|   | 
Details
   web
Records
Author (down) Felten, A.; Bittencourt, C.; Colomer, J.-F.; Van Tendeloo, G.; Pireaux, J.-J.
Title Nucleation of metal clusters on plasma treated multi wall carbon nanotubes Type A1 Journal article
Year 2007 Publication Carbon Abbreviated Journal Carbon
Volume 45 Issue 1 Pages 110-116
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000243583300017 Publication Date 2006-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 40 Open Access
Notes Approved Most recent IF: 6.337; 2007 IF: 4.260
Call Number UA @ lucian @ c:irua:63033 Serial 2389
Permanent link to this record
 

 
Author (down) Dzhurakhalov, A.A.; Peeters, F.M.
Title Structure and energetics of hydrogen chemisorbed on a single graphene layer to produce graphane Type A1 Journal article
Year 2011 Publication Carbon Abbreviated Journal Carbon
Volume 49 Issue 10 Pages 3258-3266
Keywords A1 Journal article; Condensed Matter Theory (CMT); Integrated Molecular Plant Physiology Research (IMPRES)
Abstract Chemisorption of hydrogen on graphene is studied using atomistic simulations with the second generation of reactive empirical bond order Brenner inter-atomic potential. The lowest energy adsorption sites and the most important metastable sites are determined. The H concentration is varied from a single H atom, to clusters of H atoms up to full coverage. We found that when two or more H atoms are present, the most stable configurations of H chemisorption on a single graphene layer are ortho hydrogen pairs adsorbed on one side or on both sides of the graphene sheet. The latter has the highest hydrogen binding energy. The next stable configuration is the orthopara pair combination, and then para hydrogen pairs. The structural changes of graphene caused by chemisorbed hydrogen are discussed and are compared with existing experimental data and other theoretical calculations. The obtained results will be useful for nanoengineering of graphene by hydrogenation and for hydrogen storage.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000291959300014 Publication Date 2011-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 46 Open Access
Notes ; A.D. thanks M.W. Zhao for a useful correspondence. This work was supported by the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 6.337; 2011 IF: 5.378
Call Number UA @ lucian @ c:irua:90877 Serial 3275
Permanent link to this record
 

 
Author (down) Dehdast, M.; Valiollahi, Z.; Neek-Amal, M.; Van Duppen, B.; Peeters, F.M.; Pourfath, M.
Title Tunable natural terahertz and mid-infrared hyperbolic plasmons in carbon phosphide Type A1 Journal article
Year 2021 Publication Carbon Abbreviated Journal Carbon
Volume 178 Issue Pages 625-631
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Hyperbolic polaritons in ultra thin materials such as few layers of van derWaals heterostructures provide a unique control over light-matter interaction at the nanoscale and with various applications in flat optics. Natural hyperbolic surface plasmons have been observed on thin films of WTe2 in the light wavelength range of 16-23 mu m (similar or equal to 13-18 THz) [Nat. Commun. 11, 1158 (2020)]. Using time-dependent density functional theory, it is found that carbon doped monolayer phosphorene (beta-allotrope of carbon phosphide monolayer) exhibits natural hyperbolic plasmons at frequencies above similar or equal to 5 THz which is not observed in its parent materials, i.e. monolayer of black phosphorous and graphene. Furthermore, we found that by electrostatic doping the plasmonic frequency range can be extended to the mid-infrared. (C) 2021 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000648729800057 Publication Date 2021-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 11 Open Access Not_Open_Access
Notes Approved Most recent IF: 6.337
Call Number UA @ admin @ c:irua:179033 Serial 7039
Permanent link to this record
 

 
Author (down) da Costa, D.R.; Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Analytical study of the energy levels in bilayer graphene quantum dots Type A1 Journal article
Year 2014 Publication Carbon Abbreviated Journal Carbon
Volume 78 Issue Pages 392-400
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the four-band continuum model we derive a general expression for the infinite-mass boundary condition in bilayer graphene. Applying this new boundary condition we analytically calculate the confined states and the corresponding wave functions in a bilayer graphene quantum dot in the absence and presence of a perpendicular magnetic field. Our results for the energy spectrum show an energy gap between the electron and hole states at small magnetic fields. Furthermore the electron (e) and hole (h) energy levels corresponding to the K and K' valleys exhibit the E-K(e(h)) (m) = E-K'(e(h)) (m) symmetry, where m is the angular momentum quantum number. (C) 2014 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000341463900042 Publication Date 2014-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 35 Open Access
Notes ; This work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES program Euro-GRAPHENE (project CONGRAN), the Bilateral programme between CNPq and FWO-Vl, and the Brazilian Program Science Without Borders (CsF). We thank M. Ramezani Masir and M. Grujic for helpful comments and discussions. ; Approved Most recent IF: 6.337; 2014 IF: 6.196
Call Number UA @ lucian @ c:irua:119280 Serial 109
Permanent link to this record
 

 
Author (down) Corthals, S.; van Noyen, J.; Geboers, J.; Vosch, T.; Liang, D.; Ke, X.; Hofkens, J.; Van Tendeloo, G.; Jacobs, P.; Sels, B.
Title The beneficial effect of CO2 in the low temperature synthesis of high quality carbon nanofibers and thin multiwalled carbon nanotubes from CH_{4} over Ni catalysts Type A1 Journal article
Year 2012 Publication Carbon Abbreviated Journal Carbon
Volume 50 Issue 2 Pages 372-384
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A low temperature chemical vapor deposition method is described for converting CH4 into high-quality carbon nanofibers (CNFs) using a Ni catalyst supported on either spinel or perovskite oxides in the presence of CO2. The addition of CO2 has a significant influence on CNF purity and stability, while the CNF diameter distribution is significantly narrowed. Ultimately, the addition of CO2 changes the CNF structure from fishbone fibers to thin multiwalled carbon nanotubes. A new in situ cooling principle taking into account dry reforming chemistry and thermodynamics is introduced to account for the structural effects of CO2.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000297397700004 Publication Date 2011-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 26 Open Access
Notes Iwt; Iap Approved Most recent IF: 6.337; 2012 IF: 5.868
Call Number UA @ lucian @ c:irua:93626 Serial 228
Permanent link to this record
 

 
Author (down) Chen, X.; Bouhon, A.; Li, L.; Peeters, F.M.; Sanyal, B.
Title PAI-graphene : a new topological semimetallic two-dimensional carbon allotrope with highly tunable anisotropic Dirac cones Type A1 Journal article
Year 2020 Publication Carbon Abbreviated Journal Carbon
Volume 170 Issue Pages 477-486
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using evolutionary algorithm for crystal structure prediction, we present a new stable two-dimensional (2D) carbon allotrope composed of polymerized as-indacenes (PAI) in a zigzag pattern, namely PAI-graphene whose energy is lower than most of the reported 2D allotropes of graphene. Crucially, the crystal structure realizes a nonsymmorphic layer group that enforces a nontrivial global topology of the band structure with two Dirac cones lying perfectly at the Fermi level. The absence of electron/hole pockets makes PAI-graphene a pristine crystalline topological semimetal having anisotropic Fermi velocities with a high value of 7.0 x 10(5) m/s. We show that while the semimetallic property of the allotrope is robust against the application of strain, the positions of the Dirac cone and the Fermi velocities can be modified significantly with strain. Moreover, by combining strain along both the x- and y-directions, two band inversions take place at G leading to the annihilation of the Dirac nodes demonstrating the possibility of strain-controlled conversion of a topological semimetal into a semiconductor. Finally we formulate the bulk-boundary correspondence of the topological nodal phase in the form of a generalized Zak-phase argument finding a perfect agreement with the topological edge states computed for different edge-terminations. (C) 2020 The Author(s). Published by Elsevier Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000579779800047 Publication Date 2020-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.9 Times cited 43 Open Access
Notes ; We thank S. Nahas, for helpful discussions. This work is supported by the project grant (2016e05366) and Swedish Research Links program grant (2017e05447) from the Swedish Research Council, the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), the FLAG-ERA project TRANS 2D TMD. Linyang Li acknowledges financial support from the Natural Science Foundation of Hebei Province (Grant No. A2020202031). X.C. thanks China scholarship council for financial support (No. 201606220031). X.C. and B.S. acknowledge SNIC-UPPMAX, SNIC-HPC2N, and SNIC-NSC centers under the Swedish National Infrastructure for Computing (SNIC) resources for the allocation of time in high-performance supercomputers. Moreover, supercomputing resources from PRACE DECI-15 project DYNAMAT are gratefully acknowledged. ; Approved Most recent IF: 10.9; 2020 IF: 6.337
Call Number UA @ admin @ c:irua:173513 Serial 6577
Permanent link to this record
 

 
Author (down) Cao, M.; Xiong, D.-B.; Tan, Z.; Ji, G.; Amin-Ahmadi, B.; Guo, Q.; Fan, G.; Guo, C.; Li, Z.; Zhang, D.
Title Aligning graphene in bulk copper : nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity Type A1 Journal article
Year 2017 Publication Carbon Abbreviated Journal
Volume 117 Issue Pages 65-74
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Methods used to strengthen metals generally also cause a pronounced decrease in ductility and electrical conductivity. In this work a bioinspired strategy is applied to surmount the dilemma. By assembling copper submicron flakes cladded with in-situ grown graphene, graphene/copper matrix composites with a nanolaminated architecture inspired by a natural nacre have been prepared. Owing to a combined effect-from the bioinspired nanolaminated architecture and improved interfacial bonding, a synergy has been achieved between mechanical strength and ductility as well as electrical conductivity in the graphene/copper matrix composites. With a low volume fraction of only 2.5% of graphene, the composite shows a yield strength and elastic modulus similar to 177% and similar to 25% higher than that of unreinforced copper matrix, respectively, while retains ductility and electrical conductivity comparable to that of pure copper. The bioinspired nanolaminated architecture enhances the efficiencies of two-dimensional (2D) graphene in mechanical strengthening and electrical conducting by aligning graphene to maximize performance for required loading and carrier transporting conditions, and toughens the composites by crack deflection. Meanwhile, in-situ growth of graphene is beneficial for improving interfacial bonding and structural quality of graphene. The strategy sheds light on the development of composites with good combined structural and functional properties. (C) 2017 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000400212100008 Publication Date 2017-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:152635 Serial 7435
Permanent link to this record
 

 
Author (down) Cabana, L.; Ke, X.; Kepić, D.; Oro-Solé, J.; Tobías-Rossell, E.; Van Tendeloo, G.; Tobias, G.
Title The role of steam treatment on the structure, purity and length distribution of multi-walled carbon nanotubes Type A1 Journal article
Year 2015 Publication Carbon Abbreviated Journal Carbon
Volume 93 Issue 93 Pages 1059-1067
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Purification and shortening of carbon nanotubes have attracted a great deal of attention to increase the biocompatibility and performance of the material in several applications. Steam treatment has been employed to afford both purification and shortening of multi-walled carbon nanotubes (MWCNTs). Steam removes the amorphous carbon and the graphitic particles that sheath catalytic nanoparticles, facilitating their removal by a subsequent acidic wash. The amount of metal impurities can be reduced in this manner below 0.01 wt.%. The length distribution of MWCNTs after different steam treatment times (from 1 h to 15 h) was assessed by box plot analysis of the electron microscopy data. Samples with a median length of 0.57 μm have been prepared with the reported methodology while preserving the integrity of the tubular wall structure.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000360292100108 Publication Date 2015-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 17 Open Access
Notes 312483 Esteem2; 290023 Raddel; esteem2_ta Approved Most recent IF: 6.337; 2015 IF: 6.196
Call Number c:irua:127691 c:irua:127691 Serial 2921
Permanent link to this record
 

 
Author (down) Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M.
Title Electro-optical properties of monolayer and bilayer boron-doped C₃N: Tunable electronic structure via strain engineering and electric field Type A1 Journal article
Year 2020 Publication Carbon Abbreviated Journal Carbon
Volume 168 Issue Pages 220-229
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this work, the structural, electronic and optical properties of monolayer and bilayer of boron doped C3N are investigated by means of density functional theory-based first-principles calculations. Our results show that with increasing the B dopant concentration from 3.1% to 12.5% in the hexagonal pattern, an indirect-to-direct band gap (0.8 eV) transition occurs. Furthermore, we study the effect of electric field and strain on the B doped C3N bilayer (B-C3N@2L). It is shown that by increasing E-field strength from 0.1 to 0.6V/angstrom, the band gap displays almost a linear decreasing trend, while for the > 0.6V/angstrom, we find dual narrow band gap with of 50 meV (in parallel E-field) and 0.4 eV (in antiparallel E-field). Our results reveal that in-plane and out-of-plane strains can modulate the band gap and band edge positions of the B-C3N@2L. Overall, we predict that B-C3N@2L is a new platform for the study of novel physical properties in layered two-dimensional materials (2DM) which may provide new opportunities to realize high-speed low-dissipation devices. (C) 2020 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000565900900008 Publication Date 2020-07-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.9 Times cited 21 Open Access
Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2017R1A2B2011989). M. Yagmurcukardes acknowledges Flemish Science Foundation (FWO-VI) by a postdoctoral fellowship. ; Approved Most recent IF: 10.9; 2020 IF: 6.337
Call Number UA @ admin @ c:irua:171914 Serial 6500
Permanent link to this record
 

 
Author (down) Bafekry, A.; Stampfl, C.; Ghergherehchi, M.; Shayesteh, S.F.
Title A first-principles study of the effects of atom impurities, defects, strain, electric field and layer thickness on the electronic and magnetic properties of the C2N nanosheet Type A1 Journal article
Year 2020 Publication Carbon Abbreviated Journal Carbon
Volume 157 Issue 157 Pages 371-384
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the first-principles calculations, we explore the structural and novel electronic/optical properties of the C2N nanosheet. To this goal, we systematically investigate the affect of layer thickness, electrical field and strain on the electronic properties of the C2N nanosheet. By increasing the thickness of C2N, we observed that the band gap decreases. Moreover, by applying an electrical field to bilayer C2N, the band gap decreases and a semiconductor-to-metal transition can occur. Our results also confirm that uniaxial and biaxial strain can effectively alter the band gap of C2N monolayer. Furthermore, we show that the electronic and magnetic properties of C2N can be modified by the adsorption and substitution of various atoms. Depending on the species of embedded atoms, they may induce semiconductor (O, C, Si and Be), metal (S, N, P, Na, K, Mg and Ca), dilute-magnetic semiconductor (H, F, B), or ferro-magnetic-metal (Cl, Li) character in C2N monolayer. It was also found that the inclusion of hydrogen or oxygen impurities and nitrogen vacancies, can induce magnetism in the C2N monolayer. These extensive calculations can be useful to guide future studies to modify the electronic/optical properties of two-dimensional materials. (C) 2019 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000502548500044 Publication Date 2019-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.9 Times cited 49 Open Access
Notes ; This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). We are thankful for comments by Meysam Baghery Tagani from department of physics in University of Guilan and Bohayra Mortazavi from Gottfried Wilhelm Leibniz Universitat Hannover, Hannover, Germany. ; Approved Most recent IF: 10.9; 2020 IF: 6.337
Call Number UA @ admin @ c:irua:165024 Serial 6283
Permanent link to this record
 

 
Author (down) Aussems, D.U.B.; Bal, K.M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C.
Title Mechanisms of elementary hydrogen ion-surface interactions during multilayer graphene etching at high surface temperature as a function of flux Type A1 Journal article
Year 2018 Publication Carbon Abbreviated Journal Carbon
Volume 137 Issue Pages 527-532
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In order to optimize the plasma-synthesis and modification process of carbon nanomaterials for applications such as nanoelectronics and energy storage, a deeper understanding of fundamental hydrogengraphite/graphene interactions is required. Atomistic simulations by Molecular Dynamics have proven to be indispensable to illuminate these phenomena. However, severe time-scale limitations restrict them to very fast processes such as reflection, while slow thermal processes such as surface diffusion and molecular desorption are commonly inaccessible. In this work, we could however reach these thermal processes for the first time at time-scales and surface temperatures (1000 K) similar to high-flux plasma exposure experiments during the simulation of multilayer graphene etching by 5 eV H ions. This was achieved by applying the Collective Variable-Driven Hyperdynamics biasing technique, which extended the inter-impact time over a range of six orders of magnitude, down to a more realistic ion-flux of 1023m2s1. The results show that this not only causes a strong shift from predominant ion-to thermally induced interactions, but also significantly affects the hydrogen uptake and surface evolution. This study thus elucidates H ion-graphite/graphene interaction mechanisms and stresses the importance of including long time-scales in atomistic simulations at high surface temperatures to understand the dynamics of the ion-surface system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440661700056 Publication Date 2018-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 4 Open Access Not_Open_Access: Available from 25.05.2020
Notes DIFFER is part of the Netherlands Organisation for Scientific Research (NWO). K.M.B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientific Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government e department EWI. Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @c:irua:152172 Serial 4993
Permanent link to this record
 

 
Author (down) Afanasov, I.M.; Shornikova, O.N.; Kirilenko, D.A.; Vlasov, I.I.; Zhang, L.; Verbeeck, J.; Avdeev, V.V.; Van Tendeloo, G.
Title Graphite structural transformations during intercalation by HNO3 and exfoliation Type L1 Letter to the editor
Year 2010 Publication Carbon Abbreviated Journal Carbon
Volume 48 Issue 6 Pages 1862-1865
Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)
Abstract Expandable graphite of two types was synthesized by (1) hydrolysis of graphite nitrate of II stage and (2) anodic polarization of graphite in 60% HNO3. Exfoliated graphite samples were produced by thermal shock of expandable graphite samples in air at 900 °C. A comparative study of microstructural distinctions of both expandable and exfoliated graphite samples was carried out using X-ray diffraction, Raman spectroscopy, electron energy loss spectroscopy and high resolution transmission electron microscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000276132800021 Publication Date 2010-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 43 Open Access
Notes Approved Most recent IF: 6.337; 2010 IF: 4.896
Call Number UA @ lucian @ c:irua:82315UA @ admin @ c:irua:82315 Serial 1379
Permanent link to this record
 

 
Author (down) Afanasov, I.M.; Shornikova, O.N.; Avdeev, V.V.; Lebedev, O.I.; Van Tendeloo, G.; Matveev, A.T.
Title Expanded graphite as a support for Ni/carbon composites Type A1 Journal article
Year 2009 Publication Carbon Abbreviated Journal Carbon
Volume 47 Issue 2 Pages 513-518
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Expanded graphite decorated with nickel oxide particles (EGNiO) has been synthesized through electrochemical oxidation of natural graphite in an aqueous nickel nitrate solution followed by a heat treatment. EGNiO was used to prepare nickel/carbon composites using two techniques: (a) hydrogen reduction of nickel oxide particles loaded on the expanded graphite surface and (b) pyrolysis of coal tar pitch-impregnated EGNiO blocks. The EGNiO as well as the nickel/carbon composites have been characterized by X-ray diffraction, scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy and selected area electron diffraction.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000262558300018 Publication Date 2008-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 45 Open Access
Notes Iap-Vi Approved Most recent IF: 6.337; 2009 IF: 4.504
Call Number UA @ lucian @ c:irua:76033 Serial 1132
Permanent link to this record
 

 
Author (down) Afanasov, I.M.; Morozov, V.A.; Kepman, A.V.; Ionov, S.G.; Seleznev, A.N.; Van Tendeloo, G.; Audeev, V.V.
Title Preparation, electrical and thermal properties of new exfoliated graphite-based composites Type A1 Journal article
Year 2009 Publication Carbon Abbreviated Journal Carbon
Volume 47 Issue 1 Pages 263-270
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Exfoliated graphite samples (EG) with different bulk densities were prepared by the exfoliation of expandable graphite under a thermal shock regime. As a conductive filler, EG has been incorporated successfully into the coal tar pitch matrix by mechanical mixing. The conducting behavior of the composite was interpreted based on the percolation theory. The percolation threshold of the EG/pitch conducting composites at room temperature was as low as 1.5 wt% and did not depend on the bulk density of the EG used. By means of thermogravimetry the improvement of thermal stability of the composites in comparison with pure pitches was detected. The phenomenon was ascribed to heat shielding effect of the EG particles evidenced by matrix-assisted laser desorption/ionization mass spectrometry.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000262143500032 Publication Date 2008-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 42 Open Access
Notes Iap-Vi Approved Most recent IF: 6.337; 2009 IF: 4.504
Call Number UA @ lucian @ c:irua:75767 Serial 2701
Permanent link to this record
 

 
Author (down) Xu, P.; Qi, D.; Schoelz, J.K.; Thompson, J.; Thibado, P.M.; Wheeler, V.D.; Nyakiti, L.O.; Myers-Ward, R.L.; Eddy, C.R.; Gaskill, D.K.; Neek-Amal, M.; Peeters, F.M.;
Title Multilayer graphene, Moire patterns, grain boundaries and defects identified by scanning tunneling microscopy on the m-plane, non-polar surface of SiC Type A1 Journal article
Year 2014 Publication Carbon Abbreviated Journal Carbon
Volume 80 Issue Pages 75-81
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Epitaxial graphene is grown on a non-polar n(+) 6H-SiC m-plane substrate and studied using atomic scale scanning tunneling microscopy. Multilayer graphene is found throughout the surface and exhibits rotational disorder. Moire patterns of different spatial periodicities are found, and we found that as the wavelength increases, so does the amplitude of the modulations. This relationship reveals information about the interplay between the energy required to bend graphene and the interaction energy, i.e. van der Waals energy, with the graphene layer below. Our experiments are supported by theoretical calculations which predict that the membrane topographical amplitude scales with the Moire pattern wavelength, L as L-1 + alpha L-2. (C) 2014 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000344132400009 Publication Date 2014-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 14 Open Access
Notes ; P.X. and P.M.T. gratefully acknowledge the financial support of ONR under grant N00014-10-1-0181 and NSF under grant DMR-0855358. L.O.N. acknowledges the support of American Society for Engineering Education and Naval Research Laboratory Postdoctoral Fellow Program. Work at the U.S. Naval Research Laboratory is supported by the Office of Naval Research. This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem Foundation of the Flemish Government, and the EUROgraphene project CONGRAN. M.N.-A was supported by the EU-Marie Curie IIF postdoc Fellowship 299855. ; Approved Most recent IF: 6.337; 2014 IF: 6.196
Call Number UA @ lucian @ c:irua:121194 Serial 2221
Permanent link to this record