toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) van Vaeck, L.; van Roy, W.; Struyf, H.; Poels, K.; Gijbels, R. openurl 
  Title Laser microprobe mass spectrometry: local surface analysis of organic and inorganic compounds Type H3 Book chapter
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages 354-368  
  Keywords H3 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Vch Place of Publication Weinheim Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:19343 Serial 1795  
Permanent link to this record
 

 
Author (up) van Vaeck, L.; Vanroy, W.; Gijbels, R. openurl 
  Title Laser ionization mass-spectrometry for the characterization of solid materials Type A1 Journal article
  Year 1992 Publication Analusis : chimie analytique, méthodes physiques d'analyse, composition de la matière Abbreviated Journal  
  Volume 20 Issue 7 Pages S29-S31  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos A1992JN30700030 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0365-4877 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:104498 Serial 1791  
Permanent link to this record
 

 
Author (up) Van Velthoven, N.; Henrion, M.; Dallenes, J.; Krajnc, A.; Bugaev, A.L.; Liu, P.; Bals, S.; Soldatov, A.; Mali, G.; De Vos, D.E. pdf  url
doi  openurl
  Title S,O-functionalized metal-organic frameworks as heterogeneous single-site catalysts for the oxidative alkenylation of arenes via C- H activation Type A1 Journal article
  Year 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 10 Issue 9 Pages 5077-5085  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Heterogeneous single-site catalysts can combine the R precise active site design of organometallic complexes with the efficient recovery of solid catalysts. Based on recent progress on homogeneous thioether ligands for Pd-catalyzed C-H activation reactions, we here develop a scalable metal-organic framework-based heterogeneous single-site catalyst containing S,O-moieties that increase the catalytic activity of Pd(II) for the oxidative alkenylation of arenes. The structure of the Pd@MOF-808-L1 catalyst was characterized in detail via solid-state nuclear magnetic resonance spectroscopy, N-2 physisorption, and high-angle annular dark field scanning transmission electron microscopy, and the structure of the isolated palladium active sites could be identified by X-ray absorption spectroscopy. A turnover frequency (TOF) of 8.4 h(-1) was reached after 1 h of reaction time, which was 3 times higher than the TOF of standard Pd(OAc)(2), ranking Pd@MOF-808-L1 among the most active heterogeneous catalysts ever reported for the nondirected oxidative alkenylation of arenes. Finally, we showed that the single-site catalyst promotes the oxidative alkenylation of a broad range of electron-rich arenes, and the applicability of this heterogeneous system was demonstrated by the gram-scale synthesis of industrially relevant products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530090800026 Publication Date 2020-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited 37 Open Access OpenAccess  
  Notes ; The research leading to these results has received funding from the NMBP-01-2016 Program of the European Union's Horizon 2020 Framework Program H2020/2014-2020/under grant agreement no [720996]. N.V.V. and D.E.D.V. thank the FWO for funding (1S32917N and G0F2320N). D.E.D.V. is grateful for KU Leuven's support in the frame of the CASAS Metusalem project and a C3 type project. A.K. and G.M. acknowledge the financial support from the Slovenian Research Agency (research core funding no. P1-0021 and project no. N1-0079). A.L.B and A.V.S. acknowledge Russian Science Foundation grant no. 20-43-01015 for financial support. We thank Alexander Trigub and Alexey Veligzhanin for their support during the beamtime at Kurchatov Institute. We are indebted to Elizaveta Kamyshova and Anna Pnevskaya for their valuable help during EXAFS measurements. P.L. and S.B. thank European Research Council for the ERC Consolidator Grant 815128, REALNANO. Kassem Amro and Guillaume Gracy from Sikemia are gratefully acknowledged for providing ; sygma Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number UA @ admin @ c:irua:169530 Serial 6598  
Permanent link to this record
 

 
Author (up) Van Velthoven, N.; Waitschat, S.; Chavan, S.M.; Liu, P.; Smolders, S.; Vercammen, J.; Bueken, B.; Bals, S.; Lillerud, K.P.; Stock, N.; De Vos, D.E. url  doi
openurl 
  Title Single-site metal-organic framework catalysts for the oxidative coupling of arenes via C-H/C-H activation Type A1 Journal article
  Year 2019 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 10 Issue 10 Pages 3616-3622  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract C-H activation reactions are generally associated with relatively low turnover numbers (TONs) and high catalyst concentrations due to a combination of low catalyst stability and activity, highlighting the need for recyclable heterogeneous catalysts with stable single-atom active sites. In this work, several palladium loaded metal-organic frameworks (MOFs) were tested as single-site catalysts for the oxidative coupling of arenes (e.g. o-xylene) via C-H/C-H activation. Isolation of the palladium active sites on the MOF supports reduced Pd(0) aggregate formation and thus catalyst deactivation, resulting in higher turnover numbers (TONs) compared to the homogeneous benchmark reaction. Notably, a threefold higher TON could be achieved for palladium loaded MOF-808 due to increased catalyst stability and the heterogeneous catalyst could efficiently be reused, resulting in a cumulative TON of 1218 after three runs. Additionally, the palladium single-atom active sites on MOF-808 were successfully identified by Fourier transform infrared (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000463759100017 Publication Date 2019-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 68 Open Access OpenAccess  
  Notes ; The research leading to these results has received funding from the NMBP-01-2016 Program of the European Union's Horizon 2020 Framework Program H2020/2014-2020/under grant agreement no. [720996]. N. V. V., S. S., J. V., B. B. and D. E. D. V. thank the FWO for funding (SB, Aspirant and postdoctoral grants). The electron microscopy work was supported by FWO funding G038116. D. E. D. V. is grateful for KU Leuven support in the frame of the CASAS Metusalem project and a C3 type project. The XAS experiments were performed on beamline BM26A at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to D. Banerjee at the ESRF for providing assistance in using beamline BM26A. Johnson Matthey and S. Bennett are gratefully acknowledged for providing Smopex-102. ; Approved Most recent IF: 8.668  
  Call Number UA @ admin @ c:irua:159403 Serial 5259  
Permanent link to this record
 

 
Author (up) Van Vlierberghe, S. pdf  doi
openurl 
  Title Crosslinking strategies for porous gelatin scaffolds Type A1 Journal article
  Year 2016 Publication Journal of materials science Abbreviated Journal  
  Volume 51 Issue 9 Pages 4349-4357  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The present work reports on the application and the evaluation of a multitude of crosslinking approaches including high-energy irradiation, redox-initiating systems and conventional carbodiimide-coupling chemistry for frozen and/or freeze-dried porous gelatin scaffolds. The latter is particularly relevant for a plethora of biomedical applications such as tissue engineering supports, wound dressings, adhesive and absorbent pads for surgery, etc. Moreover, the results obtained for gelatin can be considered a proof-of-concept to be extrapolated to other polymer systems containing double bonds and/or amines and carboxylic acids to also realize scaffold crosslinking in dry or frozen state. The results showed that high-energy irradiation at -5 A degrees C enabled sufficient segmental mobility to induce chemical crosslinking after performing a cryogenic treatment of methacrylamide-modified gelatin scaffolds. Alternatively, although several redox-initiating systems were unable to chemically crosslink functionalized gelatin, the combination of ammonium persulphate and TEMED resulted in the formation of scaffolds with a reasonable gel fraction. Interestingly, carbodiimide-coupling was found suitable to crosslink freeze-dried gelatin matrices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370342100016 Publication Date 2016-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:132277 Serial 7742  
Permanent link to this record
 

 
Author (up) van Walsem, J. pdf  openurl
  Title Design and optimization of a photocatalytic reactor for air purification in ventilation systems Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 158 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocatalysis has been labeled for decades as a promising technique for air purification. The principle seems straightforward and requires a photocatalyst that is immobilized on a substrate, and one or more UV sources to activate the photocatalyst. No waste products are produced, the reactions occur in mild conditions and the supplies are relatively cheap. Yet it seems that the commercialization of photocatalytic systems does not break through on the global market. The aim of this thesis is to identify and tackle the bottlenecks that impede commercialization from an application-oriented approach. The problem of indoor air pollution is enhanced by the fact that people spend more and more time indoors and that ventilation is kept to a minimum as an energy-saving measure. This inevitably leads to an accumulation of volatile organic compounds (VOCs) that are emitted by e.g. building materials, paint and furniture. Human exposure to VOCs is directly related to the sick building syndrome leading to complaints such as headache, fatigue, dizziness and lack of concentration. In addition, exposure to VOCs is related to serious long-term health effects such as cancer or respiratory diseases. Therefore, significant research efforts are focused on advanced indoor air purification methods. Integration or retrofitting of a photocatalytic (PCO) air purifying unit into heating, ventilation and air conditioning (HVAC) equipment has been chosen as an interesting approach. As a starting point of this thesis, the operational conditions of a ventilation system were mapped. These systems are characterized by high flow rates and the necessity of minimal pressure losses. Pressure losses increase the energy demand and can lead to failure of the ventilation fan and thereby undermine the proper functioning of the ventilation system. A suitable substrate must allow the contaminated air to pass through with a minimal pressure drop, allow sufficient contact time between VOC and photocatalyst, have a large surface area available for coating with excellent adhesion, and be transparent to UV light. Therefore, the permeability and the available exposed surface were selected as main selection criteria. After a thorough quantitative analysis of potential substrates, borosilicate glass tubes were selected. Glass tubes can easily be stacked to constitute a transparent monolithic multi-tube reactor, with their length parallel to the air flow in order to minimize the pressure drop. Moreover, borosilicate glass is relatively inexpensive and has excellent UV-A light transmitting properties. Based on a literature study, a sol-gel coating procedure was selected that is extremely suitable for coating glass substrates. The next step was to optimize the amount of P25 (commercial titanium dioxide) in the photocatalytic sol-gel coating for its application. More P25 in the sol-gel coating results in a higher adsorption capacity and consequently a higher photocatalytic activity, but greatly reduces the transparency of the coating. After an in-depth study, the concentration of 10 g L-1 P25 was selected as the most feasible for multi-tube reactors. Since the operation of photocatalytic reactors is based on a complex interaction of physical and chemical processes, mathematical models were developed, supported by experimental data, that include all these phenomena as a tool for reactor design and optimization. By making use of such models, time-consuming and expensive experimental research can be minimized. However, the experimental validation of models is of utmost importance to prove its reliability and accuracy. Intrinsic kinetic parameters provide the fundamentals for these models as they describe the photocatalytic reaction rate, independent of fluid dynamics, reactor geometry and radiation field. In this work they were estimated by means of a Computational Fluid Dynamics (CFD) study, based on FTIR (Fourier-transform infrared spectroscopy) experiments with a lab scale multi-tube reactor. The kinetic parameters were validated by an alternative analytic approach, emphasizing the accuracy and reliability of the simulations. Finally, the aforementioned CFD approach, based on the simultaneously modelling of airflow, mass transfer, UV light irradiation and photocatalytic reactions, was used to obtain insights for the light source configuration in upscaled multi-tube reactors. After taking all these insights and some practical implications into account, a final upscaled multi-tube reactor design was proposed and converted into a first built prototype. Subsequently, it was evaluated according the CEN-EN-16486-1 standard for VOC removal by the external scientific research center ‘CERTECH’. The scientific results, regarding the mineralization of the VOCs and photocatalytic efficiency of the reactor, demonstrated the feasibility for indoor air purification by the upscaled multi-tube reactor and the possible implementation in ventilation systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:160205 Serial 7763  
Permanent link to this record
 

 
Author (up) van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title Determination of intrinsic kinetic parameters in photocatalytic multi-tube reactors by combining the NTUm-method with radiation field modelling Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 354 Issue 354 Pages 1042-1049  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work, we propose an adapted Number of Transfer Units (NTUm)-method as an effective tool to determine the Langmuir-Hinshelwood kinetic parameters for a photocatalytic multi-tube reactor. The Langmuir-Hinshelwood rate constant kLH and the Langmuir adsorption constant KL were determined from several experiments under different UV-irradiance conditions, resulting in irradiance depending values for kLH. In order to determine a unique, intrinsic empirical constant k0, valid for all irradiation conditions, we coupled the adapted NTUm-method with a radiation field model to predict UV-irradiance distribution inside the reactor. The final set of kinetic parameters were derived using a Generalized Reduced Gradient (GRG) nonlinear solving method in Matlab which minimizes the differences between model and experimental reactor outlet concentrations of acetaldehyde for various photocatalytic experiments under varying operating conditions, including inlet concentration, flow rate and UV-irradiance. An excellent agreement of the intrinsic empirical constant k0, derived from the coupled NTUm-radiation field model and an earlier published CFD approach was found, emphasizing its validity and reliability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445413900099 Publication Date 2018-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 2 Open Access  
  Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:154845 Serial 5940  
Permanent link to this record
 

 
Author (up) van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title Integration of a photocatalytic multi-tube reactor for indoor air purification in HVAC systems : a feasibility study Type A1 Journal article
  Year 2018 Publication Environmental Science and Pollution Research Abbreviated Journal Environ Sci Pollut R  
  Volume 25 Issue 18 Pages 18015-18026  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This work is focused on an in-depth experimental characterization of multi-tube reactors for indoor air purification integrated in ventilation systems. Glass tubes were selected as an excellent photocatalyst substrate to meet the challenging requirements of the operating conditions in a ventilation system in which high flow rates are typical. Glass tubes show a low-pressure drop which reduces the energy demand of the ventilator, and additionally, they provide a large exposed surface area to allow interaction between indoor air contaminants and the photocatalyst. Furthermore, the performance of a range of P25-loaded sol-gel coatings was investigated, based on their adhesion properties and photocatalytic activities. Moreover, the UV light transmission and photocatalytic reactor performance under various operating conditions were studied. These results provide vital insights for the further development and scaling up of multi-tube reactors in ventilation systems which can provide a better comfort, improved air quality in indoor environments, and reduced human exposure to harmful pollutants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000436879200071 Publication Date 2018-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.741 Times cited 3 Open Access  
  Notes ; J.V.W. acknowledges the Agentschap Innoveren and Ondernemen for a PhD fellowship. ; Approved Most recent IF: 2.741  
  Call Number UA @ admin @ c:irua:150946 Serial 5967  
Permanent link to this record
 

 
Author (up) van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title Proof of concept of an upscaled photocatalytic multi-tube reactor : a combined modelling and experimental study Type A1 Journal article
  Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 378 Issue 378 Pages 122038  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Three upscaled multi-tube photocatalytic reactors designed for integration into HVAC (Heating, Ventilation and Air Conditioning) systems were proposed and evaluated using a CFD modelling approach, with emphasis on the flow, irradiation and concentration distribution in the reactor and hence, photocatalytic performance. Based on the obtained insights, the best reactor design was selected, further characterized and improved by an additional proof of concept study and eventually converted into practice. Subsequently, the scaled-up prototype was experimentally tested according to the CEN-EN-16846-1 standard (2017) for volatile organic compound (VOC) removal by an external scientific research center. The combined modelling and experimental approach used in this work, leads to essential insights into the design and assessment of photocatalytic reactors. Therefore, this study provides an essential step towards the optimization and commercialization of photocatalytic reactors for HVAC applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487764800011 Publication Date 2019-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited Open Access  
  Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:162190 Serial 5986  
Permanent link to this record
 

 
Author (up) van Walsem, J.; Verbruggen, S.W.; Modde, B.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title CFD investigation of a multi-tube photocatalytic reactor in non-steady-state conditions Type A1 Journal article
  Year 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 304 Issue Pages 808-816  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A novel multi-tube photoreactor is presented with a high efficiency (over 90% conversion) toward the degradation of acetaldehyde in air under UV conditions with an incident intensity of 2.1 mW cm−2. A CFD model was developed to simulate the transient adsorption and photocatalytic degradation processes of acetaldehyde in this reactor design and to estimate the corresponding kinetic parameters through an optimization routine using the experimentally determined outlet concentration profiles. The CFD model takes into account the entire reactor geometry and all relevant flow parameters, in contrast to analytical methods that often oversimplify the physical and chemical process characteristics. Using CFD, we show that both adsorption and desorption rate constants increase by respectively one and two orders of magnitude when the UV light is switched on, which clearly affects the transient behavior. The agreement of the experimental and modelled concentration profiles is excellent as evidenced by a coefficient of determination of at least 0.965. To demonstrate the reliability and accuracy of all parameters obtained from the modelling approach, an ultimate validation test was performed using other conditions than the ones used for estimating the kinetic parameters. The model was able to accurately simulate simultaneous adsorption, desorption and photocatalytic degradation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384777200089 Publication Date 2016-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 10 Open Access  
  Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:139620 Serial 5933  
Permanent link to this record
 

 
Author (up) Van Wesenbeeck, K. url  isbn
openurl 
  Title Plasma catalysis as an efficient and sustainable air purification technology Type Doctoral thesis
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 171 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-5728-514-1 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:135267 Serial 8388  
Permanent link to this record
 

 
Author (up) Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S. pdf  openurl
  Title Integration of a photocatalytic coating in a corona discharge unit for plasma assisted catalysis Type A1 Journal article
  Year 2013 Publication Journal of environmental solutions Abbreviated Journal  
  Volume 2 Issue 1 Pages 16-24  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The combination of a non-thermal plasma with catalysis is considered as a sustainable indoor air purification technology to achieve complete oxidation at reduced energy cost with a longer electrode lifetime. An optimal window of operation for plasma assisted catalysis is found by varying the polarity, the applied voltage, the relative humidity of the gas phase and the configuration of the plasma reactor. The results show that, in general, negative corona discharge can obtain higher nitric oxide (NO) conversion efficiencies compared to positive corona. It is also clear that at higher applied voltages, higher conversion efficiency can be reached. The effect of relative humidity, however, is not found to be significant in the range (0 20.3 %) tested in this work. Additionally, the configuration of the plasma reactor is changed by varying the amount of pins that are attached at the collector electrode. The results show that there is an optimum at 10 pairs of pins to obtain a high conversion efficiency of NO. By applying a coating on the collector electrode of the plasma reactor, it is possible to see the influence of the coating on the performance of the plasma system, which was operating in the previously found optimal window. It stands clear that the use of a plasma assisted catalysis system has high potential as an integrated and sustainable indoor air purification technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:108646 Serial 5966  
Permanent link to this record
 

 
Author (up) Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S. openurl 
  Title Plasma assisted catalysis : an efficient and sustainable indoor air purification technology Type P3 Proceeding
  Year 2012 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:127490 Serial 5981  
Permanent link to this record
 

 
Author (up) Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S. pdf  openurl
  Title Plasma catalysis : integration of a photocatalytic coating in a corona discharge unit Type P3 Proceeding
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:127487 Serial 5982  
Permanent link to this record
 

 
Author (up) Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S. pdf  openurl
  Title Plasmacatalysis : a sustainable and efficient indoor air treatment Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:127488 Serial 5984  
Permanent link to this record
 

 
Author (up) Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S. openurl 
  Title Study of a TiO2 photocatalytic coating for use in plasma catalysis Type A2 Journal article
  Year 2013 Publication Communications in agricultural and applied biological sciences Abbreviated Journal  
  Volume 78 Issue 1 Pages 227-233  
  Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1379-1176 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:105388 Serial 5991  
Permanent link to this record
 

 
Author (up) Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S. doi  openurl
  Title Study of positive and negative plasma catalytic oxidation of ethylene Type A1 Journal article
  Year 2017 Publication Environmental technology Abbreviated Journal Environ Technol  
  Volume 38 Issue 12 Pages 1554-1561  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The effect of introducing a photocatalytically active coating inside a plasma unit is investigated. This technique combines the advantages of high product selectivity from catalysis and the fast start-up from plasma technology. In this study, a preselected TiO2 coating is applied on the collector electrode of a DC corona discharge unit as non-thermal plasma reactor, in order to study the oxidation of ethylene. For both positive and negative polarities an enhanced mineralization is observed while the formation of by-products drastically decreases. The plasma catalytic unit gave the best results when using negative polarity at a voltage of 15kV. This shows the potential of plasma catalysis as indoor air purification technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402018900010 Publication Date 2016-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3330 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.751 Times cited 1 Open Access  
  Notes ; The authors wish to thank the University of Antwerp for supporting and funding this research. ; Approved Most recent IF: 1.751  
  Call Number UA @ admin @ c:irua:144351 Serial 5993  
Permanent link to this record
 

 
Author (up) Van Winckel, T.; Al-Omari, A.; Takás, I.; Wett, B.; Bachmann, B.; Sturm, B.; Bott, C.; Vlaeminck, S.E.; Murthy, S.; De Clippeleir, H. openurl 
  Title Conceptual framework for deammonification in a combined floc-granule system : impact of aeration control, external selector and bioaugmentation based on full-scale data from WWTP in Strass Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 16 p. T2 - IWA 2017 Conference on Sustainable Wast  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151109 Serial 7722  
Permanent link to this record
 

 
Author (up) Van Winckel, T.; Cools, J.; Vlaeminck, S.E.; Joos, P.; Van Meenen, E.; Borregán-Ochando, E.; Van Den Steen, K.; Geerts, R.; Vandermoere, F.; Blust, R. pdf  url
doi  openurl
  Title Towards harmonization of water quality management : a comparison of chemical drinking water and surface water quality standards around the globe Type A1 Journal article
  Year 2021 Publication Journal Of Environmental Management Abbreviated Journal J Environ Manage  
  Volume 298 Issue Pages 113447-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change  
  Abstract Water quality standards (WQS) set the legal definition for safe and desirable water. WQS impose regulatory concentration limits to act as a jurisdiction-specific legislative risk-management tool. Despite its importance in shaping a universal definition of safe, clean water, little information exists with respect to (dis)similarity of chemical WQS worldwide. Therefore, this paper compares chemical WQS for drinking and surface water matrices in eight jurisdictions representing a global geographic distribution: Australia, Brazil, Canada, China, the European Union, the region of Flanders in Belgium, the United States of America, and South Africa. The World Health Organization's list is used as a reference for drinking water standards. Sørensen–Dice indices (SDI) showed little qualitative similarity in the compounds that are regulated in drinking water (median SDI = 40%) and surface water (median SDI = 33%), indicating that the heterogeneity within a matrix is substantial at the level of the standard. Quantitative similarity for matching standards was higher than the qualitative per Kendall correlation (median = 0.73 and 0.58 for drinking water and surface water respectively), yet variance observed within standards remained inexplicably high for organic compounds. Variations in WQS were more pronounced for organic compounds. Most differences cannot be easily explained from a toxicological or risk-based point-of-view. Historical development, ease of measurement, and (toxicological) knowledge gaps on the risk of a vast number of organic compounds are theorized to be the drivers. Therefore, this study argues for a more tailored, risk-based approach in which standards incorporated into water safety plans are dynamically set for compounds that are persistent and could pose a risk for human health and/or aquatic ecosystems. Global variations in WQS should therefore not necessarily be avoided but rather globally harmonized with enough flexibility to ensure a global, up-to-date definition of safe and desirable water everywhere.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000700577400005 Publication Date 2021-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.01 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.01  
  Call Number UA @ admin @ c:irua:180765 Serial 8681  
Permanent link to this record
 

 
Author (up) Van Winckel, T.; De Clippeleir, H.; Mancell-Egala, A.; Rahman, A.; Wett, B.; Bott, C.; Sturm, B.; Vlaeminck, S.E.; Al-Omari, A.; Murthy, S. openurl 
  Title Balancing flocs and granules by external selectors to increase capacity in high-rate activated sludge systems Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 6 p. T2 - WEFTEC.16, 24 - 28 September 2016, New O  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151122 Serial 7548  
Permanent link to this record
 

 
Author (up) Van Winckel, T.; De Clippeleir, H.; Yapuwa, H.; Wett, B.; Bott, C.; Sturm, B.; Vlaeminck, S.E.; Al-Omari, A.; Murthy, S. openurl 
  Title Lets settle together? Extending external selection from mainstream deammonification to high-rate activated sludge Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 13 p. T2 - WEF/IWA Nutrient Removal and Recovery C  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151131 Serial 8171  
Permanent link to this record
 

 
Author (up) Van Winckel, T.; Liu, X.; Vlaeminck, S.E.; Takács, I.; Al-Omari, A.; Sturm, B.; Kjellerup, B.V.; Murthy, S.N.; De Clippeleir, H. pdf  url
doi  openurl
  Title Overcoming floc formation limitations in high-rate activated sludge systems Type A1 Journal article
  Year 2019 Publication Chemosphere Abbreviated Journal  
  Volume 215 Issue Pages 342-352  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) is an essential cornerstone of the pursuit towards energy positive sewage treatment through maximizing capture of organics. The capture efficiency heavily relies on the degree of solid separation achieved in the clarifiers. Limitations in the floc formation process commonly emerge in HRAS systems, with detrimental consequences for the capture of organics. This study pinpointed and overcame floc formation limitations present in full-scale HRAS reactors. Orthokinetic flocculation tests were performed with varying shear, sludge concentration, and coagulant or flocculant addition. These were analyzed with traditional and novel settling parameters and extracellular polymeric substances (EPS) measurements. HRAS was limited by insufficient collision efficiency and occurred because the solids retention time (SRT) was short and colloid loading was high. The limitation was predominantly caused by impaired flocculation rather than coagulation. In addition, the collision efficiency limitation was driven by EPS composition (low protein over polysaccharide ratio) instead of total EPS amount. Collision efficiency limitation was successfully overcome by bio-augmenting sludge from a biological nutrient removal reactor operating at long SRT which did not show any floc formation limitations. However, this action brought up a floc strength limitation. The latter was not correlated with EPS composition, but rather EPS amount and hindered settling parameters, which determined floc morphology. With this, an analysis toolkit was proposed that will enable design engineers and operators to tackle activated solid separation challenges found in HRAS systems and maximize the recovery potential of the process. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450383400038 Publication Date 2018-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:153978 Serial 8350  
Permanent link to this record
 

 
Author (up) Van Winckel, T.; Ngo, N.; Sturm, B.; Al-Omari, A.; Wett, B.; Bott, C.; Vlaeminck, S.E.; De Clippeleir, H. pdf  url
doi  openurl
  Title Enhancing bioflocculation in high-rate activated sludge improves effluent quality yet increases sensitivity to surface overflow rate Type A1 Journal article
  Year 2022 Publication Chemosphere Abbreviated Journal Chemosphere  
  Volume 308 Issue 2 Pages 136294-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) relies on good bioflocculation and subsequent solid-liquid separation to maximize the capture of organics. However, full-scale applications often suffer from poor and unpredictable effluent suspended solids (ESS). While the biological aspects of bioflocculation are thoroughly investigated, the effects of fines (settling velocity < 0.6 m3/m2/h), shear and surface overflow rate (SOR) are unclear. This work tackled the impact of fines, shear, and SOR on the ESS in absence of settleable influent solids. This was assessed on a full-scale HRAS step-feed (SF) and pilot-scale HRAS contact-stabilization (CS) configuration using batch settling tests, controlled clarifier experiments, and continuous operation of reactors. Fines contributed up to 25% of the ESS in the full-scale SF configuration. ESS decreased up to 30 mg TSS/L when bioflocculation was enhanced with the CS configuration. The feast-famine regime applied in CS promoted the production of high-quality extracellular polymeric substances (EPS). However, this resulted in a narrow and unfavorable settling velocity distribution, with 50% ± 5% of the sludge mass settling between 0.6 and 1.5 m3/m2/h, thus increasing sensitivity towards SOR changes. A low shear environment (20 s−1) before the clarifier for at least one min was enough to ensure the best possible settling velocity distribution, regardless of prior shear conditions. Overall, this paper provides a more complete view on the drivers of ESS in HRAS systems, creating the foundation for the design of effective HRAS clarifiers. Tangible recommendations are given on how to manage fines and establish the optimal settling velocity of the sludge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000863979600006 Publication Date 2022-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.8  
  Call Number UA @ admin @ c:irua:190187 Serial 7154  
Permanent link to this record
 

 
Author (up) Van Winckel, T.; Vlaeminck, S.E.; Al-Omari, A.; Bachmann, B.; Sturm, B.; Wett, B.; Takács, I.; Bott, C.; Murthy, S.N.; De Clippeleir, H. pdf  url
doi  openurl
  Title Screen versus cyclone for improved capacity and robustness for sidestream and mainstream deammonification Type A1 Journal article
  Year 2019 Publication Environmental Science: Water Research & Technology Abbreviated Journal  
  Volume 5 Issue 10 Pages 1769-1781  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Deammonification systems are being implemented as cost- and resource-efficient nitrogen removal processes. However, their complexity is a major hurdle towards successful transposition from side- to mainstream application. Merely out-selecting nitrite oxidizing bacteria (NOB) or retaining anammox bacteria (AnAOB) does not guarantee efficient mainstream deammonification. This paper presents for the first time the interactions and synergies between kinetic selection, through management of residual substrates, and physical selection, through separation of solid retention times (SRTs). This allowed the formulation of tangible operational recommendations for successful deammonification. Activity measurements were used to establish retention efficiencies (η) for AnAOB for full-scale cyclones and rotating drum screens installed at a sidestream and mainstream deammonification reactor (Strass, Austria). In the sidestream reactor, using a screen (η = 91%) instead of a cyclone (η = 88%) may increase the capacity by up to 29%. For the mainstream reactor, higher AnAOB retention efficiencies achieved by the screen (η = 72%) compared to the cyclone (η = 42%) induced a prospective increase in capacity by 80–90%. In addition, the switch in combination with bioaugmentation from the sidestream made the process less dependent on nitrite availability, thus aiding in the outselection of NOB. This allowed for a more flexible (intermittent) aeration strategy and a reduced need for tight SRT control for NOB washout. A sensitivity analysis explored expected trends to provide possible operational windows for further calibration. In essence, characterization of the physical selectors at full scale allowed a deeper understanding of operational windows of the process and quantification of capacity, ultimately leading to a more space and energy conservation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487968200013 Publication Date 2019-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1400 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162540 Serial 8498  
Permanent link to this record
 

 
Author (up) Van Winckel, T.; Yapuwa, H.; Wett, B.; Sturm, B.; Vlaeminck, S.E.; Al-Omari, A.; Murthy, S.; De Clippeleir, H. openurl 
  Title Its time to harvest : combining internal selection and flocculent external selection to maximize carbon capture efficiency Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - WEFTEC.17, 30 September 4 October 2017,  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151112 Serial 8133  
Permanent link to this record
 

 
Author (up) van Winsen, F.; de Mey, Y.; Lauwers, L.; Van Passel, S.; Vancauteren, M.; Wauters, E. pdf  doi
openurl 
  Title Determinants of risk behaviour : effects of perceived risks and risk attitude on farmer's adoption of risk management strategies Type A1 Journal article
  Year 2016 Publication Journal Of Risk Research Abbreviated Journal J Risk Res  
  Volume 19 Issue 1 Pages 56-78  
  Keywords A1 Journal article; Sociology; Engineering Management (ENM)  
  Abstract The importance of risk perception and risk attitude for understanding individual's risk behaviour are independently well described in literature, but rarely combined in an integrated approach. In this study, we propose a model assuming the choice to implement certain risk management strategies to be directly driven by both perceptions of risks and risk attitude. Other determinants influence the intention to apply different risk strategies mainly indirectly, mediated by risk perception and risk attitude. This conceptual model is empirically tested, using structural equation modelling, for understanding the intention of farmers to implement different common risk management strategies at their farms. Data are gathered in a survey completed by 500 farmers from the Flanders region in Belgium, investigating attitudes towards farming, perceived past exposure to risk, socio-demographic characteristics, farm size, perceptions of the major sources of farm business risk, risk attitudes and the intention to apply common risk management strategies. Our major findings are: (i) perception of major farm business risks have no significant impact on the intention of applying any of the risk strategies under study, (ii) risk attitude does have a significant impact. Therefore, rather than objective risk faced and the subjective interpretation thereof, it is the general risk attitude that influence intended risk strategies to be implemented. A distinction can be made between farmers willing to take risk, who are more inclined to apply ex-ante risk management strategies and risk averse farmers who are less inclined to implement ex-ante risk management strategies but rather cope with the consequences and diminish their effects ex-post when risks have occurred.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000365523100004 Publication Date 2014-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1366-9877 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.34 Times cited 25 Open Access  
  Notes ; This work was supported by the agency for Innovation by Science and Technology [grant number 080508]. ; Approved Most recent IF: 1.34  
  Call Number UA @ admin @ c:irua:130188 Serial 6177  
Permanent link to this record
 

 
Author (up) van Winsen, F.; de Mey, Y.; Lauwers, L.; Van Passel, S.; Vancauteren, M.; Wauters, E. pdf  doi
openurl 
  Title Cognitive mapping : a method to elucidate and present farmers' risk perception Type A1 Journal article
  Year 2013 Publication Agricultural Systems Abbreviated Journal Agr Syst  
  Volume 122 Issue Pages 42-52  
  Keywords A1 Journal article  
  Abstract Assumptions on the perceptions of risks, made in agricultural economics literature, are recognized to be over-simplistic. For example most studies assume that risks are independent and static, while in reality most risks are interlinked and dynamic. We propose an alternative method to identify and present risk perception, closer to the actual comprehension of risk by farmers. Grounded theory is used to investigate the perceptions of risk by farmers while avoiding prior assumptions. Main findings are: (i) farmers have difficulty to rank or score probability and impact of risks in a (semi)quantitative manner; (ii) farmers attach different meanings to risk, when the focus shifts between, uncertain event, probability or value at stake and; (iii) farmers perceive risks as being interrelated. Based on these findings, we propose that farmers' risk perception can be best understood as a network of interrelated notions of uncertain events, their effects and uncertain outcomes. Furthermore, cognitive mapping is suggested to elucidate and present these networks. We test cognitive mapping, exploring dairy farmers' risk perception, and demonstrate the appropriateness of this methodology for capturing the complexity and context of perceived risk. Advantages are: (i) the qualitative approach, (ii) the focus on interrelations and context, (iii) the applicability at farm level, (iv) the farmer-driven rather than researcher-driven perspective, and (v) the elucidation of the polyvalent use of the risk concept. Cognitive maps can be used as a communication tool, a risk management tool, and a tool to stimulate bi-directional learning amongst farmers, policy makers, researchers and extension agents. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326910500005 Publication Date 2013-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.571 Times cited 27 Open Access  
  Notes ; We would like to acknowledge the Agency for Innovation by Science and Technology of the Flemish Government (IWT) for funding this research. Furthermore we would like to thank the anonymous reviewers for their valuable input. ; Approved Most recent IF: 2.571; 2013 IF: 2.453  
  Call Number UA @ admin @ c:irua:112765 Serial 6168  
Permanent link to this record
 

 
Author (up) van ‘t Veer, K.; Engelmann, Y.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Catalytic Ammonia Synthesis in a DBD Plasma: Role of Microdischarges and Their Afterglows Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 42 Pages 22871-22883  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)  
  Abstract Plasma-catalytic ammonia synthesis is receiving ever increasing attention, especially in packed bed dielectric barrier discharge (DBD) reactors. The latter typically operate in the filamentary regime when used for gas conversion applications. While DBDs are in principle well understood and already applied in the industry, the incorporation of packing materials and catalytic surfaces considerably adds to the complexity of the plasma physics and chemistry governing the ammonia formation. We employ a plasma kinetics model to gain insights into the ammonia formation mechanisms, paying special attention to the role of filamentary microdischarges and their afterglows. During the microdischarges, the synthesized ammonia is actually decomposed, but the radicals created upon electron impact dissociation of N2 and H2 and the subsequent catalytic reactions cause a net ammonia gain in the afterglows of the microdischarges. Under our plasma conditions, electron impact dissociation of N2 in the gas phase followed by the adsorption of N atoms is identified as a rate-limiting step, instead of dissociative adsorption of N2 on the catalyst surface. Both elementary Eley−Rideal and Langmuir−Hinshelwood reaction steps can be found important in plasma-catalytic NH3 synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000585970300002 Publication Date 2020-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique – FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ;This research was supported by the Excellence of Science FWOFNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 810182-SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Järi Van den Hoek and Dr. Yury Gorbanev for providing the experimentally measured electrical characteristics and Dr. Fatme Jardali for creating the TOC graphics. Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:173587 Serial 6428  
Permanent link to this record
 

 
Author (up) van ‘t Veer, K.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Zero-dimensional modeling of unpacked and packed bed dielectric barrier discharges: the role of vibrational kinetics in ammonia synthesis Type A1 Journal article
  Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 29 Issue 4 Pages 045020  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a zero-dimensional plasma kinetics model, including both surface and gas phase kinetics, to determine the role of vibrationally excited states in plasma-catalytic ammonia synthesis. We defined a new method to systematically capture the conditions of dielectric barrier discharges (DBDs), including those found in packed bed DBDs. We included the spatial and temporal nature of such discharges by special consideration of the number of micro-discharges in the model. We introduce a parameter that assigns only a part of the plasma power to the microdischarges, to scale the model conditions from filamentary to uniform plasma. Because of the spatial and temporal behaviour of the micro-discharges, not all micro-discharges occurring in the plasma reactor during a certain gas residence time are affecting the molecules. The fraction of power considered in the model ranges from 0.005 %, for filamentary plasma, to 100 %, for uniform plasma. If vibrational excitation is included in the plasma chemistry, these different conditions, however, yield an ammonia density that is only varying within one order of magnitude. At only 0.05 % of the power put into the uniform plasma component, a model neglecting vibrational excitation clearly does not result in adequate amounts of ammonia. Thus, our new model, which accounts for the concept in which not all the power is deposited by the micro-discharges, but some part may also be distributed in between them, suggests that vibrational kinetic processes are really important in (packed bed) DBDs. Indeed, vibrational excitation takes place in both the uniform plasma between the micro-discharges and in the strong micro-discharges, and is responsible for an increased N2 dissociation rate. This is shown here for plasma-catalytic ammonia synthesis, but might also be valid for other gas conversion applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000570241500001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Dr. Fatme Jardali for the discussions on plasma kinetic modelling and Dr. Jungmi Hong and Dr. Anthony B. Murphy for their aid in the calculation of the diffusion coefficients. Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:168097 Serial 6359  
Permanent link to this record
 

 
Author (up) van ‘t Veer, K.; van Alphen, S.; Remy, A.; Gorbanev, Y.; De Geyter, N.; Snyders, R.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Spatially and temporally non-uniform plasmas: microdischarges from the perspective of molecules in a packed bed plasma reactor Type A1 Journal article
  Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 54 Issue 17 Pages 174002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Dielectric barrier discharges (DBDs) typically operate in the filamentary regime and thus exhibit great spatial and temporal non-uniformity. In order to optimize DBDs for various applications, such as in plasma catalysis, more fundamental insight is needed. Here, we consider how the millions of microdischarges, characteristic for a DBD, influence individual gas molecules. We use a Monte Carlo approach to determine the number of microdischarges to which a single molecule would be exposed, by means of particle tracing simulations through a full-scale packed bed DBD reactor, as well as an empty DBD reactor. We find that the fraction of microdischarges to which the molecules are exposed can be approximated as the microdischarge volume over the entire reactor gas volume. The use of this concept provides good agreement between a plasma-catalytic kinetics model and experiments for plasma-catalytic NH3 synthesis. We also show that the concept of the fraction of microdischarges indicates the efficiency by which the plasma power is transferred to the gas molecules. This generalised concept is also applicable for other spatially and temporally non-uniform plasmas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000618776000001 Publication Date 2021-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited Open Access OpenAccess  
  Notes Excellence of Science FWO-FNRS project, FWO grant ID GoF9618n ; Flemish Government, project P2C (HBC.2019.0108) ; H2020 European Research Council, grant agreement No 810182 – SCOPE ERC Synergy pr ; This research was supported by the Excellence of Science FWO-FNRS project (FWO Grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No 810182—SCOPE ERC Synergy project) and by the Flemish Government through the Moonshot cSBO project P2C (HBC. 2019.0108). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Hamid Ahmadi Eshtehardi for discussions on the plasma-kinetic DBD model and Yannick Engelmann for discussions on the surface kinetics model. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:175878 Serial 6674  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: