|   | 
Details
   web
Records
Author (up) Bogaerts, A.
Title Modeling plasmas in analytical chemistry—an example of cross-fertilization Type A1 Journal article
Year 2020 Publication Analytical And Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem
Volume 412 Issue 24 Pages 6059-6083
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper gives an overview of the modeling work developed in our group in the last 25 years for various plasmas used in analytical spectrochemistry, i.e., glow discharges (GDs), inductively coupled plasmas (ICPs), and laser ablation (LA) for sample introduction in the ICP and for laser-induced breakdown spectroscopy (LIBS). The modeling approaches are briefly presented, which are different for each case, and some characteristic results are illustrated. These plasmas are used not only in analytical chemistry but also in other applications, and the insights obtained in these other fields were quite helpful for us to develop models for the analytical plasmas. Likewise, there is now a huge interest in plasma–liquid interaction, atmospheric pressure glow discharges (APGDs), and dielectric barrier discharges (DBDs) for environmental, medical, and materials applications of plasmas. The insights obtained in these fields are also very relevant for ambient desorption/ionization sources and for liquid sampling, which are nowadays very popular in analytical chemistry, and they could be very helpful in developing models for these sources as well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000522701700005 Publication Date 2020-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.3 Times cited Open Access
Notes M. Aghaei, Z. Chen, D. Autrique, T. Martens, and P. Heirman are gratefully acknowledged for their valuable efforts in the model developments illustrated in this paper. Approved Most recent IF: 4.3; 2020 IF: 3.431
Call Number PLASMANT @ plasmant @c:irua:168600 Serial 6412
Permanent link to this record
 

 
Author (up) Bogaerts, A.
Title Special Issue on “Dielectric Barrier Discharges and their Applications” in Commemoration of the 20th Anniversary of Dr. Ulrich Kogelschatz’s Work Type A1 Journal Article
Year 2023 Publication Plasma Chemistry and Plasma Processing Abbreviated Journal Plasma Chem Plasma Process
Volume 43 Issue 6 Pages 1281-1285
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract n/a
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001110371000001 Publication Date 2023-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.6 Times cited Open Access Not_Open_Access
Notes n/a Approved Most recent IF: 3.6; 2023 IF: 2.355
Call Number PLASMANT @ plasmant @c:irua:201387 Serial 8969
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Aerts, R.; Snoeckx, R.; Somers, W.; Van Gaens, W.; Yusupov, M.; Neyts, E.
Title Modeling of plasma and plasma-surface interactions for medical, environmental and nano applications Type A1 Journal article
Year 2012 Publication Journal of physics : conference series Abbreviated Journal
Volume 399 Issue Pages 012011
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, an overview is given of modeling investigations carried out in our research group for a better understanding of plasmas used for medical, environmental and nano applications. The focus is both on modeling the plasma chemistry and the plasma-surface interactions. The plasma chemistry provides the densities and fluxes of the important plasma species. This information can be used as input when modeling the plasma-surface interactions. The combination of plasma simulations and plasma – surface interaction simulations provides a more comprehensive understanding of the underlying processes for these applications.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000312261700011 Publication Date 2012-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 7 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:104727 Serial 2130
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Aghaei, M.
Title What modeling reveals about the properties of an inductively coupled plasma Type A1 Journal article
Year 2016 Publication Spectroscopy Abbreviated Journal Spectroscopy-Us
Volume 31 Issue 1 Pages 52-59
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract To get better performance from inductively coupled plasma (ICP)-based methods, it is informative to study the properties of the ICP under different conditions. Annemie Bogaerts and Maryam Aghaei at the University of Antwerp, Belgium, are using computational modeling to examine how various properties of the ICP, such as gas flow path lines and velocity, temperature changes, and ionization effects, are affected by numerous factors, such as the gas flow rates of injector and auxiliary gas, applied power, and even the very presence of a mass spectrometry (MS) sampler. They have also applied their models to study particle transport through the ICP. Using their developed model, it is now possible to predict optimum conditions for specific analyses. Bogaerts and Aghaei spoke to us about this work.
Address
Corporate Author Thesis
Publisher Place of Publication Springfield, Or. Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0887-6703 ISBN Additional Links UA library record; WoS full record
Impact Factor 0.466 Times cited Open Access
Notes Approved Most recent IF: 0.466
Call Number UA @ lucian @ c:irua:131601 Serial 4278
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Aghaei, M.
Title Inductively coupled plasma-mass spectrometry: insights through computer modeling Type A1 Journal article
Year 2017 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 32 Issue 32 Pages 233-261
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this tutorial review paper, we illustrate how computer modeling can contribute to a better insight in inductively coupled plasma-mass spectrometry (ICP-MS). We start with a brief overview on previous efforts, studying the fundamentals of the ICP and ICP-MS, with main focus on previous modeling activities. Subsequently, we explain in detail the model that we developed in previous years, and we show typical calculation results, illustrating the plasma characteristics, gas flow patterns and the sample transport, evaporation and ionization. We also present the effect of various experimental parameters, such as operating conditions, geometrical aspects and sample characteristics, to illustrate how modeling can help to elucidate the optimal conditions for improved analytical performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000395529800002 Publication Date 2016-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 14 Open Access OpenAccess
Notes The authors are very grateful to H. Lindner for the initial model development and for the many interesting discussions. They also gratefully acknowledge nancial support from the Fonds voor Wetenschappelijk Onderzoek (FWO; Grant number 6713). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.379
Call Number PLASMANT @ plasmant @ c:irua:140074 Serial 4416
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Aghaei, M.; Autrique, D.; Lindner, H.; Chen, Z.; Wendelen, W.
Title Computer simulations of laser ablation, plume expansion and plasma formation Type H1 Book chapter
Year 2011 Publication Abbreviated Journal
Volume Issue Pages 1-10
Keywords H1 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Trans Tech Place of Publication Aedermannsdorf Editor
Language Wos 000292658900001 Publication Date 2011-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-8985; ISBN 978-3-03785-081-7 Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 8 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:88340 Serial 470
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Alves, L.L.
Title Special issue on numerical modelling of low-temperature plasmas for various applications – part II: Research papers on numerical modelling for various plasma applications Type Editorial
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1790041
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403074000001 Publication Date 2017-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:142637 Serial 4559
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Ameye, L.; Bijlholt, M.; Amuli, K.; Heynickx, D.; Devlieger, R.
Title INTER-ACT : prevention of pregnancy complications through an e-health driven interpregnancy lifestyle intervention: study protocol of a multicentre randomised controlled trial Type A1 Journal article
Year 2017 Publication BMC pregnancy and childbirth Abbreviated Journal Bmc Pregnancy Childb
Volume 17 Issue Pages 154
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Centre for Research and Innovation in Care (CRIC)
Abstract Background Excessive maternal pre-pregnancy and gestational weight gain are related to pregnancy- and birth outcomes. The interpregnancy time window offers a unique opportunity to intervene in order to acquire a healthy lifestyle before the start of a new pregnancy. Methods INTER-ACT is an e-health driven multicentre randomised controlled intervention trial targeting women at high risk of pregnancy- and birth related complications. Eligible women are recruited for the study at day 2 or 3 postpartum. At week 6 postpartum, participants are randomised into the intervention or control arm of the study. The intervention focuses on weight, diet, physical activity and mental well-being, and comprises face-to-face coaching, in which behavioural change techniques are central, and use of a mobile application, which is Bluetooth-connected to a weighing scale and activity tracker. The intervention is rolled out postpartum (4 coaching sessions between week 6 and month 6) and in a new pregnancy (3 coaching sessions, one in each trimester of pregnancy); the mobile app is used throughout the two intervention phases. Data collection includes data from the medical record of the participants (pregnancy outcomes and medical history), anthropometric data (height, weight, waist- and hip circumferences, skinfold thickness and body composition by bio-electrical impedance analysis), data from the mobile app (physical activity and weight; intervention group only) and questionnaires (socio-demographics, breastfeeding, food intake, physical activity, lifestyle, psychosocial factors and process evaluation). Medical record data are collected at inclusion and at delivery of the subsequent pregnancy. All other data are collected at week 6 and month 6 postpartum and every subsequent 6 months until a new pregnancy, and in every trimester in the new pregnancy. Primary outcome is the composite endpoint score of pregnancy-induced hypertension, gestational diabetes mellitus, caesarean section, and large-for-gestational-age infant in the subsequent pregnancy.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000402116300002 Publication Date 2017-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1471-2393 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.263 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 2.263
Call Number UA @ lucian @ c:irua:143234 Serial 4663
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kolev, S.; Snoeckx, R.; Sun, S.; Trenchev, G.; Van Laer, K.; Wang, W.
Title CO2conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 063001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In recent years there has been growing interest in the use of plasma technology for CO2 conversion. To improve this application, a good insight into the underlying mechanisms is of great importance. This can be obtained from modeling the detailed plasma chemistry in order to understand the chemical reaction pathways leading to CO2 conversion (either in pure form or mixed with another gas). Moreover, in practice, several plasma reactor types are being investigated for CO2 conversion, so in addition it is essential to be able to model these reactor geometries so that their design can be improved, and the most energy efficient CO2 conversion can be achieved. Modeling the detailed plasma chemistry of CO2 conversion in complex reactors is, however, very time-consuming. This problem can be overcome by using a combination of two different types of model: 0D chemical reaction kinetics models are very suitable for describing the detailed plasma chemistry, while the characteristic features of different reactor geometries can be studied by 2D or 3D fluid models. In the first instance the latter can be developed in argon or helium with a simple chemistry to limit the calculation time; however, the ultimate aim is to implement the more complex CO2 chemistry in these models. In the present paper, examples will be given of both the 0D plasma chemistry models and the 2D and 3D fluid models for the most common plasma reactors used for CO2 conversion in order to emphasize the complementarity of both approaches. Furthermore, based on the modeling insights, the paper discusses the possibilities and limitations of plasma-based CO2 conversion in different types of plasma reactors, as well as what is needed to make further progress in this field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000412173700001 Publication Date 2017-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 26 Open Access OpenAccess
Notes We would like to thank T Silva, N Britoun, Th Godfroid and R Snyders (Université de Mons and Materia Nova Research Center), A Ozkan, Th Dufour and F Reniers (Université Libre de Bruxelles) andK Van Wesenbeeck and S Lenaerts (University of Antwerp) for providingexperimental data to validate our models. Furthermore, we acknowledge the financial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’ by the Belgian Federal Office for Science Policy (BELSPO), the Francqui Research Foundation, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 606889, the European Marie Skłodowska- Curie Individual Fellowship project ‘GlidArc’ within Horizon2020, the Methusalem financing of the University of Antwerp, the Fund for Scientific Research, Flanders (FWO; grant nos. G.0383.16N and 11U5316N) and the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:144429 Serial 4614
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kozák, T.
Title Computer modeling of a microwave discharge used for CO2 splitting Type P2 Proceeding
Year 2015 Publication Abbreviated Journal
Volume Issue Pages 41-50
Keywords P2 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher UCO Press Place of Publication Cordoba Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-9927-187-3 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:135096 Serial 4154
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Bultinck, E.; Eckert, M.; Georgieva, V.; Mao, M.; Neyts, E.; Schwaederlé, L.
Title Computer modeling of plasmas and plasma-surface interactions Type A1 Journal article
Year 2009 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 6 Issue 5 Pages 295-307
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, an overview is given of different modeling approaches used for describing gas discharge plasmas, as well as plasma-surface interactions. A fluid model is illustrated for describing the detailed plasma chemistry in capacitively coupled rf discharges. The strengths and limitations of Monte Carlo simulations and of a particle-in-cell-Monte Carlo collisions model are explained for a magnetron discharge, whereas the capabilities of a hybrid Monte Carlo-fluid approach are illustrated for a direct current glow discharge used for spectrochemical analysis of materials. Finally, some examples of molecular dynamics simulations, for the purpose of plasma-deposition, are given.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000266471800003 Publication Date 2009-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 18 Open Access
Notes Approved Most recent IF: 2.846; 2009 IF: 4.037
Call Number UA @ lucian @ c:irua:76833 Serial 461
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Bultinck, E.; Kolev, I.; Schwaederlé, L.; van Aeken, K.; Buyle, G.; Depla, D.
Title Computer modelling of magnetron discharges Type A1 Journal article
Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 42 Issue 19 Pages 194018,1-194018,12
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, some modelling approaches to describe direct current (dc) magnetron discharges developed in our research groups will be presented, including an analytical model, Monte Carlo simulations for the electrons and for the sputtered atoms, a hybrid Monte Carlo-fluid model and particle-in-cell-Monte Carlo collision simulations. The strengths and limitations of the various modelling approaches will be explained, and some characteristic simulation results will be illustrated. Furthermore, some other simulation methods related to the magnetron device will be briefly explained, more specifically for calculating the magnetic field distribution inside the discharge, and for describing the (reactive) sputtering.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000269993100020 Publication Date 2009-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 32 Open Access
Notes Approved Most recent IF: 2.588; 2009 IF: 2.083
Call Number UA @ lucian @ c:irua:78168 Serial 462
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Centi, G.
Title Plasma Technology for CO2 Conversion: A Personal Perspective on Prospects and Gaps Type A1 Journal article
Year 2020 Publication Frontiers in energy research Abbreviated Journal Front. Energy Res.
Volume 8 Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract There is increasing interest in plasma technology for CO2 conversion because it can operate at mild conditions and it can store fluctuating renewable electricity into

value-added compounds and renewable fuels. This perspective paper aims to provide a view on the future for non-specialists who want to understand the role of plasma

technology in the new scenario for sustainable and low-carbon energy and chemistry. Thus, it is prepared to give a personal view on future opportunities and challenges. First, we introduce the current state-of-the-art and the potential of plasma-based CO2 conversion. Subsequently, we discuss the challenges to overcome the current limitations and to apply plasma technology on a large scale. The final section discusses the general context and the potential benefits of plasma-based CO2 conversion for our life and the impact on climate change. It also includes a brief analysis on the future scenario for energy and chemical production, and how plasma technology may realize new paths for CO2 utilization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000553392300001 Publication Date 2020-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-598X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes We acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 810182 – SCOPE ERC Synergy project). We thank A. Berthelot, M. Ramakers, R. Snoeckx, G. Trenchev, and V. Vermeiren for providing the figures used in this article. Approved Most recent IF: 3.4; 2020 IF: NA
Call Number PLASMANT @ plasmant @c:irua:170136 Serial 6390
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Centi, G.; Hessel, V.; Rebrov, E.
Title Challenges in unconventional catalysis Type A1 Journal article
Year 2023 Publication Catalysis today Abbreviated Journal
Volume 420 Issue Pages 114180
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Catalysis science and technology increased efforts recently to progress beyond conventional “thermal” catalysis and face the challenges of net-zero emissions and electrification of production. Nevertheless, a better gaps and opportunities analysis is necessary. This review analyses four emerging areas of unconventional or less- conventional catalysis which share the common aspect of using directly renewable energy sources: (i) plasma catalysis, (ii) catalysis for flow chemistry and process intensification, (iii) application of electromagnetic (EM) fields to modulate catalytic activity and (iv) nanoscale generation at the catalyst interface of a strong local EM by plasmonic effect. Plasma catalysis has demonstrated synergistic effects, where the outcome is higher than the sum of both processes alone. Still, the underlying mechanisms are complex, and synergy is not always obtained. There is a crucial need for a better understanding to (i) design catalysts tailored to the plasma environment, (ii) design plasma reactors with optimal transport of plasma species to the catalyst surface, and (iii) tune the plasma conditions so they work in optimal synergy with the catalyst. Microfluidic reactors (flow chemistry) is another emerging sector leading to the intensification of catalytic syntheses, particularly in organic chemistry. New unconventional catalysts must be designed to exploit in full the novel possibilities. With a focus on (a) continuous-flow photocatalysis, (b) electrochemical flow catalysis, (c) microwave flow catalysis and (d) ultra­ sound flow activation, a series of examples are discussed, with also indications on scale-up and process indus­ trialisation. The third area discussed regards the effect on catalytic performances of applying oriented EM fields spanning several orders of magnitude. Under well-defined conditions, gas breakdown and, in some cases, plasma formation generates activated gas phase species. The EM field-driven chemical conversion processes depend further on structured electric/magnetic catalysts, which shape the EM field in strength and direction. Different effects influencing chemical conversion have been reported, including reduced activation energy, surface charging, hot spot generation, and selective local heating. The last topic discussed is complementary to the third, focusing on the possibility of tuning the photo- and electro-catalytic properties by creating a strong localised electrical field with a plasmonic effect. The novel possibilities of hot carriers generated by the plasmonic effect are also discussed. This review thus aims to stimulate the reader to make new, creative catalysis to address the challenges of reaching a carbon-neutral world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001004623300001 Publication Date 2023-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited Open Access OpenAccess
Notes The EU ERC Synergy SCOPE project supported this work (project ID 810182) “ Surface-COnfined fast-modulated Plasma for process and Energy intensification in small molecules conversion”. This review thus aims to stimulate the reader to make new, creative catalysis to address the challenges of reaching a carbon-neutral world. Approved Most recent IF: 5.3; 2023 IF: 4.636
Call Number PLASMANT @ plasmant @c:irua:196446 Serial 7380
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Chen, Z.
Title Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modeling investigation Type A1 Journal article
Year 2005 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 60 Issue 9/10 Pages 1280-1307
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000233074100003 Publication Date 2005-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 165 Open Access
Notes Approved Most recent IF: 3.241; 2005 IF: 2.332
Call Number UA @ lucian @ c:irua:54189 Serial 820
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Chen, Z.
Title Nanosecond laser ablation of Cu: modeling of the expansion in He background gas, and comparison with expansion in vacuum Type A1 Journal article
Year 2004 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 19 Issue Pages 1169-1176
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000223738000015 Publication Date 2004-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 39 Open Access
Notes Approved Most recent IF: 3.379; 2004 IF: 3.926
Call Number UA @ lucian @ c:irua:47649 Serial 2275
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Chen, Z.; Autrique, D.
Title Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation Type A1 Journal article
Year 2008 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 63 Issue 7 Pages 746-754
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000258175000003 Publication Date 2008-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 56 Open Access
Notes Approved Most recent IF: 3.241; 2008 IF: 2.853
Call Number UA @ lucian @ c:irua:69248 Serial 756
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Chen, Z.; Bleiner, D.
Title Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments Type A1 Journal article
Year 2006 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 21 Issue Pages 384-395
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000236391400002 Publication Date 2006-02-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 67 Open Access
Notes Approved Most recent IF: 3.379; 2006 IF: 3.630
Call Number UA @ lucian @ c:irua:56972 Serial 1784
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Chen, Z.; Gijbels, R.
Title Glow discharge modelling: from basic understanding towards applications Type A1 Journal article
Year 2003 Publication Surface and interface analysis Abbreviated Journal Surf Interface Anal
Volume 35 Issue Pages 593-603
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000184687500007 Publication Date 2003-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0142-2421;1096-9918; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.132 Times cited 14 Open Access
Notes Approved Most recent IF: 1.132; 2003 IF: 1.014
Call Number UA @ lucian @ c:irua:44020 Serial 1350
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Chen, Z.; Gijbels, R.; Vertes, A.
Title Laser ablation for analytical sampling: what can we learn from modeling? Type A1 Journal article
Year 2003 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 58 Issue Pages 1867-1893
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000187237900001 Publication Date 2003-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 321 Open Access
Notes Approved Most recent IF: 3.241; 2003 IF: 2.361
Call Number UA @ lucian @ c:irua:44023 Serial 1783
Permanent link to this record
 

 
Author (up) Bogaerts, A.; De Bie, C.; Eckert, M.; Georgieva, V.; Martens, T.; Neyts, E.; Tinck, S.
Title Modeling of the plasma chemistry and plasmasurface interactions in reactive plasmas Type A1 Journal article
Year 2010 Publication Pure and applied chemistry Abbreviated Journal Pure Appl Chem
Volume 82 Issue 6 Pages 1283-1299
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, an overview is given of modeling activities going on in our research group, for describing the plasma chemistry and plasmasurface interactions in reactive plasmas. The plasma chemistry is calculated by a fluid approach or by hybrid Monte Carlo (MC)fluid modeling. An example of both is illustrated in the first part of the paper. The example of fluid modeling is given for a dielectric barrier discharge (DBD) in CH4/O2, to describe the partial oxidation of CH4 into value-added chemicals. The example of hybrid MCfluid modeling concerns an inductively coupled plasma (ICP) etch reactor in Ar/Cl2/O2, including also the description of the etch process. The second part of the paper deals with the treatment of plasmasurface interactions on the atomic level, with molecular dynamics (MD) simulations or a combination of MD and MC simulations.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000279063900010 Publication Date 2010-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1365-3075;0033-4545; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.626 Times cited 13 Open Access
Notes Approved Most recent IF: 2.626; 2010 IF: 2.134
Call Number UA @ lucian @ c:irua:82108 Serial 2134
Permanent link to this record
 

 
Author (up) Bogaerts, A.; De Bie, C.; Snoeckx, R.; Koz?k, T.
Title Plasma based CO2and CH4conversion: A modeling perspective Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600070
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper gives an overview of our plasma chemistry modeling for CO2 and CH4 conversion in a dielectric barrier discharge (DBD) and microwave (MW) plasma. We focus on pure CO2 splitting and pure CH4 reforming, as well as mixtures of CO2/CH4, CH4/O2, and CO2/H2O. We show calculation results for the conversion, energy efficiency, and product formation, in comparison with experiments where possible. We also present the underlying chemical reaction pathways, to explain the observed

trends. For pure CO2, a comparison is made between a DBD and MW plasma, illustrating that the higher energy efficiency of the latter is attributed to the more important role of the vibrational levels.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403699900001 Publication Date 2016-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 17 Open Access Not_Open_Access
Notes Inter-university Attraction Pole (IAP/7); Federaal Wetenschapsbeleid; Francqui Research Foundation; Fonds De La Recherche Scientifique – FNRS, G.0383.16N ; Hercules Foundation; Flemish Government; UAntwerpen; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:144209 Serial 4579
Permanent link to this record
 

 
Author (up) Bogaerts, A.; de Bleecker, K.; Georgieva, V.; Herrebout, D.; Kolev, I.; Madani, M.; Neyts, E.
Title Numerical modeling for a better understanding of gas discharge plasmas Type A1 Journal article
Year 2005 Publication High temperature material processes Abbreviated Journal High Temp Mater P-Us
Volume 9 Issue 3 Pages 321-344
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000231634100001 Publication Date 2005-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1093-3611; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:55832 Serial 2398
Permanent link to this record
 

 
Author (up) Bogaerts, A.; de Bleecker, K.; Georgieva, V.; Kolev, I.; Madani, M.; Neyts, E.
Title Computer simulations for processing plasmas Type A1 Journal article
Year 2006 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 3 Issue 2 Pages 110-119
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000235628300003 Publication Date 2006-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 8 Open Access
Notes Approved Most recent IF: 2.846; 2006 IF: 2.298
Call Number UA @ lucian @ c:irua:56076 Serial 465
Permanent link to this record
 

 
Author (up) Bogaerts, A.; de Bleecker, K.; Kolev, I.; Madani, M.
Title Modeling of gas discharge plasmas: What can we learn from it? Type A1 Journal article
Year 2005 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech
Volume 200 Issue Pages 62-67
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000232327800014 Publication Date 2005-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.589 Times cited 11 Open Access
Notes Approved Most recent IF: 2.589; 2005 IF: 1.646
Call Number UA @ lucian @ c:irua:53629 Serial 2122
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Donko, Z.; Kutasi, K.; Bano, G.; Pinhao, N.; Pinheiro, M.
Title Comparison of calculated and measured optical emission intensities in a direct current argon-copper glow discharge Type A1 Journal article
Year 2000 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 55 Issue Pages 1465-1479
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000089748400007 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 33 Open Access
Notes Approved Most recent IF: 3.241; 2000 IF: 2.608
Call Number UA @ lucian @ c:irua:34144 Serial 428
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Eckert, M.; Mao, M.; Neyts, E.
Title Computer modelling of the plasma chemistry and plasma-based growth mechanisms for nanostructured materials Type A1 Journal article
Year 2011 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 44 Issue 17 Pages 174030-174030,16
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this review paper, an overview is given of different modelling efforts for plasmas used for the formation and growth of nanostructured materials. This includes both the plasma chemistry, providing information on the precursors for nanostructure formation, as well as the growth processes itself. We limit ourselves to carbon (and silicon) nanostructures. Examples of the plasma modelling comprise nanoparticle formation in silane and hydrocarbon plasmas, as well as the plasma chemistry giving rise to carbon nanostructure formation, such as (ultra)nanocrystalline diamond ((U)NCD) and carbon nanotubes (CNTs). The second part of the paper deals with the simulation of the (plasma-based) growth mechanisms of the same carbon nanostructures, i.e. (U)NCD and CNTs, both by mechanistic modelling and detailed atomistic simulations.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000289512700030 Publication Date 2011-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 25 Open Access
Notes Approved Most recent IF: 2.588; 2011 IF: 2.544
Call Number UA @ lucian @ c:irua:88364 Serial 463
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Gijbels, R.
Title Argon and copper optical emission spectra in a Grimm glow discharge source: mathematical simulations and comparison with experiment Type A1 Journal article
Year 1998 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 13 Issue Pages 721-726
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000075385700006 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 25 Open Access
Notes Approved Most recent IF: 3.379; 1998 IF: 3.845
Call Number UA @ lucian @ c:irua:24127 Serial 149
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Gijbels, R.
Title Behavior of the sputtered copper atoms, ions and excited species in a radio-frequency and direct current glow discharge Type A1 Journal article
Year 2000 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 55 Issue Pages 279-297
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000086340100006 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 17 Open Access
Notes Approved Most recent IF: 3.241; 2000 IF: 2.608
Call Number UA @ lucian @ c:irua:28325 Serial 226
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Gijbels, R.
Title Calculation of cathode heating in analytical glow discharges Type A1 Journal article
Year 2004 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 19 Issue Pages 1206-1212
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000223738000020 Publication Date 2004-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 21 Open Access
Notes Approved Most recent IF: 3.379; 2004 IF: 3.926
Call Number UA @ lucian @ c:irua:47647 Serial 264
Permanent link to this record