some grains were well-oriented for plastic slip. However, no dislocation activity has been observed even though engineering tensile stress went up to 700 MPa. We show also that antigorite does not exhibit an pure elastic-brittle behaviour since, despite the presence of defects, the specimens underwent plastic deformation and did not fail within the elastic regime. Instead, we observe that strain localizes at grain boundaries. All observations concur to show that under our experimental conditions, grain boundary sliding is the dominant deformation mechanism. This study sheds a new light on the mechanical properties of antigorite and calls for further studies on the structure and properties of grain boundaries in antigorite and more generally in phyllosilicates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169107 Serial 6891
Permanent link to this record
 

 
Author (up) Idrissi, H.; Samaee, V.; Lumbeeck, G.; Werf, T.; Pardoen, T.; Schryvers, D.; Cordier, P.
Title In Situ Quantitative Tensile Testing of Antigorite in a Transmission Electron Microscope Type A1 Journal article
Year 2020 Publication Journal Of Geophysical Research-Solid Earth Abbreviated Journal J Geophys Res-Sol Ea
Volume 125 Issue 3 Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The determination of the mechanical properties of serpentinites is essential toward the understanding of the mechanics of faulting and subduction. Here we present the first in situ tensile tests on antigorite in a transmission electron microscope. A push‐to‐pull deformation device is used to perform quantitative tensile tests, during which force and displacement are measured, while the evolving microstructure is imaged with the microscope. The experiments have been performed at room temperature on 2 × 1 × 0.2 μm3 beams prepared by focused ion beam. The specimens are not single crystals despite their small sizes. Orientation mapping indicated that several grains were well oriented for plastic slip. However, no dislocation activity has been observed even though the engineering tensile stress went up to 700 MPa. We show also that antigorite does not exhibit a purely elastic‐brittle behavior since, despite the presence of defects, the specimens accumulate permanent deformation and did not fail within the elastic regime. Instead, we observe that strain localizes at grain boundaries. All observations concur to show that under these experimental conditions, grain boundary sliding is the dominant deformation mechanism. This study sheds a new light on the mechanical properties of antigorite and calls for further studies on the structure and properties of grain boundaries in antigorite and more generally in phyllosilicates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000530895800023 Publication Date 2020-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9313 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes We thank S. Guillot for having kindly provided us with the two antigorite samples investigated in this study. We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program under Grant Agreement 787198—TimeMan. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR‐FNRS). We acknowledge fruitful discussions with A. Baronnet. We thank J. Gasc and an anonymous reviewer for their critical comments. Data (movies of the three in situ deformation experiments) can be downloaded (from https://doi.org/10.5281/zenodo.3583135). Approved Most recent IF: 3.9; 2020 IF: 3.35
Call Number EMAT @ emat @c:irua:167594 Serial 6355
Permanent link to this record
 

 
Author (up) Idrissi, H.; Schryvers, D.
Title Investigation of the elementary mechanisms controlling dislocation/twin boundary interactions in fcc metals and alloys : from conventional to advanced TEM characterization Type H2 Book chapter
Year 2012 Publication Abbreviated Journal
Volume Issue Pages 1213-1224
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Formatex Research Center Place of Publication S.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-939843-6-6 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:104694 Serial 1737
Permanent link to this record
 

 
Author (up) Idrissi, H.; Schryvers, D.; Salje, E.K.H.; Zhang, H.; Carpenter, M.A.; Moya, X.
Title Pinning of the martensitic microstructures by dislocations in Cu74.08Al23.13Be2.79 Type P1 Proceeding
Year 2009 Publication Abbreviated Journal
Volume Issue Pages 02029,1-02029,5
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract A single crystal of Cu74.08Al23.13Be2.79 undergoes a martensitic phase transition at 246K and 232K under heating and cooling, respectively. Surprisingly, the martensite phase is elastically much harder than the austenite phase showing that interfaces between various crystallographic variants are strongly pinned and can not be moved by external stress while the phase boundary between the austenite and martensite regions in the sample remains mobile. This unusual behavior was revealed by Dynamical Mechanical Analysis and Resonant Ultrasound Spectroscopy. Transmission Electron Microscopy shows that the pinning is generated by dislocations, which are inherited from the austenite phase. Such dislocations can hinder the movement of stacking faults in the 18R martensite structure or twin boundaries between martensite variants.
Address
Corporate Author Thesis
Publisher Edp Place of Publication Coutaboeuf Editor
Language Wos 000274582300033 Publication Date 2009-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:81952 Serial 2626
Permanent link to this record
 

 
Author (up) Idrissi, H.; Turner, S.; Mitsuhara, M.; Wang, B.; Hata, S.; Coulombier, M.; Raskin, J.-P.; Pardoen, T.; Van Tendeloo, G.; Schryvers, D.
Title Point defect clusters and dislocations in FIB irradiated nanocrystalline aluminum films : an electron tomography and aberration-corrected high-resolution ADF-STEM study Type A1 Journal article
Year 2011 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 17 Issue 6 Pages 983-990
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Focused ion beam (FIB) induced damage in nanocrystalline Al thin films has been characterized using advanced transmission electron microscopy techniques. Electron tomography was used to analyze the three-dimensional distribution of point defect clusters induced by FIB milling, as well as their interaction with preexisting dislocations generated by internal stresses in the Al films. The atomic structure of interstitial Frank loops induced by irradiation, as well as the core structure of Frank dislocations, has been resolved with aberration-corrected high-resolution annular dark-field scanning TEM. The combination of both techniques constitutes a powerful tool for the study of the intrinsic structural properties of point defect clusters as well as the interaction of these defects with preexisting or deformation dislocations in irradiated bulk or nanostructured materials.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000297832300018 Publication Date 2011-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 25 Open Access
Notes Iap; Fwo Approved Most recent IF: 1.891; 2011 IF: 3.007
Call Number UA @ lucian @ c:irua:93627 Serial 2653
Permanent link to this record
 

 
Author (up) Idrissi, H.; Wang, B.; Colla, M.S.; Raskin, J.P.; Schryvers, D.; Pardoen, T.
Title Ultrahigh strain hardening in thin palladium films with nanoscale twins Type A1 Journal article
Year 2011 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 23 Issue 18 Pages 2119-2122
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline Pd thin films containing coherent growth twin boundaries are deformed using on-chip nanomechanical testing. A large work-hardening capacity is measured. The origin of the observed behavior is unraveled using transmission electron microscopy and shows specific dislocations and twin boundaries interactions. The results indicate the potential for large strength and ductility balance enhancement in Pd films, as needed in membranes for H technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000291164200013 Publication Date 2011-04-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 57 Open Access
Notes Iap Approved Most recent IF: 19.791; 2011 IF: 13.877
Call Number UA @ lucian @ c:irua:90103 Serial 3794
Permanent link to this record
 

 
Author (up) Jacobs, M.; Bodart, F.; Terwagne, G.; Schryvers, D.; Poulet, A.
Title Nanohardness and structure of nitrogen implanted SixAly coatings post-implanted with oxygen Type A1 Journal article
Year 1999 Publication Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal Nucl Instrum Meth B
Volume 147 Issue Pages 231-237
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000077846200041 Publication Date 2003-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.109 Times cited 3 Open Access
Notes Approved Most recent IF: 1.109; 1999 IF: 1.118
Call Number UA @ lucian @ c:irua:29377 Serial 2258
Permanent link to this record
 

 
Author (up) Jembrih-Simbürger, D.; Neelmeijer, C.; Schalm, O.; Fredrickx, P.; Schreiner, M.; De Vis, K.; Mäder, M.; Schryvers, D.; Caen, J.
Title The colour of silver stained glass : analytical investigations carried out with XRF, SEM/EDX, TEM and IBA Type A1 Journal article
Year 2002 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 17 Issue Pages 321-328
Keywords A1 Journal article; Art; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Glass treated on its surface with silver compounds and an aluminosilicate, such as ochre or clay, at higher temperatures (between 550 and 650 °C) accepts a wide variety of a yellow colour. It is the aim of this study to investigate the parameters of the manufacturing process affecting the final colour of silver stained glass and to correlate them with the final colour and colour intensity. Therefore, defined mixtures of ochre and a silver compound (AgCl, AgNO3, Ag2SO4, Ag3PO4, Ag2O) were prepared and applied on soda-lime glass. The firing process was modified within the range from 563 to 630 °C and glass samples were analysed after treatment with energy dispersive X-ray fluorescence analysis (EDXRF), scanning electron microscopy (SEM/EDX), transmission electron microscopy (TEM), as well as ion beam analysis (IBA) with an external beam. Within the scope of IBA simultaneous measurements using particle-induced X-ray emission (PIXE), particle-induced gamma-ray emission (PIGE), and Rutherford backscattering spectrometry (RBS) were carried out in order to obtain the thickness of the Ag-rich surface layer and the depth distribution of Ag. By means of TEM the microstructure of the silver particles was visualised. XRF results show that the lowest amount of Ag could be detected on glass samples treated with silver stain mixtures containing AgCl and Ag2O. A low kiln temperature (e.g. 563 °C) results in a higher silver concentration at the surface and lower penetration depths. Furthermore, the results obtained with SEM/EDX at cross-sections of the glass samples could be confirmed by PIXE, PIGE, RBS, and TEM.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000175158900001 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 42 Open Access
Notes Approved Most recent IF: 3.379; 2002 IF: 4.250
Call Number UA @ lucian @ c:irua:48775 Serial 395
Permanent link to this record
 

 
Author (up) Ji, G.; Tan, Z.; Lu, Y.; Schryvers, D.; Li, Z.; Zhang, D.
Title Heterogeneous interfacial chemical nature and bonds in a W-coated diamond/Al composite Type A1 Journal article
Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 112 Issue 112 Pages 129-133
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Heterogeneous Al/Al4C3/Al2O3/diamond{111}, Al/nanolayered Al4C3/diamond{111} and Al12W particle/Al4C3/Al2O3/diamond{111} multi-interfaces have been developed at the nanoscale in a W-coated diamond/Al composite produced by vacuum hot pressing. The formation of nanoscale Al4C3 crystals is strongly associated with local O enrichment and can be further promoted by Al12W interfacial particles. The latter effectively contributes to enhance interfacial chemical bonding reducing interfacial thermal resistance and, in turn, enhancing thermal conductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370109200015 Publication Date 2015-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 7 Open Access
Notes This work is financially supported by the FWO project of Belgium (No. U2 FA 070100/3506), the travel funding BQR (No. R8DIV AUE) provided by Université Lille 1, the National Natural Science Foundation of China (Grant No. 51401123) and the China Postdoctoral Science Foundation (Grant No. 2014 M561469) for Dr. Z.Q. Tan. Dr. W.G. Grünewald (LeicaMicrosystems, Germany) is also thanked for the assistance of surface preparation. Approved Most recent IF: 2.714
Call Number c:irua:129976 Serial 3987
Permanent link to this record
 

 
Author (up) Ji, G.; Tan, Z.; Shabadi, R.; Li, Z.; Grünewald, W.; Addad, A.; Schryvers, D.; Zhang, D.
Title Triple ion beam cutting of diamond/Al composites for interface characterization Type A1 Journal article
Year 2014 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 89 Issue Pages 132-137
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A novel triple ion beam cutting technique was employed to prepare high-quality surfaces of diamond/Al composites for interfacial characterization, which has been unachievable so far. Near-perfect and artifact-free surfaces were obtained without mechanical pre-polishing. Hence, the as-prepared surfaces are readily available for further study and also, ready to be employed in a focus ion beam system for preferential selection of transmission electron microscopy samples. Dramatically different diamond/Al interface configurations – sub-micrometer Al2O3 particles and clean interfaces were unambiguously revealed.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000333513400015 Publication Date 2014-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 9 Open Access
Notes Fwo Approved Most recent IF: 2.714; 2014 IF: 1.845
Call Number UA @ lucian @ c:irua:113394 Serial 3735
Permanent link to this record
 

 
Author (up) Jimenez-Mena, N.; Jacques, P.J.; Ding, L.; Gauquelin, N.; Schryvers, D.; Idrissi, H.; Delannay, F.; Simar, A.
Title Enhancement of toughness of Al-to-steel Friction Melt Bonded welds via metallic interlayers Type A1 Journal article
Year 2019 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 740-741 Issue Pages 274-284
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The toughness of Al-to-steel welds decreases with increasing thickness of the intermetallic (IM) layer formed at the interface. Co plating has been added as interlayer in Al-to-steel Friction Melt Bonded (FMB) welds to control the nature and thickness of the IM layer. In comparison to a weld without interlayer, Co plating brings about a reduction of the thickness of the IM layer by 70%. The critical energy release rate of the crack propagating in the weld is used as an indicator of toughness. It is evaluated via an adapted crack propagation test using an energy conservation criterion. For a weld without interlayer, critical energy release rate is found to increase when the thickness of the intermetallic layer decreases. When the intermetallic layer is thick, the crack propagates in a brittle manner through the intermetallic whereas, at low layer thickness, the crack deviates and partially propagates through the Al plate, which causes an increase of toughness. The use of a Co interlayer brings about an increase of toughness by causing full deviation of the crack towards the Al plate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453494500029 Publication Date 2018-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.094 Times cited 4 Open Access Not_Open_Access: Available from 25.10.2020
Notes The authors acknowledge the financial support of the Interuniversity Attraction Poles Program from the Belgian State through the Belgian Policy Agency, Belgium, contract IAP7/21 INTEMATE. N. Jimenez-Mena acknowledges the financial support of the (Fonds pour la formation à la recherchedans l'industrie et dans l'agriculture (FRIA), Belgium. A. Simar acknowledges the financial support of the (European Research Council – Starting Grant (ERC-StG), project ALUFIX, grant agreement no 716678. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS), Belgium. The authors also acknowledge M. Coulombier for the help provided in the measurement of the friction coefficient, and T. Pardoen and F. Lani for the fruitful discussions. Approved Most recent IF: 3.094
Call Number EMAT @ emat @c:irua:154866UA @ admin @ c:irua:154866 Serial 5061
Permanent link to this record
 

 
Author (up) Kuriplach, J.; van Petegem, S.; Hou, M.; Van Tendeloo, G.; Schryvers, D.; et al.
Title Positron annihilation study of nanocrystalline Ni3Al : simulations and measurements Type A1 Journal article
Year 2001 Publication Materials science forum T2 – 12th International Conference on Positron Annihilation (ICPA-12), AUG 06-12, 2000, UNIV BUNDERSWEHR MUNCHEN, NEUBIBERG, GERMANY Abbreviated Journal
Volume 363-3 Issue Pages 94-96
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A positron lifetime experiment is performed on samples produced by the compaction of nanocrystalline Ni3Al powder synthesized by the inert-gas condensation technique. In the lifetime spectrum we observe two components corresponding to defects. Computer (virtual) samples of n-Ni3Al are obtained using molecular dynamics combined with the Metropolis Monte Carlo technique. Positron lifetime calculations are then performed on selected regions of simulated samples. For this purpose, a new computational technique based on a generalization of the atomic superposition method for non-periodic systems was developed. Lifetimes calculated in this way are compared to experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-87849-875-3 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:102865 Serial 2681
Permanent link to this record
 

 
Author (up) Lambrinou, K.; Charalampopoulou, E.; Van der Donck, T.; Delville, R.; Schryvers, D.
Title Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C Type A1 Journal article
Year 2017 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater
Volume 490 Issue 490 Pages 9-27
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10-8 mass%) static liquid lead-bismuth eutectic (LBE) for 253e3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was nonuniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403132300002 Publication Date 2017-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.048 Times cited 24 Open Access OpenAccess
Notes The authors would like to acknowledge the following 316L stainless steel suppliers: Industeel, ArcelorMittal Group, for the 316LSA plate procured and characterised in the FP6 EUROTRANSDEMETRA project (Contract no. FI6W-CT-2004-516520); OLARRA Aceros Inoxidables, Spain, for the 316LH1 rod; and SIDERO STAAL nv, Belgium, for the 316LH2 rod. K. Lambrinou would like to thank J. Joris for technical support during the launching and follow up of all corrosion tests, J. Lim for the manufacturing and calibration of the oxygen sensors used in these tests, T. Lapauw for the XRD measurements on the pristine steels, and S. Van den Broeck for the FIB sample preparation. Special thanks to S. Gavrilov for fruitful and intense discussions. The authors gratefully acknowledge the funding provided in the framework of the ongoing development of the MYRRHA irradiation facility. The research leading to these results falls within the framework of the European Energy Research Alliance Joint Programme on Nuclear Materials (EERA JPNM). Approved Most recent IF: 2.048
Call Number EMAT @ emat @ c:irua:142644 Serial 4563
Permanent link to this record
 

 
Author (up) Lexcellent, C.; Vivet, A.; Bouvet, C.; Blanc, P.; Satto, C.; Schryvers, D.
Title From the lattice measurements of the austenite and the martensite cells to the macroscopic mechanical behavior of shape memory alloys Type A1 Journal article
Year 2001 Publication Journal de physique: 4 Abbreviated Journal J Phys Iv
Volume 11 Issue 5 Pages 317-324
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Les Ulis Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1155-4339 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48388 Serial 1288
Permanent link to this record
 

 
Author (up) Li, K.; Béché, A.; Song, M.; Sha, G.; Lu, X.; Zhang, K.; Du, Y.; Ringer, S.P.; Schryvers, D.
Title Atomistic structure of Cu-containing \beta" precipitates in an Al-Mg-Si-Cu alloy Type A1 Journal article
Year 2014 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 75 Issue Pages 86-89
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The beta '' precipitates in a peak-aged Al-Mg-Si-Cu alloy were measured with an average composition of 28.6Al-38.7Mg-26.5Si-5.17Cu (at.%) using atom probe tomography. High-angle annular dark-field observations revealed that Cu incompletely substitutes for the Mg-1 and Si-3 columns, preferentially for one column in each pair of Si-3. Cu-free Si columns form a parallelogram-shaped network that constitutes the basis of subsequent precipitates in the system, with a = 0.37 nm, b = 0.38 nm, gamma = 113 degrees and c = 0.405 nm. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000331025200022 Publication Date 2013-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 22 Open Access
Notes Approved Most recent IF: 3.747; 2014 IF: 3.224
Call Number UA @ lucian @ c:irua:115749 Serial 201
Permanent link to this record
 

 
Author (up) Li, K.; Idrissi, H.; Sha, G.; Song, M.; Lu, J.; Shi, H.; Wang, W.; Ringer, S.P.; Du, Y.; Schryvers, D.
Title Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys Type A1 Journal article
Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 118 Issue 118 Pages 352-362
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cut by the foil surface. The method can be performed on a regular foil specimen with a modem LaB6 or field-emission-gun transmission electron microscope. Precisions around +/- 16% have been obtained for precipitate volume fractions of needle-like beta ''/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is dose to that directly obtained using 3DAP analysis by a misfit of 45%, and the estimated precision for number density measurement is about +/- 11%. The limitations of the method are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383292000042 Publication Date 2016-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 9 Open Access
Notes This work is financially supported by National Natural Science Foundation of China (51501230 and 51531009) and Postdoctoral Science Foundation of Central South University (502042057). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21 and FWO project G.0576.09N. Approved Most recent IF: 2.714
Call Number EMAT @ emat @ c:irua:137171 Serial 4334
Permanent link to this record