|   | 
Details
   web
Records
Author (down) Zhukova, A.A.; Rumyantseva, M.N.; Zaytsev, V.B.; Zaytseva, A.V.; Abakumov, A.M.; Gaskov, A.M.
Title Pd nanoparticles on SnO2(Sb) whiskers : aggregation and reactivity in CO detection Type A1 Journal article
Year 2013 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
Volume 565 Issue Pages 6-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Single crystal antimony-doped SnO2 whiskers have been synthesized by in situ doping process in horizontal flow reactor. The produced whiskers were modified with 0.1, 0.2, 0.5, 1 or 2 wt.% Pd. The processes of Pd particles growth and aggregation are described on the base of AFM and STEM data. Depending on the content of introduced Pd precursor, the various mechanisms (Volmer-Weber or Stranski-Krastanov) of Pd nanoparticles growth realize. The dependence of sensor signal to CO on Pd concentration has non-monotonous character determined by the size of Pd nanoparticles and their aggregation degree. The best sensor signal toward CO was observed for whiskers decorated with 0.1 wt.% Pd. This concentration corresponds to the presence of individual 3-5 nm Pd nanoparticles on the surface of the whiskers. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000317815300002 Publication Date 2013-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited Open Access
Notes Approved Most recent IF: 3.133; 2013 IF: 2.726
Call Number UA @ lucian @ c:irua:108424 Serial 2566
Permanent link to this record
 

 
Author (down) Zhang, H.; Yang, J.-H.; Shpanchenko, R.V.; Abakumov, A.M.; Hadermann, J.; Clérac, R.; Dikarev, E.V.
Title New class of single-source precursors for the synthesis of main group-transition metal oxides: heterobimetallic Pb-Mn \beta-diketonates Type A1 Journal article
Year 2009 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 48 Issue 17 Pages 8480-8488
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Heterometallic lead−manganese â-diketonates have been isolated in pure form by several synthetic methods that include solid-state and solution techniques. Two compounds with different Pb/Mn ratios, PbMn2(hfac)6 (1) and PbMn(hfac)4 (2) (hfac = hexafluoroacetylacetonate), can be obtained in quantitative yield by using different starting materials. Single crystal X-ray investigation revealed that the solid-state structure of 1 contains trinuclear molecules in which lead metal center is sandwiched between two [Mn(hfac)3] units, while 2 consists of infinite chains of alternating [Pb(hfac)2] and [Mn(hfac)2] fragments. The heterometallic structures are held together by strong Lewis acid−base interactions between metal atoms and diketonate ligands acting in chelating-bridging fashion. Spectroscopic investigation confirmed the retention of heterometallic structures in solutions of non-coordinating solvents as well as upon sublimation-deposition procedure. Thermal decomposition of heterometallic diketonates has been systematically investigated in a wide range of temperatures and annealing times. For the first time, it has been shown that thermal decomposition of heterometallic diketonates results in mixed-metal oxides, while both the structure of precursors and the thermolysis conditions have a significant influence on the nature of the resulting oxides. Five different Pb−Mn oxides have been detected by X-ray powder diffraction when studying the decomposition of 1 and 2 in the temperature range 500−800 °C. The phase that has been previously reported as Pb0.43MnO2.18 was synthesized in the pure form by decomposition of 1, and crystallographically characterized. The orthorhombic unit cell parameters of this oxide, obtained by electron diffraction technique, have been subsequently refined using X-ray powder diffraction data. Besides that, a previously unknown lead−manganese oxide has been obtained at low temperature decomposition and short annealing times. The parameters of its monoclinically distorted unit cell have been determined. The EDX analysis revealed that this compound has a Pb/Mn ratio close to 1:4 and contains no appreciable amount of fluorine.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000269313500056 Publication Date 2009-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 28 Open Access
Notes Approved Most recent IF: 4.857; 2009 IF: 4.657
Call Number UA @ lucian @ c:irua:78486 Serial 2308
Permanent link to this record
 

 
Author (down) Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A.M.; Tarascon, J.-M.
Title Insertion compounds and composites made by ball milling for advanced sodium-ion batteries Type A1 Journal article
Year 2016 Publication Nature communications Abbreviated Journal Nat Commun
Volume 7 Issue 7 Pages 10308
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)(2)F-3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P'2-Na-1[Fe0.5Mn0.5]O-2 and C/'Na3+xV2(PO4)(2)F-3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000369021400002 Publication Date 2016-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 104 Open Access
Notes Approved Most recent IF: 12.124
Call Number UA @ lucian @ c:irua:131599 Serial 4197
Permanent link to this record
 

 
Author (down) Zakharova, E.Y.; Kazakov, S.M.; Isaeva, A.A.; Abakumov, A.M.; Van Tendeloo, G.; Kuznetsov, A.N.
Title Pd5InSe and Pd8In2Se : new metal-rich homological selenides with 2D palladium-indium fragments : synthesis, structure and bonding Type A1 Journal article
Year 2014 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
Volume 589 Issue Pages 48-55
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Two new metal-rich palladium-indium selenides, Pd5InSe and Pd8In2Se, were synthesized using a high-temperature ampoule technique. Their crystal structures were determined from Rietveld analysis of powder diffraction data, supported by energy-dispersive X-ray spectroscopy and selected area electron diffraction. Both compounds crystallize in tetragonal system with P4/mmm space group (Pd5InSe: a = 4.0290(3) angstrom, c = 6.9858(5) angstrom, Z = 1; Pd8In2Se: a = 4.0045(4) angstrom, c = 10.952(1) angstrom, Z = 1). The first compound belongs to the Pd5TlAs structure type, while the second one – to a new structure type. Main structural units in both selenides are indium-centered [Pd12In] cuboctahedra of the tetragonally distorted Cu3Au type, single-and double-stacked along the c axis in Pd5InSe and Pd8In2Se, respectively, alternating with [Pd8Se] rectangular prisms. DFT electronic structure calculations predict both compounds to be 3D metallic conductors and Pauli-like paramagnets. According to the bonding analysis based on the electron localization function topology, both compounds feature multi-centered palladium-indium interactions in their heterometallic fragments. (C) 2013 Elsevier B. V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000330181400008 Publication Date 2013-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited 12 Open Access
Notes Approved Most recent IF: 3.133; 2014 IF: 2.999
Call Number UA @ lucian @ c:irua:114840 Serial 3552
Permanent link to this record
 

 
Author (down) Zaikina, J.V.; Batuk, M.; Abakumov, A.M.; Navrotsky, A.; Kauziarich, S.M.
Title Facile synthesis of Ba1-xKxFe2As2 superconductors via hydride route Type A1 Journal article
Year 2014 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 136 Issue 48 Pages 16932-16939
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have developed a fast, easy, and scalable synthesis method for Ba1xKxFe2As2 (0 ≤ x ≤ 1) superconductors using hydrides BaH2 and KH as a source of barium and potassium metals. Synthesis from hydrides provides better mixing and easier handling of the starting materials, consequently leading to faster reactions and/or lower synthesis temperatures. The reducing atmosphere provided by the evolved hydrogen facilitates preparation of oxygen-free powders. By a combination of methods we have shown that Ba1xKxFe2As2 obtained via hydride route has the same characteristics as when it is prepared by traditional solid-state synthesis. Refinement from synchrotron powder X-ray diffraction data confirms a linear dependence of unit cell parameters upon K content as well as the tetragonal to orthorhombic transition at low temperatures for compositions with x < 0.2. Magnetic measurements revealed dome-like dependence of superconducting transition temperature Tc upon K content with a maximum of 38 K for x close to 0.4. Electron diffraction and high-resolution high-angle annular dark-field scanning transmission electron microscopy indicates an absence of Ba/K ordering, while local inhomogeneity in the Ba/K distribution takes place at a scale of several angstroms along [110] crystallographic direction.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000345883900040 Publication Date 2014-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 13 Open Access
Notes Approved Most recent IF: 13.858; 2014 IF: 12.113
Call Number UA @ lucian @ c:irua:121331 Serial 1169
Permanent link to this record
 

 
Author (down) Yang, T.; Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Nowik, I.; Stephens, P.W.; Hamberger, J.; Tsirlin, A.A.; Ramanujachary, K.V.; Lofland, S.; Croft, M.; Ignatov, A.; Sun, J.; Greenblatt, M.
Title _BiMnFe2O6, a polysynthetically twinned hcp MO structure Type A1 Journal article
Year 2010 Publication Chemical science Abbreviated Journal Chem Sci
Volume 1 Issue 6 Pages 751-762
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The most efficient use of spatial volume and the lowest potential energies in the metal oxide structures are based on cubic close packing (ccp) or hexagonal close packing (hcp) of anions with cations occupying the interstices. A promising way to tune the composition of close packed oxides and design new compounds is related to fragmenting the parent structure into modules by periodically spaced planar interfaces, such as twin planes at the unit cell scale. The unique crystal chemistry properties of cations with a lone electron pair, such as Bi3+ or Pb2+, when located at interfaces, enables them to act as chemical scissors, to help relieve configurational strain. With this approach, we synthesized a new oxide, BiMnFe2O6, where fragments of the hypothetical hcp oxygen-based MO structure (the NiAs structure type), for the first time, serve as the building modules in a complex transition metal oxide. Mn3+ and Fe3+ ions are randomly distributed in two crystallographically independent sites (M1 and M2). The structure consists of quasi two-dimensional blocks of the 2H hexagonal close packed MO structure cut along the (114) crystal plane of the hcp lattice and stacked along the c axis. The blocks are related by a mirror operation that allows BiMnFe2O6 to be considered as a polysynthetically twinned 2H hcp MO structure. The transition to an AFM state with an incommensurate spin configuration at [similar] 212 K is established by 57Fe Mössbauer spectroscopy, magnetic susceptibility, specific heat and low temperature powder neutron diffraction.
Address
Corporate Author Thesis
Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
Language Wos 000283939200013 Publication Date 2010-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited 12 Open Access
Notes Approved Most recent IF: 8.668; 2010 IF: NA
Call Number UA @ lucian @ c:irua:85823 Serial 3517
Permanent link to this record
 

 
Author (down) Yang, C.; Batuk, M.; Jacquet, Q.; Rousse, G.; Yin, W.; Zhang, L.; Hadermann, J.; Abakumov, A.M.; Cibin, G.; Chadwick, A.; Tarascon, J.-M.; Grimaud, A.
Title Revealing pH-Dependent Activities and Surface Instabilities for Ni-Based Electrocatalysts during the Oxygen Evolution Reaction Type A1 Journal article
Year 2018 Publication ACS energy letters Abbreviated Journal Acs Energy Lett
Volume Issue Pages 2884-2890
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Multiple electrochemical processes are involved at the catalyst/ electrolyte interface during the oxygen evolution reaction (OER). With the purpose of elucidating the complexity of surface dynamics upon OER, we systematically studied two Ni-based crystalline oxides (LaNiO3−δ and La2Li0.5Ni0.5O4) and compared them with the state-of-the-art Ni−Fe (oxy)- hydroxide amorphous catalyst. Electrochemical measurements such as rotating ring disk electrode (RRDE) and electrochemical quartz microbalance microscopy (EQCM) coupled with a series of physical characterizations including transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) were conducted to unravel the exact pH effect on both the OER activity and the catalyst stability. We demonstrate that for Ni-based crystalline catalysts the rate for surface degradation depends on the pH and is greater than the rate for surface reconstruction. This behavior is unlike that for the amorphous Ni oxyhydroxide catalyst, which is found to be more stable and pH-independent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453805100005 Publication Date 2018-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access: Available from 06.11.2019
Notes C.Y., J.-M.T., and A.G. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC GrantProject 670116-ARPEMA. A.G. acknowledges financial support from the ANR MIDWAY (Project ID ANR-17-CE05- 0008). We acknowledge Diamond Light Source for time awarded to the Energy Materials BAG on Beamline B18, under Proposal sp12559. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:155046 Serial 5067
Permanent link to this record
 

 
Author (down) Weber, D.; Huber, M.; Gorelik, T.E.; Abakumov, A.M.; Becker, N.; Niehaus, O.; Schwickert, C.; Culver, S.P.; Boysen, H.; Senyshyn, A.; Poettgen, R.; Dronskowski, R.; Ressler, T.; Kolb, U.; Lerch, M.
Title Molybdenum oxide nitrides of the Mo2(O,N,\square)5 type : on the way to Mo2O5 Type A1 Journal article
Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 56 Issue 15 Pages 8782-8792
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Blue-colored molybdenum oxide nitrides of the Mo-2(O,N,square)(5) type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting (MoO6)-O-v units. The new materials are stable up to similar to 773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb9O24.9-type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo2O5. On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo2O5, backed by electronic-structure and phonon calculations from first principles, is given.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000407405500026 Publication Date 2017-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access
Notes ; Financial support from the Deutsche Forschungsgemeinschaft (SPP 1415, LE 781/ 11-1, DR 342/22-2) is gratefully acknowledged. The authors are grateful to J. Barthel, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons Julich, Germany, for STEM image simulations. This work was further supported by Diamond Light Source (beamtime awards EE13560) within beamtime proposal SP13560. The Hamburg Synchrotron Radiation Laboratory, HASYLAB, and the FRM II, Garching, are acknowledged for providing beamtime. ; Approved Most recent IF: 4.857
Call Number UA @ lucian @ c:irua:145727 Serial 4744
Permanent link to this record
 

 
Author (down) Watanabe, Y.; Hyeon-Deuk, K.; Yamamoto, T.; Yabuuchi, M.; Karakulina, O.M.; Noda, Y.; Kurihara, T.; Chang, I.-Y.; Higashi, M.; Tomita, O.; Tassel, C.; Kato, D.; Xia, J.; Goto, T.; Brown, C.M.; Shimoyama, Y.; Ogiwara, N.; Hadermann, J.; Abakumov, A.M.; Uchida, S.; Abe, R.; Kageyama, H.
Title Polyoxocationic antimony oxide cluster with acidic protons Type A1 Journal article
Year 2022 Publication Science Advances Abbreviated Journal
Volume 8 Issue 24 Pages eabm5379-8
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The success and continued expansion of research on metal-oxo clusters owe largely to their structural richness and wide range of functions. However, while most of them known to date are negatively charged polyoxometalates, there is only a handful of cationic ones, much less functional ones. Here, we show an all-inorganic hydroxyiodide [H(10.)7Sb(32.1)O(44)][H2.1Sb2.1I8O6][Sb0.76I6](2)center dot 25H(2)O (HSbOI), forming a face-centered cubic structure with cationic Sb32O44 clusters and two types of anionic clusters in its interstitial spaces. Although it is submicrometer in size, electron diffraction tomography of HSbOI allowed the construction of the initial structural model, followed by powder Rietveld refinement to reach the final structure. The cationic cluster is characterized by the presence of acidic protons on its surface due to substantial Sb3+ deficiencies, which enables HSbOI to serve as an excellent solid acid catalyst. These results open up a frontier for the exploration and functionalization of cationic metal-oxo clusters containing heavy main group elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000812533800008 Publication Date 2022-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 13.6
Call Number UA @ admin @ c:irua:189689 Serial 7091
Permanent link to this record
 

 
Author (down) Vorobyeva, N.; Rumyantseva, M.; Filatova, D.; Konstantinova, E.; Grishina, D.; Abakumov, A.; Turner, S.; Gaskov, A.
Title Nanocrystalline ZnO(Ga) : paramagnetic centers, surface acidity and gas sensor properties Type A1 Journal article
Year 2013 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 182 Issue Pages 555-564
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline ZnO and ZnO(Ga) samples with different gallium content were prepared by wet-chemical method. Introduction of gallium leads to the increase of amount of weak acid sites such as surface hydroxyl groups. Gas sensing properties toward 0.22 ppm H2S and NO2 were studied at 100450 °C by DC conductance measurements. The optimal temperature for gas sensing experiments was determined. Sensor signal toward H2S decreases with increase of Ga concentration. The dependence of ZnO(Ga) sensor signal to NO2 on the gallium content has non-monotonous character, which correlates with the change of conductivity of the samples in air and concentration of paramagnetic donor states.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000319488800075 Publication Date 2013-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 42 Open Access
Notes Hercules; FWO Approved Most recent IF: 5.401; 2013 IF: 3.840
Call Number UA @ lucian @ c:irua:107346 Serial 2250
Permanent link to this record
 

 
Author (down) Voorhaar, L.; Diaz, M.M.; Leroux, F.; Rogers, S.; Abakumov, A.M.; Van Tendeloo, G.; Van Assche, G.; Van Mele, B.; Hoogenboom, R.
Title Supramolecular thermoplastics and thermoplastic elastomer materials with self-healing ability based on oligomeric charged triblock copolymers Type A1 Journal article
Year 2017 Publication NPG Asia materials Abbreviated Journal Npg Asia Mater
Volume 9 Issue Pages e385
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Supramolecular polymeric materials constitute a unique class of materials held together by non-covalent interactions. These dynamic supramolecular interactions can provide unique properties such as a strong decrease in viscosity upon relatively mild heating, as well as self-healing ability. In this study we demonstrate the unique mechanical properties of phase-separated electrostatic supramolecular materials based on mixing of low molar mass, oligomeric, ABA-triblock copolyacrylates with oppositely charged outer blocks. In case of well-chosen mixtures and block lengths, the charged blocks are phase separated from the uncharged matrix in a hexagonally packed nanomorphology as observed by transmission electron microscopy. Thermal and mechanical analysis of the material shows that the charged sections have a T-g closely beyond room temperature, whereas the material shows an elastic response at temperatures far above this T-g ascribed to the electrostatic supramolecular interactions. A broad set of materials having systematic variations in triblock copolymer structures was used to provide insights in the mechanical properties and and self-healing ability in correlation with the nanomorphology of the materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000402065300005 Publication Date 2017-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1884-4049; 1884-4057 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.157 Times cited 8 Open Access OpenAccess
Notes ; This research was conducted in the framework of the SIM-SHE/NAPROM project and SIM is gratefully acknowledged for the financial support. ; Approved Most recent IF: 9.157
Call Number UA @ lucian @ c:irua:144263 Serial 4691
Permanent link to this record
 

 
Author (down) Vishwakarma, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Mehta, B.R.
Title Nanoscale Characterization of Growth of Secondary Phases in Off-Stoichiometric CZTS Thin Films Type A1 Journal article
Year 2018 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno
Volume 18 Issue 3 Pages 1688-1695
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The presence of secondary phases is one of the main issues that hinder the growth of pure kesterite Cu2ZnSnS4 (CZTS) based thin films with suitable electronic and junction properties for efficient solar cell devices. In this work, CZTS thin films with varied Zn and Sn content have been prepared by RF-power controlled co-sputtering deposition using Cu, ZnS and SnS targets and a subsequent sulphurization step. Detailed TEM investigations show that the film shows a layered structure with the majority of the top layer being the kesterite phase. Depending on the initial thin film composition, either about ~1 μm Cu-rich and Zn-poor kesterite or stoichiometric CZTS is formed as top layer. X-ray diffraction, Raman spectroscopy and transmission electron microscopy reveal the presence of Cu2−x S, ZnS and SnO2 minor secondary phases in the form of nanoinclusions or nanoparticles or intermediate layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000426033400022 Publication Date 2018-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1533-4880 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.483 Times cited Open Access Not_Open_Access
Notes Manoj Vishwakarma acknowl- edges IIT Delhi for MHRD fellowship. Professor B. R. Mehta acknowledges the support of the Schlumberger chair professorship. Manoj Vishwakarma, Joke Hadermann and Olesia M. karakulina acknowledge support provided by InsoL-DST. Manoj Vishwakarma acknowledges sup- port provided by CSIR funded projects and the support of DST-FIST Raman facility. References Approved Most recent IF: 1.483
Call Number EMAT @ emat @c:irua:147505 Serial 4775
Permanent link to this record
 

 
Author (down) Vassiliev, S.Y.; Laurinavichute, V.K.; Abakumov, A.M.; Govorov, V.A.; Bendovskii, E.B.; Turner, S.; Filatov, A.Y.; Tarasovskii, V.P.; Borzenko, A.G.; Alekseeva, A.M.; Antipov, E.V.
Title Microstructural aspects of the degradation behavior of SnO2-based anodes for aluminum electrolysis Type A1 Journal article
Year 2010 Publication Journal of the electrochemical society Abbreviated Journal J Electrochem Soc
Volume 157 Issue 5 Pages C178-C186
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The performance of SnO2 ceramic anodes doped with copper and antimony oxides was examined in cryolite alumina melts under anodic polarization at different cryolite ratios, temperatures, times, and current densities. The corroded part consists of a narrow strong corrosion zone at the anode surface with damage of the intergrain contacts and a large increase in porosity, a wider moderate corrosion zone with a smaller porosity increase, and a Cu depletion zone, where the ceramic retains its initial microstructure and a slight porosity increase occurs due to the removal of the Cu-rich inclusions. Mechanical destruction of the anode was never observed in the 10100 h tests. A microstructural model of the ceramic was suggested, consisting of grains with an Sb-doped SnO2 grain core surrounded by an ~200 to 500 nm grain shell where SnO2 was simultaneously doped with Sb and Mn+ (M=Cu2+,Fe3+,Al3+). The grains were separated by a few nanometers thick Cu-enriched grain boundaries. Different secondary charge carrier (holes) concentrations and electric conductivities in the grain core and grain shell result in a higher current density at the intergrain regions that leads to their profound degradation, especially in the low temperature acidic melt.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000276555300037 Publication Date 2010-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4651; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.259 Times cited 3 Open Access
Notes Approved Most recent IF: 3.259; 2010 IF: 2.427
Call Number UA @ lucian @ c:irua:82260 Serial 2040
Permanent link to this record
 

 
Author (down) Vasiliev, R.B.; Babynina, A.V.; Maslova, O.A.; Rumyantseva, M.N.; Ryabova, L.I.; Dobrovolsky, A.A.; Drozdov, K.A.; Khokhlov, D.R.; Abakumov, A.M.; Gaskov, A.M.
Title Photoconductivity of nanocrystalline SnO2 sensitized with colloidal CdSe quantum dots Type A1 Journal article
Year 2013 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 1 Issue 5 Pages 1005-1010
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A highly reproducible photoresponse is observed in nanocrystalline SnO2 thick films sensitized with CdSe quantum dots. The effect of the SnO2 matrix microstructure on the photoconductivity kinetics and photoresponse amplitude is demonstrated. The photoresponse of the sensitized SnO2 thick films reaches more than two orders of magnitude under illumination with the wavelength of the excitonic transition of the quantum dots. Long-term photoconductivity kinetics and photoresponse dependence on illumination intensity reveal power-law behavior inherent to the disordered nature of SnO2. The photoconductivity of the samples rises with the coarsening of the granular structure of the SnO2 matrix. At the saturation region, the photoresponse amplitude remains stable under 10(4) pulses of illumination switching, demonstrating a remarkably high stability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000314803600016 Publication Date 2012-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 13 Open Access
Notes Approved Most recent IF: 5.256; 2013 IF: NA
Call Number UA @ lucian @ c:irua:107705 Serial 2610
Permanent link to this record
 

 
Author (down) Van Tendeloo, G.; Lebedev, O.I.; Verbist, K.; Abakumov, A.M.; Shpanchenko, R.V.; Antipov, E.V.; Blank, D.H.A.
Title The local structure of YBCO based materials by TEM Type H1 Book chapter
Year 1999 Publication Abbreviated Journal
Volume Issue Pages 11-19
Keywords H1 Book chapter; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Kluwer Academic Place of Publication Dordrecht Editor
Language Wos 000079308200002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:29709 Serial 1833
Permanent link to this record
 

 
Author (down) Van Tendeloo, G.; Hadermann, J.; Abakumov, A.M.; Antipov, E.V.
Title Advanced electron microscopy and its possibilities to solve complex structures: application to transition metal oxides Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 19 Issue 18 Pages 2660-2670
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Design and optimization of materials properties can only be performed through a thorough knowledge of the structure of the compound. In this feature article we illustrate the possibilities of advanced electron microscopy in materials science and solid state chemistry. The different techniques are briefly discussed and several examples are given where the structures of complex oxides, often with a modulated structure, have been solved using electron microscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000265740600002 Publication Date 2009-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:77065 Serial 68
Permanent link to this record
 

 
Author (down) Van Rompaey, S.; Dachraoui, W.; Turner, S.; Podyacheva, O.Y.; Tan, H.; Verbeeck, J.; Abakumov, A.; Hadermann, J.
Title Layered oxygen vacancy ordering in Nb-doped SrCo1-xFexO3-\delta perovskite Type A1 Journal article
Year 2013 Publication Zeitschrift für Kristallographie Abbreviated Journal Z Krist-Cryst Mater
Volume 228 Issue 1 Pages 28-34
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of SrCo0.7Fe0.2Nb0.1O2.72 was determined using a combination of precession electron diffraction (PED), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and spatially resolved electron energy loss spectroscopy (STEM-EELS). The structure has a tetragonal P4/mmm symmetry with cell parameters a = b = a(p), c = 2a(p) (a(p) being the cell parameter of the perovskite parent structure). Octahedral BO2 layers alternate with the anion-deficient BO1.4 layers, the different B cations are randomly distributed over both layers. The specific feature of the SrCo0.7Fe0.2NB0.1O2.72 microstructure is a presence of extensive nanoscale twinning resulting in domains with alignment of the tetragonal c-axis along all three cubic direction of the perovskite subcell.
Address
Corporate Author Thesis
Publisher Place of Publication München Editor
Language Wos 000315475900004 Publication Date 2013-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4946; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.179 Times cited 9 Open Access
Notes Fwo; Countatoms Approved Most recent IF: 3.179; 2013 IF: NA
Call Number UA @ lucian @ c:irua:107698UA @ admin @ c:irua:107698 Serial 1808
Permanent link to this record
 

 
Author (down) Ulu Okudur, F.; D'Haen, J.; Vranken, T.; De Sloovere, D.; Verheijen, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Van Bael, M.K.; Hardy, A.
Title Ti surface doping of LiNi0.5Mn1.5O4−δpositive electrodes for lithium ion batteries Type A1 Journal article
Year 2018 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 8 Issue 13 Pages 7287-7300
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The particle surface of LiNi0.5Mn1.5O4−δ (LNMO), a Li-ion battery cathode material, has been modified by Ti cation doping through a hydrolysis–condensation reaction followed by annealing in oxygen. The effect of different annealing temperatures (500–850 °C) on the Ti distribution and electrochemical performance of the surface modified LNMO was investigated. Ti cations diffuse from the preformed amorphous ‘TiOx’ layer into the LNMO surface during annealing at 500 °C. This results in a 2–4 nm thick Ti-rich spinel surface having lower Mn and Ni content compared to the core of the LNMO particles, which was observed with scanning transmission electron microscopy coupled with compositional EDX mapping. An increase in the annealing temperature promotes the formation of a Ti bulk doped LiNi(0.5−w)Mn(1.5+w)−tTitO4 phase and Ti-rich LiNi0.5Mn1.5−yTiyO4 segregates above 750 °C. Fourier-transform infrared spectrometry indicates increasing Ni–Mn ordering with annealing temperature, for both bare and surface modified LNMO. Ti surface modified LNMO annealed at 500 °C shows a superior cyclic stability, coulombic efficiency and rate performance compared to bare LNMO annealed at 500 °C when cycled at 3.4–4.9 V vs. Li/Li+. The improvements are probably due to suppressed Ni and Mn dissolution with Ti surface doping.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000425508900064 Publication Date 2018-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 9 Open Access OpenAccess
Notes This research is supported by the Research Foundation Flanders (FWO Vlaanderen, grant number G040116N). This project receives the support of the European Union, the European Regional Development Fund ERDF, Flanders Innovation & Entrepreneurship and the Province of Limburg (project 936). Greet Cuyvers and Gilles Bonneux (UHasselt) are acknowledged for the ICP-AES sample preparation and measurements. Vera Meynen and Karen Leyssens (Antwerp University, Belgium) are acknowledged for the BET measurements. Special thanks to Bart Ruttens (UHasselt) for XRD measurements and discussions on the refinements. Approved Most recent IF: 3.108
Call Number EMAT @ emat @c:irua:149513 Serial 4905
Permanent link to this record
 

 
Author (down) Tytgat, T.; Hauchecorne, B.; Abakumov, A.M.; Smits, M.; Verbruggen, S.W.; Lenaerts, S.
Title Photocatalytic process optimisation for ethylene oxidation Type A1 Journal article
Year 2012 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 209 Issue Pages 494-500
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract When studying photocatalysis it is important to consider, beside the chemical approach, the engineering part related to process optimisation. To achieve this a fixed bed photocatalytic set-up consisting of different catalyst placings, in order to vary catalyst distribution, is studied. The use of a fixed quantity of catalyst placed packed or randomly distributed in the reactor, results in an almost double degradation for the distributed catalyst. Applying this knowledge leads to an improved performance with limited use of catalyst. A reactor only half filled with catalyst leads to higher degradation performance compared to a completely filled reactor. Taking into account this simple process optimisation by better distributing the catalyst a more sustainable photocatalytic air purification process is achieved. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000311190500058 Publication Date 2012-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 12 Open Access
Notes ; We are grateful for the delivered photocatalyst by Evonik as well as for the PhD grant (T. Tytgat) given by the Institute of Innovation by Science and Technology in Flanders (IWT). ; Approved Most recent IF: 6.216; 2012 IF: 3.473
Call Number UA @ lucian @ c:irua:105185 Serial 2609
Permanent link to this record
 

 
Author (down) Turner, S.; Egoavil, R.; Batuk, M.; Abakumov, A.A.; Hadermann, J.; Verbeeck, J.; Van Tendeloo, G.
Title Site-specific mapping of transition metal oxygen coordination in complex oxides Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 101 Issue 24 Pages 241910
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We demonstrate site-specific mapping of the oxygen coordination number for transition metals in complex oxides using atomically resolved electron energy-loss spectroscopy in an aberration-corrected scanning transmission electron microscope. Pb2Sr2Bi2Fe6O16 contains iron with a constant Fe3+ valency in both octahedral and tetragonal pyramidal coordination and is selected to demonstrate the principle of site-specific coordination mapping. Analysis of the site-specific Fe-L2,3 data reveals distinct variations in the fine structure that are attributed to Fe in a six-fold (octahedron) or five-fold (distorted tetragonal pyramid) oxygen coordination. Using these variations, atomic resolution coordination maps are generated that are in excellent agreement with simulations.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000312490000035 Publication Date 2012-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 12 Open Access
Notes Fwo; Countatoms; Vortex; Esteem 312483; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:105302UA @ admin @ c:irua:105302 Serial 3030
Permanent link to this record
 

 
Author (down) Tsirlin, A.A.; Rousochatzakis, I.; Filimonov, D.; Batuk, D.; Frontzek, M.; Abakumov, A.M.
Title Spin-reorientation transitions in the Cairo pentagonal magnet Bi4Fe5O13F Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 9 Pages 094420
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi4Fe5O13F, on one hand mediating the three-dimensional magnetic order, and on the other driving spin-reorientation transitions both within and between the planes. The corresponding sequence of magnetic orders unraveled by neutron diffraction and Mossbauer spectroscopy features two orthogonal magnetic structures described by opposite local vector chiralities, and an intermediate, partly disordered phase with nearly collinear spins. A similar collinear phase has been predicted theoretically to be stabilized by quantum fluctuations, but Bi4Fe5O13F is very far from the relevant parameter regime. While the observed in-plane reorientation cannot be explained by any standard frustration mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the interlayer Fe3+ spins that turns out to be instrumental in controlling the local vector chirality and the associated interlayer order.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411161700002 Publication Date 2017-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access OpenAccess
Notes We are grateful to J.-M. Perez-Mato and Dmitry Khalyavin for valuable discussions on the magnetic structures and symmetries. D.F. and A.A. are grateful to the Russian Science Foundation (Grant No. 14-13-00680) for support. A.T. was supported by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of the Alexander von Humboldt Foundation. This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institut, Villigen, Switzerland. Approved Most recent IF: 3.836
Call Number EMAT @ emat @c:irua:146748 Serial 4774
Permanent link to this record
 

 
Author (down) Tsirlin, A.A.; Nath, R.; Abakumov, A.M.; Shpanchenko, R.V.; Geibel, C.; Rosner, H.
Title Frustrated square lattice with spatial anisotropy: crystal structure and magnetic properties of PbZnVO(PO4)2 Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 17 Pages 174424,1-174424,13
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Crystal structure and magnetic properties of the layered vanadium phosphate PbZnVO(PO4)2 are studied using x-ray powder diffraction, magnetization and specific-heat measurements, as well as band-structure calculations. The compound resembles AA′VO(PO4)2 vanadium phosphates and fits to the extended frustrated square-lattice model with the couplings J1, J1′ between nearest neighbors and J2, J2′ between next-nearest neighbors. The temperature dependence of the magnetization yields estimates of averaged nearest-neighbor and next-nearest-neighbor couplings, J̅ 1≃−5.2 K and J̅ 2≃10.0 K, respectively. The effective frustration ratio α=J̅ 2/J̅ 1 amounts to −1.9 and suggests columnar antiferromagnetic ordering in PbZnVO(PO4)2. Specific-heat data support the estimates of J̅ 1 and J̅ 2 and indicate a likely magnetic ordering transition at 3.9 K. However, the averaged couplings underestimate the saturation field, thus pointing to the spatial anisotropy of the nearest-neighbor interactions. Band-structure calculations confirm the identification of ferromagnetic J1, J1′ and antiferromagnetic J2, J2′ in PbZnVO(PO4)2 and yield (J1′−J1)≃1.1 K in excellent agreement with the experimental value of 1.1 K, deduced from the difference between the expected and experimentally measured saturation fields. Based on the comparison of layered vanadium phosphates with different metal cations, we show that a moderate spatial anisotropy of the frustrated square lattice has minor influence on the thermodynamic properties of the model. We discuss relevant geometrical parameters, controlling the exchange interactions in these compounds and propose a strategy for further design of strongly frustrated square-lattice materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278141600082 Publication Date 2010-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83384 Serial 1294
Permanent link to this record
 

 
Author (down) Tsirlin, A.A.; Nath, R.; Abakumov, A.M.; Furukawa, Y.; Johnston, D.C.; Hemmida, M.; Krug von Nidda, H.-A.; Loidl, A.; Geibel, C.; Rosner, H.
Title Phase separation and frustrated square lattice magnetism of Na1.5VOPO4F0.5 Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 1 Pages 014429-014429,16
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Crystal structure, electronic structure, and magnetic behavior of the spin-1/2 quantum magnet Na1.5VOPO4F0.5 are reported. The disorder of Na atoms leads to a sequence of structural phase transitions revealed by synchrotron x-ray powder diffraction and electron diffraction. The high-temperature second-order α↔β transition at 500 K is of the order-disorder type, whereas the low-temperature β↔γ+γ′ transition around 250 K is of the first order and leads to a phase separation toward the polymorphs with long-range (γ) and short-range (γ′) order of Na. Despite the complex structural changes, the magnetic behavior of Na1.5VOPO4F0.5 probed by magnetic susceptibility, heat capacity, and electron spin resonance measurements is well described by the regular frustrated square lattice model of the high-temperature α-polymorph. The averaged nearest-neighbor and next-nearest-neighbor couplings are J̅ 1≃−3.7 K and J̅ 2≃6.6 K, respectively. Nuclear magnetic resonance further reveals the long-range ordering at TN=2.6 K in low magnetic fields. Although the experimental data are consistent with the simplified square-lattice description, band structure calculations suggest that the ordering of Na atoms introduces a large number of inequivalent exchange couplings that split the square lattice into plaquettes. Additionally, the direct connection between the vanadium polyhedra induces an unusually strong interlayer coupling having effect on the transition entropy and the transition anomaly in the specific heat. Peculiar features of the low-temperature crystal structure and the relation to isostructural materials suggest Na1.5VOPO4F0.5 as a parent compound for the experimental study of tetramerized square lattices as well as frustrated square lattices with different values of spin.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000293247400008 Publication Date 2011-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 47 Open Access
Notes Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:91770 Serial 2588
Permanent link to this record
 

 
Author (down) Tsirlin, A.A.; Abakumov, A.M.; Van Tendeloo, G.; Rosner, H.
Title Interplay of atomic displacement in the quantum magnet (CuCI)LaNb2O7 Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 5 Pages 054107,1-054107,12
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the crystal structure of the quantum magnet CuClLaNb2O7 that was controversially described with respect to its structural organization and magnetic behavior. Using high-resolution synchrotron powder x-ray diffraction, electron diffraction, transmission electron microscopy, and band-structure calculations, we solve the room-temperature structure of this compound -CuClLaNb2O7 and find two high-temperature polymorphs. The -CuClLaNb2O7 phase, stable above 640 K, is tetragonal with asub=3.889 Å, csub =11.738 Å, and the space group P4/mmm. In the -CuClLaNb2O7 structure, the Cu and Cl atoms are randomly displaced from the special positions along the 100 directions. The phase asub2asubcsub, space group Pbmm and the phase 2asub2asubcsub, space group Pbam are stable between 640 K and 500 K and below 500 K, respectively. The structural changes at 500 and 640 K are identified as order-disorder phase transitions. The displacement of the Cl atoms is frozen upon the → transformation while a cooperative tilting of the NbO6 octahedra in the phase further eliminates the disorder of the Cu atoms. The low-temperature -CuClLaNb2O7 structure thus combines the two types of the atomic displacements that interfere due to the bonding between the Cu atoms and the apical oxygens of the NbO6 octahedra. The precise structural information resolves the controversy between the previous computation-based models and provides the long-sought input for understanding CuClLaNb2O7 and related compounds with unusual magnetic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000280849400001 Publication Date 2010-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83991 Serial 1706
Permanent link to this record
 

 
Author (down) Tsirlin, A.A.; Abakumov, A.M.; Ritter, C.; Rosner, H.
Title (CuCl)LaTa2O\text{7} and quantum phase transition in the (CuX)LaM2O7 family (X=Cl, Br; M=Nb, Ta) Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 6 Pages 064440-12
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We apply neutron diffraction, high-resolution synchrotron x-ray diffraction, magnetization measurements, electronic structure calculations, and quantum Monte-Carlo simulations to unravel the structure and magnetism of (CuCl)LaTa2O7. Despite the pseudo-tetragonal crystallographic unit cell, this compound features an orthorhombic superstructure, similar to the Nb-containing (CuX)LaNb2O7 with X = Cl and Br. The spin lattice entails dimers formed by the antiferromagnetic fourth-neighbor coupling J(4), as well as a large number of nonequivalent interdimer couplings quantified by an effective exchange parameter J(eff). In (CuCl)LaTa2O7, the interdimer couplings are sufficiently strong to induce the long-range magnetic order with the Neel temperature T-N similar or equal to 7 K and the ordered magnetic moment of 0.53 mu(B), as measured with neutron diffraction. This magnetic behavior can be accounted for by J(eff)/J(4) similar or equal to 1.6 and J(4) similar or equal to 16 K. We further propose a general magnetic phase diagram for the (CuCl)LaNb2O7-type compounds, and explain the transition from the gapped spin-singlet (dimer) ground state in (CuCl)LaNb2O7 to the long-range antiferromagnetic order in (CuCl)LaTa2O7 and (CuBr)LaNb2O7 by an increase in the magnitude of the interdimer couplings J(eff)/J(4), with the (CuCl)LaM2O7 (M = Nb, Ta) compounds lying on different sides of the quantum critical point that separates the singlet and long-range-ordered magnetic ground states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000308127600006 Publication Date 2012-08-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101886 Serial 3526
Permanent link to this record
 

 
Author (down) Tsirlin, A.A.; Abakumov, A.M.; Ritter, C.; Henry, P.F.; Janson, O.; Rosner, H.
Title Short-range order of Br and three-dimensional magnetism in (CuBr)LaNb2O7 Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 21 Pages 214427
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present a comprehensive study of the crystal structure, magnetic structure, and microscopic magnetic model of (CuBr)LaNb2O7, the Br analog of the spin-gap quantum magnet (CuCl) LaNb2O7. Despite similar crystal structures and spin lattices, the magnetic behavior and even peculiarities of the atomic arrangement in the Cl and Br compounds are very different. The high- resolution x-ray and neutron data reveal a split position of Br atoms in (CuBr) LaNb2O7. This splitting originates from two possible configurations developed by [CuBr] zigzag ribbons. While the Br atoms are locally ordered in the ab plane, their arrangement along the c direction remains partially disordered. The predominant and energetically more favorable configuration features an additional doubling of the c lattice parameter that was not observed in (CuCl) LaNb2O7. (CuBr) LaNb2O7 undergoes long-range antiferromagnetic ordering at T-N = 32 K, which is nearly 70% of the leading exchange coupling J4 similar or equal to 48 K. The Br compound does not show any experimental signatures of low-dimensional magnetism because the underlying spin lattice is three-dimensional. The coupling along the c direction is comparable to the couplings in the ab plane, even though the shortest Cu-Cu distance along c (11.69 angstrom) is three times larger than nearest-neighbor distances in the ab plane (3.55 angstrom). The stripe antiferromagnetic long-range order featuring columns of parallel spins in the ab plane and antiparallel spins along c is verified experimentally and confirmed by the microscopic analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305557600002 Publication Date 2012-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:100289 Serial 2998
Permanent link to this record
 

 
Author (down) Tan, H.; Verbeeck, J.; Abakumov, A.; Van Tendeloo, G.
Title Oxidation state and chemical shift investigation in transition metal oxides by EELS Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 116 Issue Pages 24-33
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Transition metal L2,3 electron energy-loss spectra for a wide range of V-, Mn- and Fe-based oxides were recorded and carefully analyzed for their correlation with the formal oxidation states of the transition metal ions. Special attention is paid to obtain an accurate energy scale which provides absolute energy positions for all core-loss edges. The white-line ratio method, chemical shift method, ELNES fitting method, two-parameter method and other methods are compared and their validity is discussed. Both the ELNES fitting method and the chemical shift method have the advantage of a wide application range and good consistency but require special attention to accurately measure the core-loss edge position. The obtained conclusions are of fundamental importance, e.g., for obtaining atomic resolution oxidation state information in modern experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000304473700004 Publication Date 2012-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 413 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:96959UA @ admin @ c:irua:96959 Serial 2541
Permanent link to this record
 

 
Author (down) Takatsu, H.; Hernandez, O.; Yoshimune, W.; Prestipino, C.; Yamamoto, T.; Tassel, C.; Kobayashi, Y.; Batuk, D.; Shibata, Y.; Abakumov, A.M.; Brown, C.M.; Kageyama, H.
Title Cubic lead perovskite PbMoO3 with anomalous metallic behavior Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal
Volume 95 Issue 15 Pages 155105
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A previously unreported Pb-based perovskite PbMoO3 is obtained by high-pressure and high-temperature synthesis. This material crystallizes in the Pm3m cubic structure at room temperature, making it distinct from typical Pb-based perovskite oxides with a structural distortion. PbMoO3 exhibits a metallic behavior down to 0.1 K with an unusual T-sublinear dependence of the electrical resistivity. Moreover, a large specific heat is observed at low temperatures accompanied by a peak in C-P/T-3 around 10 K, in marked contrast to the isostructural metallic system SrMoO3. These transport and thermal properties for PbMoO3, taking into account anomalously large Pb atomic displacements detected through diffraction experiments, are attributed to a low-energy vibrational mode, associated with incoherent off-centering of lone-pair Pb2+ cations. We discuss the unusual behavior of the electrical resistivity in terms of a polaronlike conduction, mediated by the strong coupling between conduction electrons and optical phonons of the local low-energy vibrational mode.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440605700001 Publication Date 2017-04-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:167288 Serial 7743
Permanent link to this record
 

 
Author (down) Sun, M.; Rousse, G.; Abakumov, A.M.; Van Tendeloo, G.; Sougrati, M.-T.; Courty, M.; Doublet, M.-L.; Tarascon, J.-M.
Title An oxysulfate Fe2O(SO4)2 electrode for sustainable Li-based batteries Type A1 Journal article
Year 2014 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 136 Issue 36 Pages 12658-12666
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High-performing Fe-based electrodes for Li-based batteries are eagerly pursued because of the abundance and environmental benignity of iron, with especially great interest in polyanionic compounds because of their flexibility in tuning the Fe3+/Fe2+ redox potential. We report herein the synthesis and structure of a new Fe-based oxysulfate phase, Fe2O(SO4)(2), made at low temperature from abundant elements, which electrochemically reacts with nearly 1.6 Li atoms at an average voltage of 3.0 V versus Li+/Li, leading to a sustained reversible capacity of similar to 125 mAh/g. The Li insertiondeinsertion process, the first ever reported in any oxysulfate, entails complex phase transformations associated with the position of iron within the FeO6 octahedra. This finding opens a new path worth exploring in the quest for new positive electrode materials.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000341544600029 Publication Date 2014-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 11 Open Access
Notes Approved Most recent IF: 13.858; 2014 IF: 12.113
Call Number UA @ lucian @ c:irua:119906 Serial 96
Permanent link to this record
 

 
Author (down) Sun, M.; Rousse, G.; Abakumov, A.M.; Saubanere, M.; Doublet, M.-L.; Rodriguez-Carvajal, J.; Van Tendeloo, G.; Tarascon, J.-M.
Title Li2Cu2O(SO4)2: a possible electrode for sustainable Li-based batteries showing a 4.7 V redox activity vs Li+/Li0 Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 3077-3087
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Li-ion batteries rely on the use of insertion positive electrodes with performances scaling with the redox potential of the 31) metals accompanying Liuptake/removal. Although not commonly studied, the Cu2+/Cu3+ redox potential has been predicted from theoretical calculations to possibly offer a high operating voltage redox couple. We herein report the synthesis and crystal structure of a hitherto-unknown oxysulfate phase, Li2Cu2O(SO4)(2), which contains infinite edgesharing CuO4 chains and presents attractive electrochemical redox activity with respect to Li+/Li, namely amphoteric characteristics. Li2Cu2O(SO4)(2) shows redox activity at 4.7 V vs Li+/Li corresponding to the oxidation of Cu2+ to Cu3+ enlisting ligand holes and associated with the reversible uptake-removal of 0.3 Li. Upon reduction, this compound reversibly uptakes similar to 2 Li at an average potential of about 2.5 V vs Li+/Li, associated with the Cu2+/Cu+ redox couple. The mechanism of the reactivity upon reduction is discussed in detail, with particular attention to the occasional appearance of an oscillation wave in the discharge profile. Our work demonstrates that Cu-based compounds can indeed be fertile scientific ground in the search for new high-energy-density electrodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353865800043 Publication Date 2015-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 20 Open Access
Notes Approved Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:126061 Serial 3541
Permanent link to this record