|   | 
Details
   web
Records
Author (down) Artaxo, P.; Storms, H.; Bruynseels, F.; Van Grieken, R.; Maenhaut, W.
Title Composition and sources of aerosols from the Amazon basin Type A1 Journal article
Year 1988 Publication Journal of geophysical research Abbreviated Journal
Volume 93 Issue D2 Pages 1605-1615
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Aerosols were sampled in the Amazon Basin, as part of the Global Tropospheric Experiment (GTE), during the Amazon Boundary Layer Experiment (ABLE 2A) in JulyAugust 1985. Fine- and coarse-particle fractions were analyzed for 22 elements by particle-induced X ray emission. Gravimetric mass, black carbon, sulfate, and nitrate concentrations were also determined. Morphological and trace element measurements of individual particles were carried out by automated electron probe X ray microanalysis. Various receptor models, including multivariate methods and a chemical mass balance model, were employed in the interpretation of the bulk trace element concentrations. Three factors explained over 85% of the variability of fine- and coarse-mode variables. On the basis of the elemental composition of the factors, two could be identified as plant related, and the third was a soil dust component. Of the coarse-mode aerosol mass concentration (of 7.6±1.6 μg/m3), 62% could be attributed to aerosols released by the vegetation and 11% to soil dust. In the fine mode, soil dust accounted for less than 10% of the measured mass concentration (of 6.8±3.9 μg/m3). The variables related to the plant component were K, P, S, Ca, Mg, Cl, Rb, and the gravimetric mass. The elemental profile of the plant component resembled the bulk plant composition. By single-particle analysis coupled with hierarchical cluster analysis, six to nine different biogenic-related particle groups could be identified in the fine- and coarse-aerosol modes. Almost all particle types consisted predominantly of carbonaceous material, with trace amounts of K, S, Ca, P, Cl, and Na. Only one group, comprising less than 11% of the total number of particles, consisted of soil dustrelated aerosol.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1988M303000024 Publication Date 2008-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227; 2156-2202; 0022-1406; 0196-6928; 0196-6936; 0885-3401; 8755-8556; 0196-2256; 0747-7309; 1 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:113609 Serial 7702
Permanent link to this record
 

 
Author (down) Artaxo, P.; Rabello, M.L.C.; Maenhaut, W.; Van Grieken, R.
Title Trace elements and individual particle analysis of atmospheric aerosols from the Antarctic peninsula Type A3 Journal article
Year 1992 Publication Tellus Abbreviated Journal
Volume 44b Issue Pages 318-334
Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:2845 Serial 8689
Permanent link to this record
 

 
Author (down) Artaxo, P.; Maenhaut, W.; Storms, H.; Van Grieken, R.
Title Aerosol characteristics and sources for the Amazon Basin during the wet season Type A1 Journal article
Year 1990 Publication Journal of geophysical research Abbreviated Journal
Volume 95 Issue 10 Pages 16971-16985
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract As a part of the NASA Global Tropospheric Experiment (GTE), aerosols were sampled in the tropical rain forest of the Amazon Basin during the Amazon Boundary Layer Experiment (ABLE 2B) in April and May 1987, in the wet season, when no forest burning occurs. Fine (dp < 2.0 μm) and coarse (2.0 < dp < 15 μm) aerosol fractions were collected using stacked filter units, at three sites under the forest canopy and at three levels of a tower inside the jungle. Particle-induced X ray emission (PIXE) was used to measure concentrations of 22 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, and Pb). Morphological and trace element measurements of individual particles were carried out by automated electron probe X ray microanalysis. Gravimetric analysis was performed to obtain the fine and coarse aerosol mass concentration. Absolute factor analysis was used to interpret the large data set of the trace element concentrations and to obtain elemental source profiles. Hierarchical cluster analysis was used to derive groups of individual particles. The concentrations of soil dust related elements (Al, Si, Ti, Fe, Mn) were 5 times larger in the wet season compared to the 1985 ABLE 2A dry season experiment. Biogenic aerosol related elements in the fine fraction showed lower concentrations in the wet season. Fine aerosol mass concentration averaged only 2.1±0.7 μg m−3, while the average coarse mass concentration was 6.1±1.8 μg m −3. Sulphur concentrations averaged 76±14 ng m −3 in the fine fraction and 37±9 ng m −3 in the coarse fraction. Biogenic aerosol-related elements were dominant under the forest canopy, while soil dust dominated at the top of the forest canopy. Only two factors explained about 90% of the data variability for the fine and coarse aerosol fractions. These were soil dust (represented mainly by Al, Si, Ti, Mn, and Fe) and biogenic aerosol (represented by K, P, Cl, S, Zn, and the aerosol mass concentration). Source profiles showed a homogeneous aerosol distribution with similar elemental compositions at the different sampling sites. Enrichment factor calculations revealed a soil dust elemental profile similar to the average bulk soil composition, and a biogenic component similar to the plant bulk elemental composition. Total aerosol mass source apportionment showed that biogenic particles account for 5595% of the airborne concentrations. The analysis of individual aerosol particles showed that the biogenic particles consist of leaf fragments, pollen grains, fungi, algae, and other types of particles. Several groups of particles with K, Cl, P, S, and Ca as minor elements could easily be identified as biogenic particles on the basis of their morphology. Considering the vast area of tropical rain forests and the concentrations measured in this work, it is possible that biogenic particles can play an important role in the global aerosol budget and in the global biogeochemical cycles of various elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1990EB20200051 Publication Date 2008-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227; 2156-2202; 0022-1406; 0196-6928; 0196-6936; 0885-3401; 8755-8556; 0196-2256; 0747-7309; 1 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116931 Serial 7422
Permanent link to this record
 

 
Author (down) Arsoski, V.V.; Tadić, M.Z.; Peeters, F.M.
Title Strain and band-mixing effects on the excitonic Aharonov-Bohm effect in In(Ga)As/GaAs ringlike quantum dots Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 8 Pages 085314-14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Neutral excitons in strained axially symmetric In(Ga)As/GaAs quantum dots with a ringlike shape are investigated. Similar to experimental self-assembled quantum rings, the analyzed quantum dots have volcano-like shapes. The continuum mechanical model is employed to determine the strain distribution, and the single-band envelope function approach is adopted to compute the electron states. The hole states are determined by the axially symmetric multiband Luttinger-Kohn Hamiltonian, and the exciton states are obtained from an exact diagonalization. We found that the presence of the inner layer covering the ring opening enhances the excitonic Aharonov-Bohm (AB) oscillations. The reason is that the hole becomes mainly localized in the inner part of the quantum dot due to strain, whereas the electron resides mainly inside the ring-shaped rim. Interestingly, larger AB oscillations are found in the analyzed quantum dot than in a fully opened quantum ring of the same width. Comparison with the unstrained ringlike quantum dot shows that the amplitude of the excitonic Aharonov-Bohm oscillations are almost doubled in the presence of strain. The computed oscillations of the exciton energy levels are comparable in magnitude to the oscillations measured in recent experiments. DOI: 10.1103/PhysRevB.87.085314
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315278000003 Publication Date 2013-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported by the EU NoE: SANDiE, the Ministry of Education, Science, and Technological Development of Serbia, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107656 Serial 3165
Permanent link to this record
 

 
Author (down) Arsoski, V.V.; Grujić, M.M.; Čukarić, N.A.; Tadic, M.Z.; Peeters, F.M.
Title Normal and skewed phosphorene nanoribbons in combined magnetic and electric fields Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 12 Pages 125434
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The energy spectrum and eigenstates of single-layer black phosphorus nanoribbons in the presence of a perpendicular magnetic field and an in-plane transverse electric field are investigated by means of a tight-binding method, and the effect of different types of edges is examined analytically. A description based on a continuum model is proposed using an expansion of the tight-binding model in the long-wavelength limit. Thewave functions corresponding to the flatband part of the spectrum are obtained analytically and are shown to agree well with the numerical results from the tight-binding method for both narrow (10 nm) and wide (100 nm) nanoribbons. Analytical expressions for the critical magnetic field at which Landau levels are formed and the ranges of wave numbers in the dispersionless flatband segments in the energy spectra are derived. We examine the evolution of the Landau levels when an in-plane lateral electric field is applied, and we determine analytically how the edge states shift withmagnetic field. For wider nanoribbons, the conductance is shown to have a characteristic staircase shape in combined magnetic and electric fields. Some of the stairs in zigzag and skewed armchair nanoribbons originate from edge states that are found in the band gap.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000411572400008 Publication Date 2017-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes ; This work was supported by Erasmus+, the Serbian Ministry of Education, Science and Technological Development, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:146738 Serial 4791
Permanent link to this record
 

 
Author (down) Arsoski, V.V.; Čukarić, N.A.; Tadic, M.Z.; Peeters, F.M.
Title An efficient finite-difference scheme for computation of electron states in free-standing and core-shell quantum wires Type A1 Journal article
Year 2015 Publication Computer physics communications Abbreviated Journal Comput Phys Commun
Volume 197 Issue 197 Pages 17-26
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electron states in axially symmetric quantum wires are computed by means of the effective-mass Schrodinger equation, which is written in cylindrical coordinates phi, rho, and z. We show that a direct discretization of the Schrodinger equation by central finite differences leads to a non-symmetric Hamiltonian matrix. Because diagonalization of such matrices is more complex it is advantageous to transform it in a symmetric form. This can be done by the Liouville-like transformation proposed by Rizea et al. (2008), which replaces the wave function psi(rho) with the function F(rho) = psi(rho)root rho and transforms the Hamiltonian accordingly. Even though a symmetric Hamiltonian matrix is produced by this procedure, the computed wave functions are found to be inaccurate near the origin, and the accuracy of the energy levels is not very high. In order to improve on this, we devised a finite-difference scheme which discretizes the Schrodinger equation in the first step, and then applies the Liouville-like transformation to the difference equation. Such a procedure gives a symmetric Hamiltonian matrix, resulting in an accuracy comparable to the one obtained with the finite element method. The superior efficiency of the new finite-difference scheme (FDM) is demonstrated for a few p-dependent one-dimensional potentials which are usually employed to model the electron states in free-standing and core shell quantum wires. The new scheme is compared with the other FDM schemes for solving the effective-mass Schrodinger equation, and is found to deliver energy levels with much smaller numerical error for all the analyzed potentials. It also gives more accurate results than the scheme of Rizea et al., except for the ground state of an infinite rectangular potential in freestanding quantum wires. Moreover, the PT symmetry is invoked to explain similarities and differences between the considered FDM schemes. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000362919500003 Publication Date 2015-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.936 Times cited 4 Open Access
Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia (project III 45003) and the Fonds Wetenschappelijk Onderzoek (Belgium). ; Approved Most recent IF: 3.936; 2015 IF: 3.112
Call Number UA @ lucian @ c:irua:129412 Serial 4139
Permanent link to this record
 

 
Author (down) Arsoski, V.; Tadić, M.; Peeters, F.M.
Title Interband optical properties of concentric type-I nanorings in a normal magnetic field Type A1 Journal article
Year 2010 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal Acta Phys Pol A
Volume 117 Issue 5 Pages 733-737
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two concentric two-dimensional GaAs/(Al,Ga)As nanorings in a normal magnetic field are theoretically studied. The single-band effective mass approximation is adopted for both the electron and the hole states, and the analytical solutions are given. We find that the electronic single particle states are arranged in pairs, which exhibit anticrossings and the orbital momentum transitions in the energy spectrum when magnetic field increases. Their period is essentially determined by the radius of the outer ring. The oscillator strength for interband transitions is strongly reduced close to each anticrossing. We show that an optical excitonic Aharonov-Bohm effect may occur in concentric nanorings.
Address
Corporate Author Thesis
Publisher Place of Publication Warszawa Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.469 Times cited Open Access
Notes Approved Most recent IF: 0.469; 2010 IF: 0.467
Call Number UA @ lucian @ c:irua:83377 Serial 1690
Permanent link to this record
 

 
Author (down) Arsoski, V.; Tadic, M.; Peeters, F.M.
Title Electric field tuning of the optical excitonic Aharonov-Bohm effect in nanodots grown by droplet epitaxy Type A1 Journal article
Year 2013 Publication Physica scripta Abbreviated Journal Phys Scripta
Volume T157 Issue Pages 014002
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Neutral excitons in axially symmetric GaAs nanodots embedded in an (Al, Ga) As matrix, which are formed by the droplet epitaxy technique, are investigated theoretically. An electric field perpendicular to the nanodot base results in both a vertical and an in-plane exciton polarization, which is beneficial for the appearance of the excitonic Aharonov-Bohm effect. In the range of low magnetic fields (below 5 Tesla), we found that the bright and dark exciton states can cross twice. This results in oscillations of the photoluminescence intensity with magnetic field, which are a striking manifestation of the optical excitonic Aharonov-Bohm effect.
Address
Corporate Author Thesis
Publisher Place of Publication Stockholm Editor
Language Wos 000332504600003 Publication Date 2013-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.28 Times cited Open Access
Notes ; This work was supported by the EU Network of Excellence: SANDiE, the Ministry of Education and Science of Serbia, the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 1.28; 2013 IF: 1.296
Call Number UA @ lucian @ c:irua:128901 Serial 4594
Permanent link to this record
 

 
Author (down) Arsoski, V.; Čukarić, N.; Tadić, M.; Peeters, F.M.
Title Exciton states in a nanocup in the presence of a perpendicular magnetic field Type A1 Journal article
Year 2012 Publication Physica scripta Abbreviated Journal Phys Scripta
Volume T149 Issue Pages 014054-014054,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The exciton states in a strained (In,Ga)As/GaAs nanocup are theoretically determined. We explore how the nanocup bottom thickness (t) affects the magnetic field dependence of the exciton energy. Strain distribution is computed by the continuum mechanical model under the approximation of isotropic elasticity. The exciton wave functions are expanded into products of the electron and hole envelope functions. For small t, the exciton ground state has zero orbital momentum and exhibits small oscillations of the second derivative when the magnetic field increases. When t approaches the value of the cup height, however, the exciton levels exhibit angular momentum transitions, whose behavior is similar to that for type-II quantum dots. Small oscillations of the oscillator strength for exciton recombination are found when the magnetic field increases. An increase in thickness of the nanocup bottom has only a small effect on those oscillations for the optically active exciton states, but the exciton ground state becomes dark when the magnetic field increases. Hence, the results of our calculations show that an increase in thickness of the nanocup bottom transforms the exciton ground energy level dependence on magnetic field from the one characteristic of type-I rings to the one characteristic of type-II dots.
Address
Corporate Author Thesis
Publisher Place of Publication Stockholm Editor
Language Wos 000303523500055 Publication Date 2012-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.28 Times cited 2 Open Access
Notes ; This work was supported by the EU Network of Excellence SANDiE, the Ministry of Education and Science of Serbia, the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 1.28; 2012 IF: 1.032
Call Number UA @ lucian @ c:irua:99135 Serial 1117
Permanent link to this record
 

 
Author (down) Arslan Irmak, E.; Liu, P.; Bals, S.; Van Aert, S.
Title 3D Atomic Structure of Supported Metallic Nanoparticles Estimated from 2D ADF STEM Images: A Combination of Atom – Counting and a Local Minima Search Algorithm Type A1 Journal article
Year 2021 Publication Small methods Abbreviated Journal Small Methods
Volume Issue Pages 2101150
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Determining the three-dimensional (3D) atomic structure of nanoparticles (NPs) is critical to understand their structure-dependent properties. It is hereby important to perform such analyses under conditions relevant for the envisioned application. Here, we investigate the 3D structure of supported Au NPs at high temperature, which is of importance to understand their behavior during catalytic reactions. To overcome limitations related to conventional high-resolution electron tomography at high temperature, 3D characterization of NPs with atomic resolution has been performed by applying atom-counting using atomic resolution annular darkfield scanning transmission electron microscopy (ADF STEM) images followed by structural relaxation. However, at high temperatures, thermal displacements, which affect the ADF STEM intensities, should be taken into account. Moreover, it is very likely that the structure of a NP investigated at elevated temperature deviates from a ground state configuration, which is difficult to determine using purely computational energy minimization approaches. In this paper, we therefore propose an optimized approach using an iterative local minima search algorithm followed by molecular dynamics (MD) structural relaxation of candidate structures associated with each local minimum. In this manner, it becomes possible to investigate the 3D atomic structure of supported NPs, which may deviate from their ground state configuration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000716511600001 Publication Date 2021-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2366-9608 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 815128 REALNANO to SB, Grant 770887 PICOMETRICS to SVA, Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0267.18N, G.0502.18N, G.0346.21N).; sygmaSB; esteem3jra; esteem3reported Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:183289 Serial 6820
Permanent link to this record
 

 
Author (down) Arslan Irmak, E.
Title Modelling three-dimensional nanoparticle transformations based on quantitative transmission electron microscopy Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages 169 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Nanomaterials are materials that have at least one dimension in the nanometer length scale, which corresponds to a billionth of a meter. When three dimensions are confined to the nanometer scale, these materials are referred to as nanoparticles. These materials are of great interest since they exhibit unique physical and chemical properties that cannot be observed for bulk systems. Due to their unique and often superior properties, nanomaterials have become central in the field of electronics, catalysis, and medicine. Moreover, they are expected to be one of the most promising systems to tackle many challenges that our society is facing, such as reducing the emission of greenhouse gases and finding effective treatments for cancer. The unique properties of nanomaterials are linked to their size, shape, structure, and composition. If one is able to measure the positions of the atoms, their chemical nature, and the bonding between them, it becomes possible to predict the physicochemical properties of nanomaterials. In this manner, the development of novel nanostructures can be triggered. However, the morphology and structure of nanomaterials are highly sensitive to the conditions for relevant applications, such as elevated temperatures or intense light illumination. Furthermore, any small change in the local structure at higher temperatures or pressures may significantly modify their performance. Hence, three-dimensional (3D) characterization of nanomaterials under application-relevant conditions is important in designing them with desired functional properties for specific applications. Among different structural characterization approaches, transmission electron microscopy (TEM) is one of the most efficient and versatile tools to investigate the structure and composition of nanomaterials since it can provide atomically resolved images, which are sensitive to the local 3D structure of the investigated sample. However, TEM only provides two-dimensional (2D) images of the 3D nanoparticle, which may lead to an incomplete understanding of their structure-property relationship. The most known and powerful technique for the 3D characterization of nanomaterials is electron tomography, where the images of a nanostructured material taken from different directions are mathematically combined to retrieve its 3D structure. Although these experiments are already state-of-the-art, 3D characterization by TEM is typically performed under ultra-high vacuum conditions and at room temperature. Such conditions are unfortunately not sufficient to understand transformations during synthesis or applications of nanomaterials. This limitation can be overcome by in situ TEM where external stimuli, such as heat, gas, and liquids, can be controllably introduced inside the TEM using specialized holders. However, there are some technical limitations to successful perform 3D in situ electron tomography experiments. For example, the long acquisition time required to collect a tilt series limits this technique when one wants to observe 3D dynamic changes with atomic resolution. A solution for this problem is the estimation of the 3D structure of nanomaterials from 2D projection images acquired along a single viewing direction. For this purpose, annular dark field scanning TEM (ADF STEM) imaging mode provides a valuable tool for quantitative structural investigation of nanomaterials from single 2D images due to its thickness and mass sensitivity. For quantitative analysis, an ADF STEM image is considered as a 2D array of pixels where relative variation of pixel intensity values is proportional to the total number of atoms and the atomic number of the elements in the sample. By applying advanced statistical approaches to these images, structural information, such as the number or types of atoms, can be retrieved with high accuracy and precision. The outcome can then be used to build a 3D starting model for energy minimization by atomistic simulations, for example, molecular dynamics simulations or the Monte Carlo method. However, this methodology needs to be further evaluated for in situ experiments. This thesis is devoted to presenting robust approaches to accurately define the 3D atomic structure of nanoparticles under application-relevant conditions and understand the mechanism behind the atomic-scale dynamics in nanoparticles in response to environmental stimuli.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:188295 Serial 7063
Permanent link to this record
 

 
Author (down) Arseenko, M.; Hannard, F.; Ding, L.; Zhao, L.; Maire, E.; Villanova, J.; Idrissi, H.; Simar, A.
Title A new healing strategy for metals : programmed damage and repair Type A1 Journal article
Year 2022 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 238 Issue Pages 118241-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Self-healing strategies aim at avoiding part repair or even replacement, which is time consuming, expen-sive and generates waste. However, strategies for metallic systems are still under-developed and solid-state solutions for room temperature service are limited to nano-scale damage repair. Here we propose a new healing strategy of micron-sized damage requiring only short and low temperature heating. This new strategy is based on damage localization particles, which can be healed by fast diffusing atoms of the matrix activated during heat treatment. The healing concept was successfully validated with a com-mercial aluminum alloy and manufactured by Friction Stir Processing (FSP). Damage was demonstrated to initiate on particles that were added to the matrix during material processing. In situ 2D and 3D nano -imaging confirmed healing of the damaged material and showed that heating this material for 10 min at 400 degrees C is sufficient to heal incipient damage with complete filling of 70% of all damage (and up to 90% when their initial size is below 0.2 mu m). Furthermore, strength is retained and the work of fracture of the alloy is improved by about 40% after healing. The proposed Programmed Damage and Repair healing strategy could be extended to other metal based systems presenting precipitation. (C) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000843502700006 Publication Date 2022-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 9.4
Call Number UA @ admin @ c:irua:190561 Serial 7121
Permanent link to this record
 

 
Author (down) Armelao, L.; Bertagnolli, H.; Bleiner, D.; Groenewolt, M.; Gross, S.; Krishnan, V.; Sada, C.; Schubert, U.; Tondello, E.; Zattin, A.
Title Highly dispersed mixed zirconia and hafnia nanoparticles in a silica matrix: First example of a ZrO2-HfO2-SiO2 ternary oxide system Type A1 Journal article
Year 2007 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract ZrO2 and HfO2 nanoparticles are homogeneously dispersed in SiO2 matrices (supported film and bulk powders) by copolymerization of two oxozirconium and oxohafnium clusters (M4O(2)(OMc)(12), M= Zr, Hf; OMc = OC(O)-C(CH3)=CH2) with (methacryloxypropyl)trimethoxysilane (MAPTMS, (CH2=C(CH3)C(O)O)-(CH2)(3)Si(OCH3)(3)). After calcination (at a temperature >= 800 degrees C), a silica matrix with homogeneously distributed MO2 nanocrystallites is obtained. This route yields a spatially homogeneous dispersion of the metal precursors inside the silica matrix, which is maintained during calcination. The composition of the films and the powders is studied before and after calcination by using Fourier transform infrared (FTIR) analysis, X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The local environment of the metal atoms in one of the calcined samples is investigated by using X-ray Absorption Fine Structure (XAFS) spectroscopy. Through X-ray diffraction (XRD) the crystallization of Hf and Zr oxides is seen at temperatures higher than those expected for the pure oxides, and transmission electron microscopy (TEM) shows the presence of well-distributed and isolated crystalline oxide nanoparticles (540 nm).
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000248062100011 Publication Date 2007-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 34 Open Access
Notes Approved Most recent IF: 12.124; 2007 IF: 7.496
Call Number UA @ lucian @ c:irua:95083 Serial 4521
Permanent link to this record
 

 
Author (down) Armelao, L.; Barreca, D.; Bottaro, G.; Gasparotto, A.; Maccato, C.; Tondello, E.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.; Štangar, U.L.
Title Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach Type A1 Journal article
Year 2009 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 10 Issue 18 Pages 3249-3259
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The present work is devoted to the preparation of Ag/TiO2 nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the systems chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 °C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000273410600015 Publication Date 2009-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 56 Open Access
Notes Esteem 026019 Approved Most recent IF: 3.075; 2009 IF: 3.453
Call Number UA @ lucian @ c:irua:80561 Serial 2811
Permanent link to this record
 

 
Author (down) Arisnabarreta, N.; Hao, Y.; Jin, E.; Salame, A.; Muellen, K.; Robert, M.; Lazzaroni, R.; Van Aert, S.; Mali, K.S.; De Feyter, S.
Title Single-layered imine-linked porphyrin-based two-dimensional covalent organic frameworks targeting CO₂ reduction Type A1 Journal article
Year 2024 Publication Advanced energy materials Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The reduction of carbon dioxide (CO2) using porphyrin-containing 2D covalent organic frameworks (2D-COFs) catalysts is widely explored nowadays. While these framework materials are normally fabricated as powders followed by their uncontrolled surface heterogenization or directly grown as thin films (thickness >200 nm), very little is known about the performance of substrate-supported single-layered (approximate to 0.5 nm thickness) 2D-COFs films (s2D-COFs) due to its highly challenging synthesis and characterization protocols. In this work, a fast and straightforward fabrication method of porphyrin-containing s2D-COFs is demonstrated, which allows their extensive high-resolution visualization via scanning tunneling microscopy (STM) in liquid conditions with the support of STM simulations. The as-prepared single-layered film is then employed as a cathode for the electrochemical reduction of CO2. Fe porphyrin-containing s2D-COF@graphite used as a single-layered heterogeneous catalyst provided moderate-to-high carbon monoxide selectivity (82%) and partial CO current density (5.1 mA cm(-2)). This work establishes the value of using single-layered films as heterogene ous catalysts and demonstrates the possibility of achieving high performance in CO2 reduction even with extremely low catalyst loadings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001177577200001 Publication Date 2024-02-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:204856 Serial 9172
Permanent link to this record
 

 
Author (down) Ariskin, D.A.; Schweigert, I.V.; Alexandrov, A.L.; Bogaerts, A.; Peeters, F.M.
Title Modeling of chemical processes in the low pressure capacitive radio frequency discharges in a mixture of Ar/C2H2 Type A1 Journal article
Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 105 Issue 6 Pages 063305,1-063305,9
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We study the properties of a capacitive 13.56 MHz discharge with a mixture of Ar/C<sub>2</sub>H<sub>2</sub> taking into account the plasmochemistry and growth of heavy hydrocarbons. A hybrid model was developed to combine the kinetic description for electron motion and the fluid approach for negative and positive ion transports and plasmochemical processes. A significant change in plasma parameters related to injection of 5.8% portion of acetylene in argon was observed and analyzed. We found that the electronegativity of the mixture is about 30%. The densities of negatively and positively charged heavy hydrocarbons are sufficiently large to be precursors for the formation of nanoparticles in the discharge volume.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000264774000059 Publication Date 2009-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 21 Open Access
Notes Approved Most recent IF: 2.068; 2009 IF: 2.072
Call Number UA @ lucian @ c:irua:74496 Serial 2121
Permanent link to this record
 

 
Author (down) Arias-Duque, C.; Bladt, E.; Munoz, M.A.; Hernandez-Garrido, J.C.; Cauqui, M.A.; Rodriguez-Izquierdo, J.M.; Blanco, G.; Bals, S.; Calvino, J.J.; Perez-Omil, J.A.; Yeste, M.P.
Title Improving the redox response stability of ceria-zirconia nanocatalysts under harsh temperature conditions Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 29 Pages 9340-9350
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('By depositing ceria on the surface of yttrium stabilized zirconia (YSZ) nanocrystals and further activation under high-temperature reducing conditions, a 13% mol. CeO2/YSZ catalyst structured as subnanometer thick, pyrochlore-type, ceria-zirconia islands has been prepared. This nanostructured catalyst depicts not only high oxygen storage capacity (OSC) values but, more importantly, an outstandingly stable redox response upon oxidation and reduction treatments at very high temperatures, above 1000 degrees C. This behavior largely improves that observed on conventional ceria-zirconia solid solutions, not only of the same composition but also of those with much higher molar cerium contents. Advanced scanning transmission electron microscopy (STEM-XEDS) studies have revealed as key not only to detect the actual state of the lanthanide in this novel nanocatalyst but also to rationalize its unusual resistance to redox deactivation at very high temperatures. In particular, high-resolution X-ray dispersive energy studies have revealed the presence of unique bilayer ceria islands on top of the surface of YSZ nanocrystals, which remain at surface positions upon oxidation and reduction treatments up to 1000 degrees C. Diffusion of ceria into the bulk of these crystallites upon oxidation at 1100 degrees C irreversibly deteriorates both the reducibility and OSC of this nanostructured catalyst.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000415911600047 Publication Date 2017-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 20 Open Access OpenAccess
Notes ; Financial support from MINECO/FEDER (Project ref: MAT2013-40823-R), Junta de Andalucia (FQM334 and FQM110), and EU FP7 (ESTEEM2) are acknowledged. E.B. and S.B. acknowledges financial support from European Research Council (ERC- Starting Grant #33S078-COLOURA-TOM). J.C.H.-G. acknowledges support from the Ramon y Cajal Fellowships Program of MINECO (RYC-2012-10004). ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:147706UA @ admin @ c:irua:147706 Serial 4880
Permanent link to this record
 

 
Author (down) Arenas-Vivo, A.; Rojas, S.; Ocaña, I.; Torres, A.; Liras, M.; Salles, F.; Arenas-Esteban, D.; Bals, S.; Ávila, D.; Horcajada, P.
Title Ultrafast reproducible synthesis of a Ag-nanocluster@MOF composite and its superior visible-photocatalytic activity in batch and in continuous flow Type A1 Journal article
Year 2021 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A
Volume 9 Issue 28 Pages 15704-15713
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The (photo)catalytic properties of metal–organic frameworks (MOFs) can be enhanced by post-synthetic inclusion of metallic species in their porosity. Due to their extraordinarily high surface area and well defined porous structure, MOFs can be used for the stabilization of metal nanoparticles with adjustable size within their porosity. Originally, we present here an optimized ultrafast photoreduction protocol for the<italic>in situ</italic>synthesis of tiny and monodisperse silver nanoclusters (AgNCs) homogeneously supported on a photoactive porous titanium carboxylate MIL-125-NH<sub>2</sub>MOF. The strong metal–framework interaction between –NH<sub>2</sub>and Ag atoms influences the AgNC growth, leading to the surfactant-free efficient catalyst AgNC@MIL-125-NH<sub>2</sub>with improved visible light absorption. The potential use of AgNC@MIL-125-NH<sub>2</sub>was further tested in challenging applications: (i) the photodegradation of the emerging organic contaminants (EOCs) methylene blue (MB-dye) and sulfamethazine (SMT-antibiotic) in water treatment, and (ii) the catalytic hydrogenation of<italic>p</italic>-nitroaniline (4-NA) to<italic>p</italic>-phenylenediamine (PPD) with industrial interest. It is noteworthy that compared with the pristine MIL-125-NH<sub>2</sub>, the composite presents an improved catalytic activity and stability, being able to photodegrade 92% of MB in 60 min and 96% of SMT in 30 min, and transform 100% of 4-NA to PPD in 30 min. Aside from these very good results, this study describes for the first time the use of a MOF in a visible light continuous flow reactor for wastewater treatment. With only 10 mg of AgNC@MIL-125-NH<sub>2</sub>, high SMT removal efficiency over 70% is maintained after >2 h under water flow conditions found in real wastewater treatment plants, signaling a future real application of MOFs in water remediation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000671839200001 Publication Date 2021-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 18 Open Access OpenAccess
Notes Comunidad de Madrid, CAM PEJD-2016/IND-2828 Talento Modality 2, 2017-T2/IND-5149 ; Secretaría de Estado de Investigación, Desarrollo e Innovación, Raphuel project (ENE2016-79608-C2-1-R) Retos Project MAT2017-84385-R ; Ministerio de Ciencia e Innovación, Juan de la Cierva Incorporación Fellowship (grant agreement no. IJC2019-038894-I) MOFSEIDON project (PID2019-104228RB-I00) Ramón y Cajal, Grant Agreements 2014-15039 and 2015-18677 ; Fundación BBVA, IN[17]CBBQUI_0197 ; H2020 European Research Council, ERC Consolidator Grant REALNANO 815128 Grant Agreement no. 731019 (EUSMI) ; sygmaSB; Approved Most recent IF: 8.867
Call Number EMAT @ emat @c:irua:179791 Serial 6802
Permanent link to this record
 

 
Author (down) Arenas Esteban, D.; Pacquets, L.; Choukroun, D.; Hoekx, S.; Kadu, A.A.; Schalck, J.; Daems, N.; Breugelmans, T.; Bals, S.
Title 3D characterization of the structural transformation undergone by Cu@Ag core-shell nanoparticles following CO₂ reduction reaction Type A1 Journal article
Year 2023 Publication Chemistry of materials Abbreviated Journal
Volume 35 Issue 17 Pages 6682-6691
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The increasing use of metallic nanoparticles (NPs) is significantly advancing the field of electrocatalysis. In particular, Cu/Ag bimetallic interfaces are widely used to enhance the electrochemical CO2 reduction reaction (eCO(2)RR) toward CO and, more recently, C-2 products. However, drastic changes in the product distribution and performance when Cu@Ag core-shell configurations are used can often be observed under electrochemical reaction conditions, especially during the first few minutes of the reaction. Possible structural changes that generate these observations remain underexplored; therefore, the structure-property relationship is hardly understood. In this study, we use electron tomography to investigate the structural transformation mechanism of Cu@Ag core-shells NPs during the critical first minutes of the eCO(2)RR. In this manner, we found that the crystallinity of the Cu seed determines whether the formation of a complete and homogeneous Ag shell is possible. Moreover, by tracking the particles' transformations, we conclude that modifications of the Cu-Ag interface and Cu2O enrichment at the surface of the NPs are key factors contributing to the product generation changes. These insights provide a better understanding of how bimetallic core-shell NPs transform under electrochemical conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001061530700001 Publication Date 2023-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.6 Times cited 1 Open Access OpenAccess
Notes L.P. was supported through a PhD fellowship for strategicbasic research (1S56920N) of the Research Foundation – Flanders(FWO). S.H. was supported through a PhD fellowship for strategic basicresearch (1S42623N) of the Research Foundation – Flanders (FWO).S.B., D.A.E., and A.A.K. acknowledge financial support from ERC Consolidator Grant Number 815128 REALNANO. This research was financed by the researchcouncil of the University of Antwerp (BOF-GOA 33928). Approved Most recent IF: 8.6; 2023 IF: 9.466
Call Number UA @ admin @ c:irua:199187 Serial 8825
Permanent link to this record
 

 
Author (down) Ardashnikova, E.I.; Lubarsky, S.V.; Denisenko, D.I.; Shpanchenko, R.V.; Antipov, E.V.; Van Tendeloo, G.
Title A new way of synthesis and characterization of superconducting oxyfluoride Sr2Cu(O,F)4+\delta Type A1 Journal article
Year 1995 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 253 Issue 3/4 Pages 259-265
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Superconducting Cu mixed oxyfluoride, Sr,Cu(O, F)(4+delta), was Obtained via fluorination of Sr2CuO3 by XeF2 in the 100-250 degrees C temperature range in a closed Ni container. The prepared samples exhibited a lower T-c in comparison with earlier reported values. Different samples in the Sr-Cu-O-F system were prepared by a solid-state reaction at 220-400 degrees C, but no formation of the oxyfluoride was detected even with an addition of xenon difluoride. These data allow one to draw conclusions on the metastability of the oxyfluoride under the conditions used, Electron microscopy and X-ray powder diffraction studies revealed large amounts of badly crystallized SrF2; this could be a reason for the small superconducting volume fraction as well as for the inhomogeneous distribution of the anions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1995TE08400007 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.942 Times cited 29 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:13322 Serial 2337
Permanent link to this record
 

 
Author (down) Araújo, M.F.D.; Bernard, P.C.; Van Grieken, R.E.
Title Heavy metal contamination in sediments from the Belgian coast and Scheldt estuary Type A1 Journal article
Year 1988 Publication Marine pollution bulletin Abbreviated Journal
Volume 19 Issue 2 Pages 269-273
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Sixty-two samples of total sediments and the separated clay/silt size fractions were analysed by energy-dispersive X-ray fluorescence spectrometry to evaluate the pollution level and the trends in samples collected along the Belgian coast over a period of 6 yr and at four stations located in the Scheldt estuary where two of these were sampled periodically for 4 yr. Three correction methods for grain size effects were applied, either to the bulk sediment samples or to the clay/silt size fractions, and the results were compared. Local variations on the concentrations in some of the elements determined were used to establish whether they result from an anthropogenic or natural origin. The level of pollution was assessed as a function of the location, sampling date, and depth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1988P559400005 Publication Date 2003-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-326x; 1879-3363 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116801 Serial 8021
Permanent link to this record
 

 
Author (down) Araujo, M.F.; van Espen, P.; Van Grieken, R.
Title Determination of sample thickness via scattered radiation in X-ray fluorescence spectrometry with filtered continuum excitation Type A1 Journal article
Year 1990 Publication X-ray spectrometry Abbreviated Journal
Volume 19 Issue 1 Pages 29-33
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Chemometrics (Mitac 3)
Abstract A semi-empirical approach is described for determining the mass per unit area of a sample being analysed. The method can be used to estimate the concentration of minor and trace elements in matrices containing a substantial amount of light elements. The procedure utilizes the coherently and incoherently scattered radiation induced in the sample by the filtered continuum radiation of a rhodium x-ray tube. The relationship between the intensity of the scattered radiation per unit mass and the average atomic number of the sample is established via calibration graphs, which can be applied for different x-ray tube voltages and for different primary beam filters. The overall procedure was validated by the analysis of several geological standards, deposited as thin slurries of unknown thickness either on Mylar foil or on Nuclepore filters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1990CU24700005 Publication Date 2005-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116491 Serial 7787
Permanent link to this record
 

 
Author (down) Arana, A.; Loureiro, A.L.; Barbosa, H.M.J.; Van Grieken, R.; Artaxo, P.
Title Optimized energy dispersive X-ray fluorescence analysis of atmospheric aerosols collected at pristine and perturbed Amazon Basin sites Type A1 Journal article
Year 2014 Publication X-ray spectrometry Abbreviated Journal
Volume 43 Issue 4 Pages 228-237
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Elemental composition of aerosols is important to source apportionment studies and to understand atmospheric processes that influence aerosol composition. Energy dispersive X-ray fluorescence spectroscopy was applied for measuring the elemental composition of Amazonian atmospheric aerosols. The instrument used was a spectrometer Epsilon 5, PANalytical B. V., with tridimensional geometry that reduces the background signal with a polarized X-ray detection. The measurement conditions were optimized for low-Z elements, e. g. Mg, Al, Si, that are present at very low concentrations in the Amazon. From Na to K, our detection limits are about 50% to 75% lower than previously published results for similar instrument. Calibration was performed using Micromatter standards, except for P whose standard was produced by nebulization of an aqueous solution of KH2PO4 at our laboratory. The multi-element reference material National Institute of Standards and Technology-2783 (air particulate filter) was used for evaluating the accuracy of the calibration procedure of the 22 elements in our standard analysis routine, and the uncertainty associated with calibration procedures was evaluated. The overall performance of the instrument and validation of our measurements were assessed by comparison with results obtained from parallel analysis using particle-induced X-ray emission and another Epsilon 5 spectrometer. The elemental composition in 660 samples collected at a pristine site in the Amazon Basin and of 1416 samples collected at a site perturbed by land use change was determined. Our measurements show trace elements associated with biogenic aerosols, soil dust, biomass burning, and sea-salt, even for the very low concentrations as observed in Amazonia. Copyright (C) 2014 John Wiley & Sons, Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000337724600006 Publication Date 2014-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:118419 Serial 8342
Permanent link to this record
 

 
Author (down) Arakcheeva, A.; Pattison, P.; Chapuis, G.; Rossell, M.; Filaretov, A.; Morozov, V.; Van Tendeloo, G.
Title KSm(MoO4)2, an incommensurately modulated and partially disordered scheelite-like structure Type A1 Journal article
Year 2008 Publication Acta crystallographica: section B: structural science Abbreviated Journal Acta Crystallogr B
Volume 64 Issue Part 2 Pages 160-171
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The incommensurately modulated scheelite-like KSm( MoO4)(2) structure has been refined in the monoclinic superspace group I2/b(alpha beta 0)00 by the Rietveld method on the basis of synchrotron radiation powder diffraction data. The systematic broadening of satellite reflections has been accounted for by applying anisotropic microstrain line-broadening. The microstructure has been studied by transmission electron microscopy (TEM). The partial disorder of the K and Sm cations in the A position is best approximated by a combination of harmonic and complex crenel functions with (0.952Sm + 0.048K) and (0.952K + 0.048Sm) atomic domains. This combination yields a compositional wave distribution from {KMoO4} to {SmMoO4} observed in the ab structure projection along q. The specific features of KSm(MoO4)(2) and degree of the A-cation ordering are discussed in comparison with the previously reported structure of KNd(MoO4)(2).
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000253992600004 Publication Date 2008-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0108-7681; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 23 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:102618 Serial 3539
Permanent link to this record
 

 
Author (down) Araizi-Kanoutas, G.; Geessinck, J.; Gauquelin, N.; Smit, S.; Verbeek, X.H.; Mishra, S.K.; Bencok, P.; Schlueter, C.; Lee, T.-L.; Krishnan, D.; Fatermans, J.; Verbeeck, J.; Rijnders, G.; Koster, G.; Golden, M.S.
Title Co valence transformation in isopolar LaCoO3/LaTiO3 perovskite heterostructures via interfacial engineering Type A1 Journal article
Year 2020 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials
Volume 4 Issue 2 Pages 026001
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report charge transfer up to a single electron per interfacial unit cell across nonpolar heterointerfaces from the Mott insulator LaTiO3 to the charge transfer insulator LaCoO3. In high-quality bi- and trilayer systems grown using pulsed laser deposition, soft x-ray absorption, dichroism, and scanning transmission electron microscopy-electron energy loss spectroscopy are used to probe the cobalt-3d electron count and provide an element-specific investigation of the magnetic properties. The experiments show the cobalt valence conversion is active within 3 unit cells of the heterointerface, and able to generate full conversion to 3d7 divalent Co, which displays a paramagnetic ground state. The number of LaTiO3/LaCoO3 interfaces, the thickness of an additional, electronically insulating “break” layer between the LaTiO3 and LaCoO3, and the LaCoO3 film thickness itself in trilayers provide a trio of control knobs for average charge of the cobalt ions in LaCoO3, illustrating the efficacy of O−2p band alignment as a guiding principle for property design in complex oxide heterointerfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000513551200007 Publication Date 2020-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited 13 Open Access OpenAccess
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Horizon 2020, 730872 ; Department of Science and Technology, Ministry of Science and Technology, SR/NM/Z-07/2015 ; Jawaharlal Nehru Centre for Advanced Scientific Research; Approved Most recent IF: 3.4; 2020 IF: NA
Call Number EMAT @ emat @c:irua:167787 Serial 6376
Permanent link to this record
 

 
Author (down) Apolinario, S.W.S.; Peeters, F.M.
Title Binary dusty plasma Coulomb balls Type A1 Journal article
Year 2011 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 83 Issue 4 Pages 041136,1-041136,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigated the mixing and segregation of a system consisting of two different species of particles, having different charges, interacting through a pure Coulomb potential, and confined in a three-dimensional parabolic trap. The structure of the cluster and its normal mode spectrum are analyzed as a function of the relative charge and the relative number of different types of particles. We found that (a) the system can be in a mixed or segregated state depending on the relative charge ratio parameter and (b) the segregation process is mediated by a first or second order structural phase transition which strongly influences the magic cluster properties of the system.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000290154900004 Publication Date 2011-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 10 Open Access
Notes ; This work was supported by FACEPE (Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.366; 2011 IF: 2.255
Call Number UA @ lucian @ c:irua:89716 Serial 236
Permanent link to this record
 

 
Author (down) Apolinario, S.W.S.; Peeters, F.M.
Title Melting of anisotropically confined Coulomb balls Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 78 Issue 2 Pages 024202,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000258190200049 Publication Date 2008-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:70557 Serial 1986
Permanent link to this record
 

 
Author (down) Apolinario, S.W.S.; Peeters, F.M.
Title Melting transitions in isotropically confined three-dimensional small Coulomb clusters Type A1 Journal article
Year 2007 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 76 Issue 3 Pages 031107,1-13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Molecular dynamic simulations are performed to investigate the melting process of small three-dimensional clusters (i.e., systems with one and two shells) of classical charged particles trapped in an isotropic parabolic potential. The confined particles interact through a repulsive potential. We find that the ground-state configurations for systems with N=6, 12, 13, and 38 particles interacting through a Coulomb potential are magic clusters. Such magic clusters have an octahedral or icosahedral symmetry and are found to have a large stability against intrashell diffusion leading to an intershell melting transition prior to the intrashell and radial melting process. For systems with two shells a local radial melting of subshells is found at low temperatures resulting in a structural transition leading to an increased symmetry of the ordered system. Using Lindemanns criterion the different melting temperatures are determined and the influence of the screening of the interparticle interaction was investigated. A normal mode analysis is performed and some of the normal modes are found to be determinantal for the melting process.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000249785800015 Publication Date 2007-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 28 Open Access
Notes Approved Most recent IF: 2.366; 2007 IF: 2.483
Call Number UA @ lucian @ c:irua:65693 Serial 1990
Permanent link to this record
 

 
Author (down) Apolinario, S.W.S.; Partoens, B.; Peeters, F.M.
Title Inhomogeneous melting in anisotropically confined two-dimensional clusters Type A1 Journal article
Year 2006 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 74 Issue 3 Pages 031107,1-11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000240870100019 Publication Date 2006-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 25 Open Access
Notes Approved Most recent IF: 2.366; 2006 IF: 2.438
Call Number UA @ lucian @ c:irua:60998 Serial 1668
Permanent link to this record
 

 
Author (down) Apolinario, S.W.S.; Partoens, B.; Peeters, F.M.
Title Multiple rings in a 3D anisotropic Wigner crystal: structural and dynamical properties Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue 3 Pages 035321,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000252862900102 Publication Date 2008-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 17 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:67821 Serial 2229
Permanent link to this record