toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Moors, K.; Sorée, B.; Magnus, W. url  doi
openurl 
  Title Modeling surface roughness scattering in metallic nanowires Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 124307  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000362565800032 Publication Date 2015-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 11 Open Access  
  Notes ; ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number UA @ lucian @ c:irua:129425 Serial 4207  
Permanent link to this record
 

 
Author (down) Mohammed, M.; Verhulst, A.S.; Verreck, D.; Van de Put, M.L.; Magnus, W.; Sorée, B.; Groeseneken, G. pdf  doi
openurl 
  Title Phonon-assisted tunneling in direct-bandgap semiconductors Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue 1 Pages 015701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In tunnel field-effect transistors, trap-assisted tunneling (TAT) is one of the probable causes for degraded subthreshold swing. The accurate quantum-mechanical (QM) assessment of TAT currents also requires a QM treatment of phonon-assisted tunneling (PAT) currents. Therefore, we present a multi-band PAT current formalism within the framework of the quantum transmitting boundary method. An envelope function approximation is used to construct the electron-phonon coupling terms corresponding to local Frohlich-based phonon-assisted inter-band tunneling in direct-bandgap III-V semiconductors. The PAT current density is studied in up to 100 nm long and 20 nm wide p-n diodes with the 2- and 15-band material description of our formalism. We observe an inefficient electron-phonon coupling across the tunneling junction. We further demonstrate the dependence of PAT currents on the device length, for our non-self-consistent formalism which neglects changes in the electron distribution function caused by the electron-phonon coupling. Finally, we discuss the differences in doping dependence between direct band-to-band tunneling and PAT current. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455350200021 Publication Date 2019-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 2 Open Access  
  Notes ; This work was supported by Imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:156735 Serial 5224  
Permanent link to this record
 

 
Author (down) Mohammed, M.; Verhulst, A.S.; Verreck, D.; Van de Put, M.; Simoen, E.; Sorée, B.; Kaczer, B.; Degraeve, R.; Mocuta, A.; Collaert, N.; Thean, A.; Groeseneken, G. url  doi
openurl 
  Title Electric-field induced quantum broadening of the characteristic energy level of traps in semiconductors and oxides Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 120 Issue 120 Pages 245704  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The trap-assisted tunneling (TAT) current in tunnel field-effect transistors (TFETs) is one of the crucial factors degrading the sub-60 mV/dec sub-threshold swing. To correctly predict the TAT currents, an accurate description of the trap is required. Since electric fields in TFETs typically reach beyond 10(6) V/cm, there is a need to quantify the impact of such high field on the traps. We use a quantum mechanical implementation based on the modified transfer matrix method to obtain the trap energy level. We present the qualitative impact of electric field on different trap configurations, locations, and host materials, including both semiconductors and oxides. We determine that there is an electric-field related trap level shift and level broadening. We find that these electric-field induced quantum effects can enhance the trap emission rates. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000392174000028 Publication Date 2016-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 6 Open Access  
  Notes ; This work was supported by imec's Industrial Affiliation Program. D. Verreck acknowledges the support of a PhD stipend from IWT-Vlaanderen. ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:141481 Serial 4593  
Permanent link to this record
 

 
Author (down) Mirzakhani, M.; Zarenia, M.; Peeters, F.M. pdf  doi
openurl 
  Title Edge states in gated bilayer-monolayer graphene ribbons and bilayer domain walls Type A1 Journal article
  Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 123 Issue 20 Pages 204301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the effective continuum model, the electron energy spectrum of gated bilayer graphene with a step-like region of decoupled graphene layers at the edge of the sample is studied. Different types of coupled-decoupled interfaces are considered, i.e., zigzag (ZZ) and armchair junctions, which result in significant different propagating states. Two non-valley-polarized conducting edge states are observed for ZZ type, which are mainly located around the ZZ-ended graphene layers. Additionally, we investigated both BA-BA and BA-AB domain walls in the gated bilayer graphene within the continuum approximation. Unlike the BA-BA domain wall, which exhibits gapped insulating behaviour, the domain walls surrounded by different stackings of bilayer regions feature valley-polarized edge states. Our findings are consistent with other theoretical calculations, such as from the tight-binding model and first-principles calculations, and agree with experimental observations. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000433977200017 Publication Date 2018-05-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 3 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO), the BOF-UA (Bijzonder Onderzoeks Fonds), the Methusalem program of the Flemish Government, and Iran Nanotechnology Initiative Council (INIC). ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:152044UA @ admin @ c:irua:152044 Serial 5020  
Permanent link to this record
 

 
Author (down) Milovanović, S.P.; Moldovan, D.; Peeters, F.M. pdf  url
doi  openurl
  Title Veselago lensing in graphene with a p-n junction: Classical versus quantum effects Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 154308  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The feasibility of Veselago lensing in graphene with a p-n junction is investigated numerically for realistic injection leads. Two different set-ups with two narrow leads are considered with absorbing or reflecting side edges. This allows us to separately determine the influence of scattering on electron focusing for the edges and the p-n interface. Both semiclassical and tight-binding simulations show a distinctive peak in the transmission probability that is attributed to the Veselago lensing effect. We investigate the robustness of this peak on the width of the injector, the position of the p-n interface, and different gate potential profiles. Furthermore, the influence of scattering by both short- and long-range impurities is considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000363535800022 Publication Date 2015-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 19 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:129452 Serial 3969  
Permanent link to this record
 

 
Author (down) Milovanovic, S.P.; Masir, M.R.; Peeters, F.M. pdf  doi
openurl 
  Title Bilayer graphene Hall bar with a pn-junction Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 114 Issue 11 Pages 113706  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the magnetic field dependence of the Hall and the bend resistances for a ballistic Hall bar structure containing a pn-junction sculptured from a bilayer of graphene. The electric response is obtained using the billiard model, and we investigate the cases of bilayer graphene with and without a band gap. Two different conduction regimes are possible: (i) both sides of the junction have the same carrier type and (ii) one side of the junction is n-type while the other one is p-type. The first case shows Hall plateau-like features in the Hall resistance that fade away as the band gap opens. The second case exhibits a bend resistance that is asymmetric in magnetic field as a consequence of snake states along the pn-interface, where the maximum is shifted away from zero magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000324827200031 Publication Date 2013-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 3 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:111169 Serial 234  
Permanent link to this record
 

 
Author (down) Milovanovic, S.P.; Masir, M.R.; Peeters, F.M. pdf  doi
openurl 
  Title Graphene hall bar with an asymmetric pn-junction Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 19 Pages 193701-193708  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigated the magnetic field dependence of the Hall and the bend resistances in the ballistic regime for a single layer graphene Hall bar structure containing a pn-junction. When both regions are n-type the Hall resistance dominates and Hall type of plateaus are formed. These plateaus occur as a consequence of the restriction on the angle imposed by Snell's law allowing only electrons with a certain initial angles to transmit though the potential step. The size of the plateau and its position is determined by the position of the potential interface as well as the value of the applied potential. When the second region is p-type, the bend resistance dominates, which is asymmetric in field due to the presence of snake states. Changing the position of the pn-interface in the Hall bar strongly affects these states and therefore the bend resistance is also changed. Changing the applied potential, we observe that the bend resistance exhibits a peak around the charge-neutrality point (CNP), which is independent of the position of the pn-interface, while the Hall resistance shows a sign reversal when the CNP is crossed, which is in very good agreement with a recent experiment [J. R. Williams and C. M. Marcus, Phys. Rev. Lett. 107, 046602 (2011)].  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000319295200022 Publication Date 2013-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 7 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. We acknowledge fruitful discussions with M. Barbier. Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:108999 Serial 1371  
Permanent link to this record
 

 
Author (down) Milovanović, S.P.; Masir, M.R.; Peeters, F.M. pdf  doi
openurl 
  Title Magnetic electron focusing and tuning of the electron current with a pn-junction Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 4 Pages 043719-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transverse magnetic focusing properties of graphene using a ballistic four terminal structure are investigated. The electric response is obtained using the semiclassical billiard model. The transmission exhibits pronounced peaks as a consequence of skipping orbits at the edge of the structure. When we add a pn-junction between the two probes, snake states along the pn-interface appear. Injected electrons are guided by the pn-interface to one of the leads depending on the value of the applied magnetic field. Oscillations in the resistance are found depending on the amount of particles that end up in each lead.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000331210800066 Publication Date 2014-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 21 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:115801 Serial 1866  
Permanent link to this record
 

 
Author (down) Milovanović, S.P.; Covaci, L.; Peeters, F.M. pdf  doi
openurl 
  Title Strain fields in graphene induced by nanopillar mesh Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue 8 Pages 082534  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The mechanical and electronic properties of a graphene membrane placed on top of a triangular superlattice of nanopillars are investigated. We use molecular dynamics simulations to access the deformation fields and the tight-binding approaches to calculate the electronic properties. Ripples form in the graphene layer that span across the unit cell, connecting neighboring pillars, in agreement with recent experiments. We find that the resulting pseudo-magnetic field (PMF) varies strongly across the unit cell. We investigate the dependence of PMF on unit cell boundary conditions, height of the pillars, and the strength of the van der Waals interaction between graphene and the substrate. We find direct correspondence with typical experiments on pillars, showing intrinsic “slack” in the graphene membrane. PMF values are confirmed by the local density of states calculations performed at different positions of the unit cell showing pseudo-Landau levels with varying spacings. Our findings regarding the relaxed membrane configuration and the induced strains are transferable to other flexible 2D membranes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460033800038 Publication Date 2019-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 9 Open Access  
  Notes ; S.P.M. is supported by the Flemish Science Foundation (FWO). ; Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:158605 Serial 5231  
Permanent link to this record
 

 
Author (down) Milošević, M.V.; Mandrus, D. pdf  doi
openurl 
  Title 2D quantum materials : magnetism and superconductivity Type A1 Journal article
  Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 130 Issue 18 Pages 180401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000720289900004 Publication Date 2021-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.068 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:184090 Serial 6963  
Permanent link to this record
 

 
Author (down) Milants, K.; Verheyden, J.; Barancira, T.; Deweerd, W.; Pattyn, H.; Bukshpan, S.; Williamson, D.L.; Vermeiren, F.; Van Tendeloo, G.; Vlekken, C.; Libbrecht, S.; van Haesendonck, C. openurl 
  Title Size distribution and magnetic behavior of lead inclusions in silicon single crystals Type A1 Journal article
  Year 1997 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 81 Issue 5 Pages 2148-2152  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos A1997WK08800017 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.068; 1997 IF: 1.630  
  Call Number UA @ lucian @ c:irua:21433 Serial 3035  
Permanent link to this record
 

 
Author (down) Mehmonov, K.; Ergasheva, A.; Yusupov, M.; Khalilov, U. url  doi
openurl 
  Title The role of carbon monoxide in the catalytic synthesis of endohedral carbyne Type A1 Journal article
  Year 2023 Publication Journal of applied physics Abbreviated Journal  
  Volume 134 Issue 14 Pages 144303-144307  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The unique physical properties of carbyne, a novel carbon nanostructure, have attracted considerable interest in modern nanotechnology. While carbyne synthesis has been accomplished successfully using diverse techniques, the underlying mechanisms governing the carbon monoxide-dependent catalytic synthesis of endohedral carbyne remain poorly understood. In this simulation-based study, we investigate the synthesis of endohedral carbyne from carbon and carbon monoxide radicals in the presence of a nickel catalyst inside double-walled carbon nanotubes with a (5,5)@(10,10) structure. The outcome of our investigation demonstrates that the incorporation of the carbon atom within the Ni-n@(5,5)@(10,10) model system initiates the formation of an elongated carbon chain. In contrast, upon the introduction of carbon monoxide radicals, the growth of the carbyne chain is inhibited as a result of the oxidation of endohedral nickel clusters by oxygen atoms after the initial steps of nucleation. Our findings align with prior theoretical, simulation, and experimental investigations, reinforcing their consistency and providing valuable insights into the synthesis of carbyne-based nanodevices that hold promising potential for future advancements in nanotechnology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001083993400003 Publication Date 2023-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.2 Times cited Open Access  
  Notes Approved Most recent IF: 3.2; 2023 IF: 2.068  
  Call Number UA @ admin @ c:irua:201233 Serial 9106  
Permanent link to this record
 

 
Author (down) Malakho, A.; Fargin, E.; Lahaye, M.; Lazoryak, B.; Morozov, V.; Van Tendeloo, G.; Rodriguez, V.; Adamietz, F. doi  openurl
  Title Enhancement of second harmonic generation signal in thermally poled glass ceramic with NaNbO3 nanocrystals Type A1 Journal article
  Year 2006 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 100 Issue 6 Pages 063103,1-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Glass ceramic composites were prepared by bulk crystallization of NaNbO3 in sodium niobium borate glasses. A homogeneous bulk crystallization of the NaNbO3 phase takes place during heat treatments that produces visible-near infrared transparent materials with similar to 30 nm NaNbO3 nanocrystallites. Upon thermal poling, a strong Na+ depleted nonlinear optical thin layer is observed at the anode side that should induce a large internal static electric field. In addition, the chi((2)) response of the poled glass ceramic composites increases from 0.2 up to 1.9 pm/V with the rate of crystallization. Two mechanisms may be considered: a pure structural chi((2)) process connected with the occurrence of a spontaneous ferroelectric polarization or an increase of the chi((3)) response of the nanocrystallites that enhances the electric field induced second harmonic generation process. (c) 2006 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000240876600003 Publication Date 2006-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.068; 2006 IF: 2.316  
  Call Number UA @ lucian @ c:irua:61005 Serial 1063  
Permanent link to this record
 

 
Author (down) Maignan, A.; Singh, K.; Simon, C.; Lebedev, O.I.; Martin, C.; Tan, H.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Magnetic and magnetodielectric properties of erbium iron garnet ceramic Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 3 Pages 033905-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An Er3Fe5O12 ceramic has been sintered in oxygen atmosphere at 1400 °C for dielectric measurements. Its structural quality at room temperature has been checked by combining transmission electron microscopy and X-ray diffraction. It crystallizes in the cubic space group Ia3d with a = 12.3488(1). The dielectric permittivity ([variantgreekepsilon]′) and losses (tan δ) measurements as a function of temperature reveal the existence of two anomalies, a broad one between 110 K and 80 K, attributed to the Er3+ spin reorientation, and a second sharper feature at about 45 K associated to the appearance of irreversibility on the magnetic susceptibility curves. In contrast to the lack of magnetic field impact on [variantgreekepsilon]′ for the former anomaly, a complex magnetic field effect has been evidenced below 45 K. The isothermal [variantgreekepsilon]′(H) curves show the existence of positive magnetodielectric effect, reaching a maximum of 0.14% at 3 T and 10 K. Its magnitude decreases as H is further increased. Interestingly, for the lowest H values, a linear regime in the [variantgreekepsilon]′(H) curve is observed. From this experimental study, it is concluded that the [variantgreekepsilon]′ anomaly, starting above the compensation temperature Tc (75 K) and driven by the internal magnetic field, is not sensitive to an applied external magnetic field. Thus, below 45 K, it is the magnetic structure which is responsible for the coupling between spin and charge in this iron garnet.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000313670600042 Publication Date 2013-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 15 Open Access  
  Notes Vortex; Countatoms ECASJO_; Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:106182UA @ admin @ c:irua:106182 Serial 1861  
Permanent link to this record
 

 
Author (down) Lumbeeck, G.; Idrissi, H.; Amin-Ahmadi, B.; Favache, A.; Delmelle, R.; Samaee, V.; Proost, J.; Pardoen, T.; Schryvers, D. pdf  url
doi  openurl
  Title Effect of hydriding induced defects on the small-scale plasticity mechanisms in nanocrystalline palladium thin films Type A1 Journal Article
  Year 2018 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 124 Issue 22 Pages 225105  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Nanoindentation tests performed on nanocrystalline palladium films subjected to hydriding/dehydriding cycles demonstrate a significant softening when compared to the as-received material. The origin of this softening is unraveled by combining in situ TEM nanomechanical testing with automated crystal orientation mapping in TEM and high resolution TEM. The softening is attributed to the presence of a high density of stacking faults and of Shockley partial dislocations after hydrogen loading. The hydrogen induced defects affect the elementary plasticity mechanisms and the mechanical response by acting as preferential sites for twinning/detwinning during deformation. These results are analyzed and compared to previous experimental and simulation works in the literature. This study provides new insights into the effect of hydrogen on the atomistic deformation and cracking mechanisms as well as on the mechanical properties of nanocrystalline thin films and membranes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453254000025 Publication Date 2018-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 2 Open Access Not_Open_Access  
  Notes This work was supported by the Hercules Foundation under Grant No. AUHA13009, the Flemish Research Fund (FWO) under Grant No. G.0365.15N, and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. Dr. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). We would like to thank Dr. Hadi Pirgazi from UGent for his technical support to process the ACOM data in the OIM Analysis software. Approved Most recent IF: 2.068  
  Call Number EMAT @ emat @c:irua:155742 Serial 5135  
Permanent link to this record
 

 
Author (down) Lujan, G.S.; Sorée, B.; Magnus, W.; de Meyer, K. doi  openurl
  Title A method to calculate tunneling leakage currents in silicon inversion layers Type A1 Journal article
  Year 2006 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 100 Issue 3 Pages 033708,1-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000239764100051 Publication Date 2006-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.068; 2006 IF: 2.316  
  Call Number UA @ lucian @ c:irua:60963 Serial 2016  
Permanent link to this record
 

 
Author (down) Lu, A.K.A.; Pourtois, G.; Luisier, M.; Radu, I.P.; Houssa, M. url  doi
openurl 
  Title On the electrostatic control achieved in transistors based on multilayered MoS2 : a first-principles study Type A1 Journal article
  Year 2017 Publication Journal of applied physics Abbreviated Journal  
  Volume 121 Issue 4 Pages 044505  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, the electrostatic control in metal-oxide-semiconductor field-effect transistors based on MoS2 is studied, with respect to the number of MoS2 layers in the channel and to the equivalent oxide thickness of the gate dielectric, using first-principles calculations combined with a quantum transport formalism. Our simulations show that a compromise exists between the drive current and the electrostatic control on the channel. When increasing the number of MoS2 layers, a degradation of the device performances in terms of subthreshold swing and OFF currents arises due to the screening of the MoS2 layers constituting the transistor channel. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393480100030 Publication Date 2017-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152673 Serial 8329  
Permanent link to this record
 

 
Author (down) Liu, J.; Xu, W.; Xiao, Y.M.; Ding, L.; Li, H.W.; Peeters, F.M. url  doi
openurl 
  Title Optical spectrum of n-type and p-type monolayer MoS₂ in the presence of proximity-induced interactions Type A1 Journal article
  Year 2023 Publication Journal of applied physics Abbreviated Journal  
  Volume 134 Issue 22 Pages 224301-224307  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, we examined the effects of proximity-induced interactions such as Rashba spin-orbit coupling and effective Zeeman fields (EZFs) on the optical spectrum of n-type and p-type monolayer (ML)-MoS2. The optical conductivity is evaluated using the standard Kubo formula under random-phase approximation by including the effective electron-electron interaction. It has been found that there exist two absorption peaks in n-type ML-MoS2 and two knife shaped absorptions in p-type ML-MoS2, which are contributed by the inter-subband spin-flip electronic transitions within conduction and valence bands at valleys K and K ' with a lifted valley degeneracy. The optical absorptions in n-type and p-type ML-MoS 2 occur in THz and infrared radiation regimes and the position, height, and shape of them can be effectively tuned by Rashba parameter, EZF parameters, and carrier density. The interesting theoretical predictions in this study would be helpful for the experimental observation of the optical absorption in infrared to THz bandwidths contributed by inter-subband spin-flip electronic transitions in a lifted valley degeneracy monolayer transition metal dichalcogenides system. The obtained results indicate that ML-MoS2 with the platform of proximity interactions make it a promising infrared and THz material for optics and optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001135684400003 Publication Date 2023-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.2 Times cited Open Access  
  Notes Approved Most recent IF: 3.2; 2023 IF: 2.068  
  Call Number UA @ admin @ c:irua:202777 Serial 9069  
Permanent link to this record
 

 
Author (down) Liang, Y.-S.; Liu, Y.-X.; Zhang, Y.-R.; Wang, Y.-N. pdf  doi
openurl 
  Title Investigation of voltage effect on reaction mechanisms in capacitively coupled N-2 discharges Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 127 Issue 13 Pages 133301  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A systematic investigation of voltage effect on the plasma parameters, especially the species densities and chemical reaction mechanisms, in the capacitive N-2 discharges is performed by employing a two-dimensional self-consistent fluid model. The validity of the numerical model is first demonstrated by the qualitative agreement of the calculated and experimental results. Then, the densities, production mechanisms, and loss mechanisms of species from simulation are examined at various voltages. It is found that all the species densities increase monotonically with the voltage, whereas their spatial profiles at lower voltages are quite different from those at higher voltages. The electrons and Nthorn 2 ions are mainly generated by the electron impact ionization of N-2 gas, while the Nthorn ions, whose density is one or two orders of magnitude lower, are mostly formed by the ionization of N atoms. The electron impact dissociation of N-2 gas dominates the generation of N atoms, which are mostly destroyed for the Nthorn ion production. As for the excited N-2 levels, the level conversion processes play a very important role in their production and depletion mechanisms, except for the electron impact excitation of the ground state N-2 molecules. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000524256700001 Publication Date 2020-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited Open Access  
  Notes ; This work was financially supported by the National Natural Science Foundation of China (NNSFC) (Grant Nos. 11805089 and 11875101), the Natural Science Foundation of Liaoning Province, China (Grant No. 2019-BS-127), the Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, China (Grant No. KF1804), and the China Scholarship Council. ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:168558 Serial 6555  
Permanent link to this record
 

 
Author (down) Li, Q.N.; Xu, W.; Xiao, Y.M.; Ding, L.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Optical absorption window in Na₃Bi based three-dimensional Dirac electronic system Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 128 Issue 15 Pages 155707  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a detailed theoretical study of the optoelectronic properties of a Na3Bi based three-dimensional Dirac electronic system (3DDES). The optical conductivity is evaluated using the energy-balance equation derived from a Boltzmann equation, where the electron Hamiltonian is taken from a simplified k . p approach. We find that for short-wavelength irradiation, the optical absorption in Na3Bi is mainly due to inter-band electronic transitions. In contrast to the universal optical conductance observed for graphene, the optical conductivity for Na3Bi based 3DDES depends on the radiation frequency but not on temperature, carrier density, and electronic relaxation time. In the radiation wavelength regime of about 5 mu m, < lambda < 200 mu m, an optical absorption window is found. This is similar to what is observed in graphene. The position and width of the absorption window depend on the direction of the light polarization and sensitively on temperature, carrier density, and electronic relaxation time. Particularly, we demonstrate that the inter-band optical absorption channel can be switched on and off by applying the gate voltage. This implies that similar to graphene, Na3Bi based 3DDES can also be applied in infrared electro-optical modulators. Our theoretical findings are helpful in gaining an in-depth understanding of the basic optoelectronic properties of recently discovered 3DDESs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000585807400004 Publication Date 2020-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.2 Times cited 1 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (NNSFC Nos. U1930116, U1832153, 11764045, 11574319, and 11847054) and the Center of Science and Technology of Hefei Academy of Science (No. 2016FXZY002). Applied Basic Research Foundation of Department of Science and Technology of Yunnan Province (No. 2019FD134), the Department of Education of Yunnan Province (No. 2018JS010), the Young Backbone Teachers Training Program of Yunnan University, and the Department of Science and Technology of Yunnan Province are acknowledged. ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:173591 Serial 6571  
Permanent link to this record
 

 
Author (down) Li, L.L.; Xu, W.; Peeters, F.M. doi  openurl
  Title Optical conductivity of topological insulator thin films Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 117 Issue 117 Pages 175305  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a detailed theoretical study on the optoelectronic properties of topological insulator thin film (TITFs). The k . p approach is employed to calculate the energy spectra and wave functions for both the bulk and surface states in the TITF. With these obtained results, the optical conductivities induced by different electronic transitions among the bulk and surface states are evaluated using the energy-balance equation derived from the Boltzmann equation. We find that for Bi2Se3-based TITFs, three characteristic regimes for the optical absorption can be observed. (i) In the low radiation frequency regime (photon energy (h) over bar omega < 200 meV), the free-carrier absorption takes place due to intraband electronic transitions. An optical absorption window can be observed. (ii) In the intermediate radiation frequency regime (200 < (h) over bar omega < 300 meV), the optical absorption is induced mainly by interband electronic transitions from surface states in the valance band to surface states in the conduction band and an universal value sigma(0) = e(2) / (8<(h)over bar>) for the optical conductivity can be obtained. (iii) In the high radiation frequency regime ((h) over bar omega > 300 meV), the optical absorption can be achieved via interband electronic transitions from bulk and surface states in the valance band to bulk and surface states in the conduction band. A strong absorption peak can be observed. These interesting findings indicate that optical measurements can be applied to identify the energy regimes of bulk and surface states in the TITF. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000354984100615 Publication Date 2015-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 9 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (Grant No. 11304316), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:126412 Serial 2473  
Permanent link to this record
 

 
Author (down) Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Dubourdieu, C.; Rosina, M.; Chaudouët, P. pdf  doi
openurl 
  Title Structure and properties of artificial [(La0.7Sr0.3MnO3)m(SrTiO3)n]15 superlattices on (001)SrTiO3 Type A1 Journal article
  Year 2003 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 94 Issue 12 Pages 7646-7656  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Complex [(La0.7Sr0.3MnO3)(m)(SrTiO3)(n)] [(LSMO)(m)/(STO)(8)](15) superlattices with different layer thicknesses (m=5, 8, 12, 16, 32) have been prepared using pulsed liquid injection metalorganic chemical vapor deposition. Transmission electron microscopy and electron diffraction reveal a very clear and well-separated layer sequence. The remarkable microstructure, as well as the ferromagnetic transition temperature, depends on the LSMO layer thickness. Apart from a very clear layer sequence, electron microscopy shows evidence of a self-assembled nanostructure formation: SrMnO3 nanoinclusions and associated SrTiO3-SrMnO3 thin walls. A formation model and growth mechanism for the self-assembled structure is proposed, based on high resolution and energy filtered elemental imaging. (C) 2003 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000186969900042 Publication Date 2003-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 22 Open Access  
  Notes Approved Most recent IF: 2.068; 2003 IF: 2.171  
  Call Number UA @ lucian @ c:irua:54822 Serial 3292  
Permanent link to this record
 

 
Author (down) Lebedev, O.I.; Hamet, J.F.; Van Tendeloo, G.; Beaumont, V.; Raveau, B. pdf  doi
openurl 
  Title Structure and properties of the YBa2Cu3O7-x/LaAlO3 superlattices Type A1 Journal article
  Year 2001 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 90 Issue 10 Pages 5261-5267  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000171918700061 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.068; 2001 IF: 2.128  
  Call Number UA @ lucian @ c:irua:54821 Serial 3294  
Permanent link to this record
 

 
Author (down) Laffez, P.; Van Tendeloo, G.; Seshadri, R.; Hervieu, M.; Martin, C.; Maignan, A.; Raveau, B. doi  openurl
  Title Microstructural and physical properties of layered manganite oxides related to the magnetoresistive perovskites Type A1 Journal article
  Year 1996 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 80 Issue Pages 5850-5856  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos A1996VU98700045 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.183 Times cited 36 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:17848 Serial 2039  
Permanent link to this record
 

 
Author (down) Kolev, I.; Bogaerts, A. pdf  doi
openurl 
  Title Calculation of gas heating in a dc sputter magnetron Type A1 Journal article
  Year 2008 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 104 Issue 9 Pages 093301,1-093301,8  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The effect of gas heating in laboratory sputter magnetrons is investigated by means of numerical modeling. The model is two-dimensional in the coordinate space and three-dimensional in the velocity space based on the particle-in-cellMonte Carlo collisions technique. It is expanded in a way that allows the inclusion of the neutral plasma particles (fast gas atoms and sputtered atoms), which makes it possible to calculate the gas temperature and its influence on the discharge behavior in a completely self-consistent way. The results of the model are compared to experimental measurements and to other existing simulation results. The results show that gas heating is pressure dependent (rising with the increase in the gas pressure) and should be taken into consideration at pressures above 10 mTorr.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000260941700017 Publication Date 2008-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 19 Open Access  
  Notes Approved Most recent IF: 2.068; 2008 IF: 2.201  
  Call Number UA @ lucian @ c:irua:71286 Serial 267  
Permanent link to this record
 

 
Author (down) Khanam, A.; Vohra, A.; Slotte, J.; Makkonen, I.; Loo, R.; Pourtois, G.; Vandervorst, W. url  doi
openurl 
  Title A demonstration of donor passivation through direct formation of V-As-i complexes in As-doped Ge1-XSnx Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 127 Issue 19 Pages 195703  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Positron annihilation spectroscopy in the Doppler and coincidence Doppler mode was applied on Ge1 xSnx epitaxial layers, grown by chemical vapor deposition with different total As concentrations (1019-1021 cm3), high active As concentrations (1019 cm3), and similar Sn concentrations (5.9%-6.4%). Positron traps are identified as mono-vacancy complexes. Vacancy-As complexes, V-Asi, formed during the growth were studied to deepen the understanding of the electrical passivation of the Ge1 xSnx:As epilayers. Larger monovacancy complexes, V-Asi (i 2), are formed as the As doping increases. The total As concentration shows a significant impact on the saturation of the number of As atoms (i 1/4 4) around the vacancies in the sample epilayers. The presence of V-Asi complexes decreases the dopant activation in the Ge1 xSnx:As epilayers. Furthermore, the presence of Sn failed to hinder the formation of larger V-Asi complexes and thus failed to reduce the donor-deactivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536196000003 Publication Date 2020-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:170252 Serial 6447  
Permanent link to this record
 

 
Author (down) Karaaslan, Y.; Haskins, J.B.; Yapicioglu, H.; Sevik, C. doi  openurl
  Title Influence of randomly distributed vacancy defects on thermal transport in two-dimensional group-III nitrides Type A1 Journal article
  Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 129 Issue 22 Pages 224304  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Efficient thermal transport control is a fundamental issue for electronic device applications such as information, communication, and energy storage technologies in modern electronics in order to achieve desired thermal conditions. Structural defects in materials provide a mechanism to adjust the thermal transport properties of these materials on demand. In this context, the effect of structural defects on lattice thermal conductivities of two-dimensional hexagonal binary group-III nitride (XN, X = B, Al, and Ga) semiconductors is systematically investigated by means of classical molecular dynamics simulations performed with recently developed transferable inter-atomic potentials accurately describing defect energies. Here, two different Green-Kubo based approaches and another approach based on non-equilibrium molecular dynamics are compared in order to get an overall understanding. Our investigation clearly shows that defect concentrations of 3% decrease the thermal conductivity of systems containing these nitrites up to 95%. Results hint that structural defects can be used as effective adjustment parameters in controlling thermal transport properties in device applications associated with these materials. Published under an exclusive license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000692024300001 Publication Date 2021-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:181618 Serial 8096  
Permanent link to this record
 

 
Author (down) Kao, K.-H.; Verhulst, A.S.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; De Meyer, K. doi  openurl
  Title Tensile strained Ge tunnel field-effect transistors: k\cdot p material modeling and numerical device simulation Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 4 Pages 044505-44508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Group IV based tunnel field-effect transistors generally show lower on-current than III-V based devices because of the weaker phonon-assisted tunneling transitions in the group IV indirect bandgap materials. Direct tunneling in Ge, however, can be enhanced by strain engineering. In this work, we use a 30-band k.p method to calculate the band structure of biaxial tensile strained Ge and then extract the bandgaps and effective masses at Gamma and L symmetry points in k-space, from which the parameters for the direct and indirect band-to-band tunneling (BTBT) models are determined. While transitions from the heavy and light hole valence bands to the conduction band edge at the L point are always bridged by phonon scattering, we highlight a new finding that only the light-holelike valence band is strongly coupling to the conduction band at the Gamma point even in the presence of strain based on the 30-band k.p analysis. By utilizing a Technology Computer Aided Design simulator equipped with the calculated band-to-band tunneling BTBT models, the electrical characteristics of tensile strained Ge point and line tunneling devices are self-consistently computed considering multiple dynamic nonlocal tunnel paths. The influence of field-induced quantum confinement on the tunneling onset is included. Our simulation predicts that an on-current up to 160 (260) mu A/mu m can be achieved along with on/off ratio > 10(6) for V-DD = 0.5V by the n-type (p-type) line tunneling device made of 2.5% biaxial tensile strained Ge. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000331210800113 Publication Date 2014-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 26 Open Access  
  Notes ; Authors would like to thank Dr. Mohammad Ali Pourghaderi for useful discussions on the nonparabolicity. Authors would also like to thank Professor Eddy Simoen and Dr. Yosuke Shimura for useful discussions about the validity of modeled bandgaps and effective masses. This work was also supported by IMEC's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:115800 Serial 3505  
Permanent link to this record
 

 
Author (down) Ivanov, V.; Proshina, O.; Rakhimova, T.; Rakhimov, A.; Herrebout, D.; Bogaerts, A. doi  openurl
  Title Comparison of a one-dimensional particle-in-cell-Monte Carlo model and a one-dimensional fluid model for a CH4/H2 capacitively coupled radio frequency discharge Type A1 Journal article
  Year 2002 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 91 Issue 10 Pages 6296-6302  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000175572500007 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 26 Open Access  
  Notes Approved Most recent IF: 2.068; 2002 IF: 2.281  
  Call Number UA @ lucian @ c:irua:40187 Serial 425  
Permanent link to this record
 

 
Author (down) Ishikawa, K.; Karahashi, K.; Ichiki, T.; Chang, J.P.; George, S.M.; Kessels, W.M.M.; Lee, H.J.; Tinck, S.; Um, J.H.; Kinoshita, K. pdf  url
doi  openurl
  Title Progress and prospects in nanoscale dry processes: How can we control atomic layer reactions? Type A1 Journal article
  Year 2017 Publication Japanese journal of applied physics Abbreviated Journal Jpn J Appl Phys  
  Volume 56 Issue 56 Pages 06HA02  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this review, we discuss the progress of emerging dry processes for nanoscale fabrication. Experts in the fields of plasma processing have contributed to addressing the increasingly challenging demands in achieving atomic-level control of material selectivity and physicochemical reactions involving ion bombardment. The discussion encompasses major challenges shared across the plasma science and technology community. Focus is placed on advances in the development of fabrication technologies for emerging materials, especially metallic and intermetallic compounds and multiferroic, and two-dimensional (2D) materials, as well as state-of-the-art techniques used in nanoscale semiconductor manufacturing with a brief summary of future challenges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425887900001 Publication Date 2017-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-4922 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.384 Times cited 18 Open Access OpenAccess  
  Notes The authors would like to thank Drs. Masanobu Honda, Miyako Matsui, Tomohiro Okumura, Tetsuya Tatsumi, Satoshi Hamaguchi, Hiroto Ohtake, Yoshinobu Ohya, Kazunori Shinoda, Masaru Izawa, Hisataka Hayashi, Toshio Hayashi, Makoto Sekine, and Masaru Hori, and all members of the Program and Publication Committee of the 38th International Symposium on Dry Process 2016 held in Sapporo, Japan, as well as Nicholas Altieri and Jeffrey Chang at UCLA for proofreading and providing feedback on the manuscript. Approved Most recent IF: 1.384  
  Call Number PLASMANT @ plasmant @ c:irua:143872 Serial 4576  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: