|   | 
Details
   web
Records
Author (down) Georgieva, V.; Bogaerts, A.; Gijbels, R.
Title Particle-in-cell/Monte Carlo simulation of a capacitively coupled radio frequency Ar/Cf4 discharge: effect of gas composition Type A1 Journal article
Year 2003 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 93 Issue Pages 2369-2379
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000181307000007 Publication Date 2003-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 57 Open Access
Notes Approved Most recent IF: 2.068; 2003 IF: 2.171
Call Number UA @ lucian @ c:irua:44011 Serial 2561
Permanent link to this record
 

 
Author (down) Georgieva, V.; Bogaerts, A.
Title Negative ion behavior in single- and dual-frequency plasma etching reactors: particle-in-cell/Monte Carlo collision study Type A1 Journal article
Year 2006 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 73 Issue 3 Pages 036402,1-9
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000236467700081 Publication Date 2006-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 7 Open Access
Notes Approved Most recent IF: 2.366; 2006 IF: 2.438
Call Number UA @ lucian @ c:irua:57764 Serial 2290
Permanent link to this record
 

 
Author (down) Georgieva, V.; Bogaerts, A.
Title Numerical simulation of dual frequency etching reactors: influence of the external process parameters on the plasma characteristics Type A1 Journal article
Year 2005 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 98 Issue 2 Pages 023308,1-13
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000230931500016 Publication Date 2005-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 75 Open Access
Notes Approved Most recent IF: 2.068; 2005 IF: 2.498
Call Number UA @ lucian @ c:irua:53575 Serial 2404
Permanent link to this record
 

 
Author (down) Georgieva, V.; Bogaerts, A.
Title Plasma characteristics of an Ar/CF4/N2 discharge in an asymmetric dual frequency reactor: numerical investigation by a PIC/MC model Type A1 Journal article
Year 2006 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 15 Issue Pages 368-377
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000240655500010 Publication Date 2006-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 35 Open Access
Notes Approved Most recent IF: 3.302; 2006 IF: 2.346
Call Number UA @ lucian @ c:irua:57550 Serial 2630
Permanent link to this record
 

 
Author (down) Georgieva, V.; Berthelot, A.; Silva, T.; Kolev, S.; Graef, W.; Britun, N.; Chen, G.; van der Mullen, J.; Godfroid, T.; Mihailova, D.; van Dijk, J.; Snyders, R.; Bogaerts, A.; Delplancke-Ogletree, M.-P.
Title Understanding Microwave Surface-Wave Sustained Plasmas at Intermediate Pressure by 2D Modeling and Experiments: Understanding Microwave Surface-Wave Sustained Plasmas … Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600185
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An Ar plasma sustained by a surfaguide wave launcher is investigated at intermediate pressure (200–2667 Pa). Two 2D self-consistent models (quasi-neutral and plasma bulk-sheath) are developed and benchmarked. The complete set of electromagnetic and fluid equations and the boundary conditions are presented. The transformation of fluid equations from a local reference frame, that is, moving with plasma or when the gas flow is zero, to a laboratory reference frame, that is,

accounting for the gas flow, is discussed. The pressure range is extended down to 80 Pa by experimental measurements. The electron temperature decreases with pressure. The electron density depends linearly on power, and changes its behavior with pressure depending on the product of pressure and radial plasma size.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403074000012 Publication Date 2016-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 8 Open Access Not_Open_Access
Notes Federaal Wetenschapsbeleid; European Marie Curie RAPID project; European Union's Seventh Framework Programme, 606889 ; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:142807 Serial 4568
Permanent link to this record
 

 
Author (down) Gao, M.; Zhang, Y.; Wang, H.; Guo, B.; Zhang, Q.; Bogaerts, A.
Title Mode Transition of Filaments in Packed-Bed Dielectric Barrier Discharges Type A1 Journal article
Year 2018 Publication Catalysts Abbreviated Journal Catalysts
Volume 8 Issue 6 Pages 248
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We investigated the mode transition from volume to surface discharge in a packed bed dielectric barrier discharge reactor by a two-dimensional particle-in-cell/Monte Carlo collision method. The calculations are performed at atmospheric pressure for various driving voltages and for gas mixtures with different N2 and O2 compositions. Our results reveal that both a change of the driving voltage and gas mixture can induce mode transition. Upon increasing voltage, a mode transition from hybrid (volume+surface) discharge to pure surface discharge occurs, because the charged species can escape much more easily to the beads and charge the bead surface due to the strong electric field at high driving voltage. This significant surface charging will further enhance the tangential component of the electric field along the dielectric bead surface, yielding surface ionization waves (SIWs). The SIWs will give rise to a high concentration of reactive species on the surface, and thus possibly enhance the surface activity of the beads, which might be of interest for plasma catalysis. Indeed, electron impact excitation and ionization mainly take place near the bead surface. In addition, the propagation speed of SIWs becomes faster with increasing N2 content in the gas mixture, and slower with increasing O2 content, due to the loss of electrons by attachment to O2

molecules. Indeed, the negative O-2 ion density produced by electron impact attachment is much higher than the electron and positive O+2 ion density. The different ionization rates between N2 and O2 gases will create different amounts of electrons and ions on the dielectric bead surface, which might also have effects in plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000436128600027 Publication Date 2018-06-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited 7 Open Access OpenAccess
Notes The authors are very grateful to Wei Jiang for the useful discussions on the particle-incell/ Monte-Carlo collision model. Approved Most recent IF: 3.082
Call Number PLASMANT @ plasmant @c:irua:152171 Serial 4991
Permanent link to this record
 

 
Author (down) Gamez, G.; Bogaerts, A.; Hieftje, G.M.
Title Temporal and spatially resolved laser-scattering plasma diagnostics for the characterization of a ms-pulsed glow discharge Type A1 Journal article
Year 2006 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 21 Issue Pages 350-359
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000235990200015 Publication Date 2006-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 17 Open Access
Notes Approved Most recent IF: 3.379; 2006 IF: 3.630
Call Number UA @ lucian @ c:irua:56539 Serial 3503
Permanent link to this record
 

 
Author (down) Gamez, G.; Bogaerts, A.; Andrade, F.; Hieftje, G.M.
Title Fundamental studies on a planar-cathode direct current glow discharge: part 1: characterization via laser scattering techniques Type A1 Journal article
Year 2004 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 59 Issue Pages 435-447
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000221577100008 Publication Date 2004-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 24 Open Access
Notes Approved Most recent IF: 3.241; 2004 IF: 3.086
Call Number UA @ lucian @ c:irua:44505 Serial 1310
Permanent link to this record
 

 
Author (down) Fuchs, J.; Aghaei, M.; Schachel, T.D.; Sperling, M.; Bogaerts, A.; Karst, U.
Title Impact of the Particle Diameter on Ion Cloud Formation from Gold Nanoparticles in ICPMS Type A1 Journal article
Year 2018 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 90 Issue 17 Pages 10271-10278
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The unique capabilities of microsecond dwell time (DT) single-particle inductively coupled plasma mass spectrometry (spICPMS) were utilized to characterize the cloud of ions generated from the introduction of suspensions of gold nanoparticles (AuNPs) into the plasma. A set of narrowly distributed particles with diameters ranging from 15.4 to 100.1 nm was synthesized and characterized according to established protocols. Statistically significant numbers of the short transient spICPMS events were evaluated by using 50 μs DT for their summed intensity, maximum intensity, and duration, of which all three were found to depend on the particle diameter. The summed intensity increases from 10 to 1661 counts and the maximum intensity from 6 to 309 counts for AuNPs with diameters from 15.4 to 83.2 nm. The event duration rises from 322 to 1007 μs upon increasing AuNP diameter. These numbers represent a comprehensive set of key data points of the ion clouds generated in ICPMS from AuNPs. The extension of event duration is of high interest to appoint the maximum possible particle number concentration at which separation of consecutive events in spICPMS can still be achieved. Moreover, the combined evaluation of all above-mentioned ion cloud characteristics can explain the regularly observed prolonged single-particle events. The transport and ionization behavior of AuNPs in the ICP was also computationally modeled to gain insight into the size-dependent signal generation. The simulated data reveals that the plasma temperature, and therefore the point of ionization of the particles, is the same for all diameters. However, the maximum number density of Au+, as well as the extent of the ion cloud, depends on the particle diameter, in agreement with the experimental data, and it provides an adequate explanation for the observed ion cloud characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000444060600028 Publication Date 2018-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 5 Open Access OpenAccess
Notes We thank Dr. Harald Rösner from the Institute of Materials Physics of the University of Münster for the TEM imaging. Approved Most recent IF: 6.32
Call Number PLASMANT @ plasmant @c:irua:153651 Serial 5057
Permanent link to this record
 

 
Author (down) Freund, E.; Spadola, C.; Schmidt, A.; Privat-Maldonado, A.; Bogaerts, A.; von Woedtke, T.; Weltmann, K.-D.; Heidecke, C.-D.; Partecke, L.-I.; Käding, A.; Bekeschus, S.
Title Risk Evaluation of EMT and Inflammation in Metastatic Pancreatic Cancer Cells Following Plasma Treatment Type A1 Journal article
Year 2020 Publication Frontiers in physics Abbreviated Journal Front. Phys.
Volume 8 Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The requirements for new technologies to serve as anticancer agents go far beyond their toxicity potential. Novel applications also need to be safe on a molecular and patient level. In a broader sense, this also relates to cancer metastasis and inflammation. In a previous study, the toxicity of an atmospheric pressure argon plasma jet in four human pancreatic cancer cell lines was confirmed and plasma treatment did not promote metastasis in vitro and in ovo. Here, these results are extended by additional types of analysis and new models to validate and define on a molecular level the changes related to metastatic processes in pancreatic cancer cells following plasma treatment in vitro and in ovo. In solid tumors that were grown on the chorion-allantois membrane of fertilized chicken eggs (TUM-CAM), plasma treatment induced modest to profound apoptosis in the tissues. This, however, was not associated with a change in the expression levels of adhesion molecules, as shown using immunofluorescence of ultrathin tissue sections. Culturing of the cells detached from these solid tumors for 6d revealed a similar or smaller total growth area and expression of ZEB1, a transcription factor associated with cancer metastasis, in the plasma-treated pancreatic cancer tissues. Analysis of in vitro and in ovo supernatants of 13 different cytokines and chemokines revealed cell line-specific effects of the plasma treatment but a noticeable increase of, e.g., growth-promoting interleukin 10 was not observed. Moreover, markers of epithelial-to-mesenchymal transition (EMT), a metastasis-promoting cellular program, were investigated. Plasma-treated pancreatic cancer cells did not present an EMT-profile. Finally, a realistic 3D tumor spheroid co-culture model with pancreatic stellate cells was employed, and the invasive properties in a gel-like cellular matrix were investigated. Tumor outgrowth and spread was similar or decreased in the plasma conditions. Altogether, these results provide valuable insights into the effect of plasma treatment on metastasis-related properties of cancer cells and did not suggest EMT-promoting effects of this novel cancer therapy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000581086900001 Publication Date 2020-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.1 Times cited Open Access
Notes We thankfully acknowledge the technical support by Felix Niessner and Antje Janetzko. We also thank Jonas Van Audenaerde and Evelien Smits for generating the transduced cell lines used in this study. Approved Most recent IF: 3.1; 2020 IF: NA
Call Number PLASMANT @ plasmant @c:irua:172448 Serial 6425
Permanent link to this record
 

 
Author (down) Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A.
Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 11 Issue 5 Pages 1720-1733
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926412800001 Publication Date 2023-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182 − SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 8.4; 2023 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7257
Permanent link to this record
 

 
Author (down) Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A.
Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 11 Issue 5 Pages 1720-1733
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926412800001 Publication Date 2023-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique – FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7258
Permanent link to this record
 

 
Author (down) Eshtehardi, H.A.; van 't Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A.
Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
Volume 11 Issue 5 Pages 1720-1733
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is emerging for plasma-assisted gas conversion processes. However, the underlying mechanisms of plasma catalysis are poorly understood. In this work, we present a 1D heterogeneous catalysis model with axial dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in the process stream in the axial direction), for plasma-catalytic NO production from N2/O2 mixtures. We investigate the concentration and reaction rates of each species formed as a function of time and position across the catalyst, in order to determine the underlying mechanisms. To obtain insights into how the performance of the process can be further improved, we also study how changes in the postplasma gas flow composition entering the catalyst bed and in the operation conditions of the catalytic stage affect the performance of NO production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926412800001 Publication Date 2023-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7241
Permanent link to this record
 

 
Author (down) Engelmann; Bogaerts, A.; Neyts, E.C.
Title Thermodynamics at the nanoscale: phase diagrams of nickel-carbon nanoclusters and equilibrium constants for phase transitions Type A1 Journal article
Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue 20 Pages 11981-11987
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000343000800049 Publication Date 2014-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 20 Open Access
Notes Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:121106 Serial 3637
Permanent link to this record
 

 
Author (down) Engelmann, Y.; van ’t Veer, K.; Gorbanev, Y.; Neyts, E.C.; Schneider, W.F.; Bogaerts, A.
Title Plasma Catalysis for Ammonia Synthesis: A Microkinetic Modeling Study on the Contributions of Eley–Rideal Reactions Type A1 Journal Article;Plasma catalysis
Year 2021 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng
Volume 9 Issue 39 Pages 13151-13163
Keywords A1 Journal Article;Plasma catalysis; Eley−Rideal reactions; Volcano plots; Vibrational excitation; Radical reactions; Dielectric barrier discharge; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma catalysis is an emerging new technology for the electrification and downscaling of NH3 synthesis. Increasing attention is being paid to the optimization of plasma catalysis with respect to the plasma conditions, the catalyst material, and their mutual interaction. In this work we use microkinetic models to study how the total conversion process is impacted by the combination of different plasma conditions and transition metal catalysts. We study how plasma-generated radicals and vibrationally excited N2 (present in a dielectric barrier discharge plasma) interact with the catalyst and impact the NH3 turnover frequencies (TOFs). Both filamentary and uniform plasmas are studied, based on plasma chemistry models that provided plasma phase speciation and vibrational distribution functions. The Langmuir−Hinshelwood reaction rate coefficients (i.e., adsorption reactions and subsequent reactions among adsorbates) are determined using conventional scaling relations. An additional set of Eley−Rideal reactions (i.e., direct reactions of plasma radicals with adsorbates) was added and a sensitivity analysis on the assumed reaction rate coefficients was performed. We first show the impact of different vibrational distribution functions on the catalytic dissociation of N2 and subsequent production of NH3, and we gradually include more radical reactions, to illustrate the contribution of these species and their corresponding reaction pathways. Analysis over a large range of catalysts indicates that different transition metals (metals such as Rh, Ni, Pt, and Pd) optimize the NH3TOFs depending on the population of the vibrational levels of N2. At higher concentrations of plasma-generated radicals, the NH3 TOFs become less dependent on the catalyst material, due to radical adsorptions on the more noble catalysts and Eley−Rideal reactions on the less noble catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000705367800004 Publication Date 2021-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.951 Times cited Open Access OpenAccess
Notes Basic Energy Sciences, DE-SC0021107 ; Vlaamse regering, HBC.2019.0108 ; H2020 European Research Council, 810182 ; Methusalem project – University of Antwerp; Excellence of science FWO-FNRS, GoF9618n ; TOP-BOF – University of Antwerp; DOCPRO3 – University of Antwerp; We acknowledge the financial support from the DOC-PRO3, the TOP-BOF, and the Methusalem project of the University of Antwerp, as well as from the European Research Council (ERC) (grant agreement No, 810182−SCOPE ERC Synergy project), under the European Union’s Horizon 2020 research and innovation programme, the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108), and the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). Calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), 13162 Approved Most recent IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:182482 Serial 6811
Permanent link to this record
 

 
Author (down) Engelmann, Y.; Mehta, P.; Neyts, E.C.; Schneider, W.F.; Bogaerts, A.
Title Predicted Influence of Plasma Activation on Nonoxidative Coupling of Methane on Transition Metal Catalysts Type A1 Journal article
Year 2020 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng
Volume 8 Issue 15 Pages 6043-6054
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract The combination of catalysis and nonthermal plasma holds promise for enabling difficult chemical conversions. The possible synergy between both depends strongly on the nature of the reactive plasma species and the catalyst material. In this paper, we show how vibrationally excited species and plasma-generated radicals interact with transition metal catalysts and how changing the catalyst material can improve the conversion rates and product selectivity. We developed a microkinetic model to investigate the impact of vibrational excitations and plasma-generated radicals on the nonoxidative coupling of methane over transition metal surfaces. We predict a significant increase in ethylene formation for vibrationally excited methane. Plasma-generated radicals have a stronger impact on the turnover frequencies with high selectivity toward ethylene on noble catalysts and mixed selectivity on non-noble catalysts. In general, we show how the optimal catalyst material depends on the desired products as well as the plasma conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526884000025 Publication Date 2020-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access
Notes Herculesstichting; University of Notre Dame; Universiteit Antwerpen; Division of Engineering Education and Centers, EEC-1647722 ; We would like to thank Tom Butterworth for his work on methane vibrational distribution functions (VDF) and for sharing his thoughts and experiences on this matter, specifically regarding the VDF of the degenerate modes of methane. We ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article https://dx.doi.org/10.1021/acssuschemeng.0c00906 ACS Sustainable Chem. Eng. 2020, 8, 6043−6054 6052 also acknowledge financial support from the DOC-PRO3 and the TOP-BOF projects of the University of Antwerp. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the University of Antwerp. Support for W.F.S. was provided by the National Science Foundation under cooperative agreement no. EEC-1647722, an Engineering Research Center for the Innovative and Strategic Transformation of Alkane Resources (CISTAR). P.M. acknowledges support through the Eilers Graduate Fellowship of the University of Notre Dame. Approved Most recent IF: 8.4; 2020 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:169228 Serial 6366
Permanent link to this record
 

 
Author (down) Engelmann, Y.; Bogaerts, A.; Neyts, E.C.
Title Thermodynamics at the nanoscale : phase diagrams of nickel-carbon nanoclusters and equilibrium constants for face transitions Type A1 Journal article
Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue Pages 11981-11987
Keywords A1 Journal article; PLASMANT
Abstract Using reactive molecular dynamics simulations, the melting behavior of nickelcarbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickelcarbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000343000800049 Publication Date 2014-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 20 Open Access
Notes Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:119408 Serial 3636
Permanent link to this record
 

 
Author (down) Elmonov, A.A.; Yusupov, M.S.; Dzhurakhalov, A.A.; Bogaerts, A.
Title Sputtering of Si(001) and SiC(001) by grazing ion bombardment Type P1 Proceeding
Year 2008 Publication Abbreviated Journal
Volume Issue Pages 209-213
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The peculiarities of sputtering processes at 0.5-5 keV Ne grazing ion bombardment of Si(001) and SiC(001) surfaces and their possible application for the surface modification have been studied by computer simulation. Sputtering yields in the primary knock-on recoil atoms regime versus the initial energy of incident ions (E(0) = 0.5-5 keV) and angle of incidence (psi = 0-30 degrees) counted from a target surface have been calculated. Comparative studies of layer-by-layer sputtering for Si(001) and SiC(001) surfaces versus the initial energy of incident ions as well as an effective sputtering and sputtering threshold are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue 84 Edition
ISSN 978-86-80019-27-7 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:95704 Serial 3112
Permanent link to this record
 

 
Author (down) Eckert, M.; Neyts, E.; Bogaerts, A.
Title Differences between ultrananocrystalline and nanocrystalline diamond growth: theoretical investigation of CxHy species at diamond step edges Type A1 Journal article
Year 2010 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des
Volume 10 Issue 9 Pages 4123-4134
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The behavior of hydrocarbon species at step edges of diamond terraces is investigated by means of combined molecular dynamics−Metropolis Monte Carlo simulations. The results show that the formation of ballas-like diamond films (like UNCD) and well-faceted diamond films (like NCD) can be related to the gas phase concentrations of CxHy in a new manner: Species that have high concentrations above the growing UNCD films suppress the extension of step edges through defect formation. The species that are present above the growing NCD film, however, enhance the extension of diamond terraces, which is believed to result in well-faceted diamond films. Furthermore, it is shown that, during UNCD growth, CxHy species with x ≥ 2 play an important role, in contrast to the currently adopted CVD diamond growth mechanism. Finally, the probabilities for the extension of the diamond (100) terrace are much higher than those for the diamond (111) terrace, which is in full agreement with the experimental observation that diamond (100) facets are more favored than diamond (111) facets during CVD diamond growth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000281353900042 Publication Date 2010-08-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.055 Times cited 11 Open Access
Notes Approved Most recent IF: 4.055; 2010 IF: 4.390
Call Number UA @ lucian @ c:irua:83696 Serial 694
Permanent link to this record
 

 
Author (down) Eckert, M.; Neyts, E.; Bogaerts, A.
Title Insights into the growth of (ultra)nanocrystalline diamond by combined molecular dynamics and Monte Carlo simulations Type A1 Journal article
Year 2010 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des
Volume 10 Issue 7 Pages 3005-3021
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, we present the results of combined molecular dynamics−Metropolis Monte Carlo (MD-MMC) simulations of hydrocarbon species at flat diamond (100)2 × 1 and (111)1 × 1 surfaces. The investigated species are considered to be the most important growth species for (ultra)nanocrystalline diamond ((U)NCD) growth. When applying the MMC algorithm to stuck species at monoradical sites, bonding changes are only seen for CH2. The sequence of the bond breaking and formation as put forward by the MMC simulations mimics the insertion of CH2 into a surface dimer as proposed in the standard growth model of diamond. For hydrocarbon species attached to two adjacent radical (biradical) sites, the MMC simulations give rise to significant changes in the bonding structure. For UNCD, the combinations of C3 and C3H2, and C3 and C4H2 (at diamond (100)2 × 1) and C and C2H2 (at diamond (111)1 × 1) are the most successful in nucleating new crystal layers. For NCD, the following combinations pursue the diamond structure the best: C2H2 and C3H2 (at diamond (100)2 × 1) and CH2 and C2H2 (at diamond (111)1 × 1). The different behaviors of the hydrocarbon species at the two diamond surfaces are related to the different sterical hindrances at the diamond surfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000279422700032 Publication Date 2010-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.055 Times cited 13 Open Access
Notes Approved Most recent IF: 4.055; 2010 IF: 4.390
Call Number UA @ lucian @ c:irua:83065 Serial 1675
Permanent link to this record
 

 
Author (down) Eckert, M.; Neyts, E.; Bogaerts, A.
Title Modeling adatom surface processes during crystal growth: a new implementation of the Metropolis Monte Carlo algorithm Type A1 Journal article
Year 2009 Publication CrystEngComm Abbreviated Journal Crystengcomm
Volume 11 Issue 8 Pages 1597-1608
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, a new implementation of the Metropolis Monte Carlo (MMC) algorithm is presented. When combining the MMC model with a molecular dynamics (MD) code, crystal growth by plasma-enhanced chemical vapor deposition can be simulated. As the MD part simulates impacts of growth species onto the surface on a time scale of picoseconds, the MMC algorithm simulates the slower adatom surface processes. The implementation includes a criterion for the selection of atoms that are allowed to be displaced during the simulation, and a criterion of after how many MMC cycles the simulation is stopped. We performed combined MD-MMC simulations for hydrocarbon species that are important for the growth of ultrananocrystalline diamond (UNCD) films at partially hydrogenated diamond surfaces, since this implementation is part of a study of the growth mechanisms of (ultra)nanocrystalline diamond films. Exemplary for adatom arrangements during the growth of UNCD, the adatom surface behavior of C and C2H2 at diamond (111)1 × 1, C and C4H2 at diamond (111)1 × 1 and C3 at diamond (100)2 × 1 has been investigated. For all cases, the diamond crystal structure is pursued under the influence of MMC simulation. Additional longer time-scale MD simulations put forward very similar structures, verifying the MMC algorithm. Nevertheless, the MMC simulation time is typically one order of magnitude shorter than the MD simulation time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000268184300021 Publication Date 2009-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-8033; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.474 Times cited 15 Open Access
Notes Approved Most recent IF: 3.474; 2009 IF: 4.183
Call Number UA @ lucian @ c:irua:77374 Serial 2106
Permanent link to this record
 

 
Author (down) Eckert, M.; Neyts, E.; Bogaerts, A.
Title Molecular dynamics simulations of the sticking and etch behavior of various growth species of (ultra)nanocrystalline diamond films Type A1 Journal article
Year 2008 Publication Chemical vapor deposition Abbreviated Journal Chem Vapor Depos
Volume 14 Issue 7/8 Pages 213-223
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The reaction behavior of species that may affect the growth of ultrananocrystal line and nanocrystalline diamond ((U)NCD) films is investigated by means of molecular dynamics simulations. Impacts of CHx (x = 0 – 4), C2Hx (x=0-6), C3Hx (x=0-2), C4Hx (x = 0 – 2), H, and H-2 on clean and hydrogenated diamond (100)2 x 1 and (111) 1 x 1 surfaces at two different substrate temperatures are simulated. We find that the different bonding structures of the two surfaces cause different temperature effects on the sticking efficiency. These results predict a temperature-dependent ratio of diamond (100) and (111) growth. Furthermore, predictions of which are the most important hydrocarbon species for (U)NCD growth are made.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000259302700008 Publication Date 2008-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.333 Times cited 25 Open Access
Notes Approved Most recent IF: 1.333; 2008 IF: 1.483
Call Number UA @ lucian @ c:irua:70001 Serial 2177
Permanent link to this record
 

 
Author (down) Eckert, M.; Neyts, E.; Bogaerts, A.
Title On the reaction behaviour of hydrocarbon species at diamond (1 0 0) and (1 1 1) surfaces: a molecular dynamics investigation Type A1 Journal article
Year 2008 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 41 Issue Pages 032006,1-3
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000253177800006 Publication Date 2008-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 17 Open Access
Notes Approved Most recent IF: 2.588; 2008 IF: 2.104
Call Number UA @ lucian @ c:irua:66107 Serial 2449
Permanent link to this record
 

 
Author (down) Eckert, M.; Mortet, V.; Zhang, L.; Neyts, E.; Verbeeck, J.; Haenen, ken; Bogaerts, A.
Title Theoretical investigation of grain size tuning during prolonged bias-enhanced nucleation Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue 6 Pages 1414-1423
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, the effects of prolonged bias-enhanced nucleation (prolonged BEN) on the growth mechanisms of diamond are investigated by molecular dynamics (MD) and combined MD-Metropolis Monte Carlo (MD-MMC) simulations. First, cumulative impacts of CxHy+ and Hx+ on an a-C:H/nanodiamond composite were simulated; second, nonconsecutive impacts of the dominant ions were simulated in order to understand the observed phenomena in more detail. As stated in the existing literature, the growth of diamond structures during prolonged BEN is a process that takes place below the surface of the growing film. The investigation of the penetration behavior of CxHy+ and Hx+ species shows that the carbon-containing ions remain trapped within this amorphous phase where they dominate mechanisms like precipitation of sp3 carbon clusters. The H+ ions, however, penetrate into the crystalline phase at high bias voltages (>100 V), destroying the perfect diamond structure. The experimentally measured reduction of grain sizes at high bias voltage, reported in the literature, might thus be related to penetrating H+ ions. Furthermore, the CxHy+ ions are found to be the most efficient sputtering agents, preventing the build up of defective material.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000288291400011 Publication Date 2011-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 9 Open Access
Notes Iwt; Fwo; Esteem 026019; Iap Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:87642 Serial 3605
Permanent link to this record
 

 
Author (down) Dufour, T.; Minnebo, J.; Abou Rich, S.; Neyts, E.C.; Bogaerts, A.; Reniers, F.
Title Understanding polyethylene surface functionalization by an atmospheric He/O2 plasma through combined experiments and simulations Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 224007
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract High density polyethylene surfaces were exposed to the atmospheric post-discharge of a radiofrequency plasma torch supplied in helium and oxygen. Dynamic water contact angle measurements were performed to evaluate changes in surface hydrophilicity and angle resolved x-ray photoelectron spectroscopy was carried out to identify the functional groups responsible for wettability changes and to study their subsurface depth profiles, up to 9 nm in depth. The reactions leading to the formation of CO, C = O and OC = O groups were simulated by molecular dynamics. These simulations demonstrate that impinging oxygen atoms do not react immediately upon impact but rather remain at or close to the surface before eventually reacting. The simulations also explain the release of gaseous species in the ambient environment as well as the ejection of low molecular weight oxidized materials from the surface.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000336207900008 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 13 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116919 Serial 3804
Permanent link to this record
 

 
Author (down) Duan, J.; Ma, M.; Yusupov, M.; Cordeiro, R.M.; Lu, X.; Bogaerts, A.
Title The penetration of reactive oxygen and nitrogen species across the stratum corneum Type A1 Journal article
Year 2020 Publication Plasma Processes And Polymers Abbreviated Journal Plasma Process Polym
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The penetration of reactive oxygen and nitrogen species (RONS) across the stratum corneum (SC) is a necessary and crucial process in many skin‐related plasma medical applications. To gain more insights into this penetration behavior, we combined experimental measurements of the permeability of dry and moist SC layers with computer simulations of model lipid membranes. We measured the permeation of relatively stable molecules, which are typically generated by plasma, namely H2O2, NO3−, and NO2−. Furthermore, we calculated the permeation free energy profiles of the major plasma‐generated RONS and their derivatives (i.e., H2O2, OH, HO2, O2, O3, NO, NO2, N2O4, HNO2, HNO3, NO2−, and NO3−) across native and oxidized SC lipid bilayers, to understand the mechanisms of RONS permeation across the SC. Our results indicate that hydrophobic RONS (i.e., NO, NO2, O2, O3, and N2O4) can translocate more easily across the SC lipid bilayer than hydrophilic RONS (i.e., H2O2, OH, HO2, HNO2, and HNO3) and ions (i.e., NO2− and NO3−) that experience much higher permeation barriers. The permeability of RONS through the SC skin lipids is enhanced when the skin is moist and the lipids are oxidized. These findings may help to understand the underlying mechanisms of plasma interaction with a biomaterial and to optimize the environmental parameters in practice in plasma medical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000536892900001 Publication Date 2020-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.5 Times cited Open Access
Notes National Natural Science Foundation of China, 51625701 51977096 ; Fonds Wetenschappelijk Onderzoek, 1200219N ; China Scholarship Council, 201806160128 ; M. Y. acknowledges the Research Foundation Flanders (FWO) for financial support (Grant No. 1200219N). This study was partially supported by the National Natural Science Foundation of China (Grant No: 51625701 and 51977096) and the China Scholarship Council (Grant No: 201806160128). All computational work was performed using the Turing HPC infrastructure at the CalcUA Core Facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA. Approved Most recent IF: 3.5; 2020 IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:169709 Serial 6372
Permanent link to this record
 

 
Author (down) Dinh, D.K.; Trenchev, G.; Lee, D.H.; Bogaerts, A.
Title Arc plasma reactor modification for enhancing performance of dry reforming of methane Type A1 Journal article
Year 2020 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util
Volume 42 Issue Pages 101352
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Arc plasma technology is gaining increasing interest for a variety of chemical reaction applications. In this study, we demonstrate how modifying the reactor geometry can significantly enhance the chemical reaction perfor­mance. Using dry reforming of methane as a model reaction, we studied different rotating arc reactors (con­ventional rotating arc reactor and nozzle-type rotating arc reactor) to evaluate the effect of attaching a downstream nozzle. The nozzle structure focuses the heat to a confined reaction volume, resulting in enhanced heat transfer from the arc into gas activation and reduced heat losses to the reactor walls. Compared to the conventional rotating arc reactor, this yields much higher CH4 and CO2 conversion (i.e., 74% and 49%, respectively, versus 40% and 28% in the conventional reactor, at 5 kJ/L) as well as energy efficiency (i.e., 53% versus 36%). The different performance in both reactors was explained by both experiments (measurements of temperature and oscillogram of current and voltage) and numerical modelling of the gas flow dynamics, heat transfer and fluid plasma of the reactor chambers. The results provide important insights for design optimization of arc plasma reactors for various chemical reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000599717000009 Publication Date 2020-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.7 Times cited Open Access
Notes Korea Institute of Machinery and Materials, NK225F and NG0340) ; This work is supported by the Institutional research program (NK225F and NG0340) of the Korea Institute of Machinery and Materials. Approved Most recent IF: 7.7; 2020 IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:173859 Serial 6431
Permanent link to this record
 

 
Author (down) Derzsi, A.; Donko, Z.; Bogaerts, A.; Hoffmann, V.
Title The influence of the secondary electron emission coefficient and effect of the gas heating on the calculated electrical characteristics of a grimm type glow discharge cell Type P1 Proceeding
Year 2008 Publication Abbreviated Journal
Volume Issue Pages 285-288
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Electron emission properties of cathode surfaces affect considerably the electrical characteristics of glow discharges. Using a heavy-particle hybrid model ill 2 dimensions, we investigate the influence of the secondary electron emission coefficient gamma oil the calculated discharge characteristics for both 'clean' and 'dirty' cathode surface conditions, and assuming a constant gamma parameter as well. The effect of the gas heating and the role of the heavy particles reflected from the cathode on this process is also studied.
Address
Corporate Author Thesis
Publisher Astronomical Observatory Place of Publication Belgrade Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume 2008 Series Issue 84 Edition
ISSN 978-86-80019-27-7; 0373-3742 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:95705 Serial 1650
Permanent link to this record
 

 
Author (down) Depla, D.; Li, X.Y.; Mahieu, S.; van Aeken, K.; Leroy, W.P.; Haemers, J.; de Gryse, R.; Bogaerts, A.
Title Rotating cylindrical magnetron sputtering: simulation of the reactive process Type A1 Journal article
Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 107 Issue 11 Pages 113307,1-113307,9
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A rotating cylindrical magnetron consists of a cylindrical tube, functioning as the cathode, which rotates around a stationary magnet assembly. In stationary mode, the cylindrical magnetron behaves similar to a planar magnetron with respect to the influence of reactive gas addition to the plasma. However, the transition from metallic mode to poisoned mode and vice versa depends on the rotation speed. An existing model has been modified to simulate the influence of target rotation on the well known hysteresis behavior during reactive magnetron sputtering. The model shows that the existing poisoning mechanisms, i.e., chemisorption, direct reactive ion implantation and knock on implantation, are insufficient to describe the poisoning behavior of the rotating target. A better description of the process is only possible by including the deposition of sputtered material on the target.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000278907100020 Publication Date 2010-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 15 Open Access
Notes Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:82631 Serial 2930
Permanent link to this record
 

 
Author (down) Depla, D.; Chen, Z.Y.; Bogaerts, A.; Ignatova, V.; de Gryse, R.; Gijbels, R.
Title Modeling of the target surface modification by reactive ion implantation during magnetron sputtering Type A1 Journal article
Year 2004 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume 22 Issue 4 Pages 1524-1529
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000223322000075 Publication Date 2004-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 13 Open Access
Notes Approved Most recent IF: 1.374; 2004 IF: 1.557
Call Number UA @ lucian @ c:irua:47331 Serial 2137
Permanent link to this record