|   | 
Details
   web
Records
Author Moro, G.; Campos, R.; Daems, E.; Moretto, L.M.; De Wael, K.
Title Haem-mediated albumin biosensing : towards voltammetric detection of PFOA Type A1 Journal article
Year 2023 Publication Bioelectrochemistry: an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry Abbreviated Journal
Volume 152 Issue Pages 108428-7
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The haem group is a promising redox probe for the design of albumin-based voltammetric sensors. Among the endogenous ligands carried by human serum albumin (hSA), haem is characterised by a reversible redox behaviour and its binding kinetics strongly depend on hSA’s conformation, which, in turn, depends on the presence of other ligands. In this work, the potential applicability of haem, especially hemin, as a redox probe was first tested in a proof-of-concept study using perfluorooctanoic acid (PFOA) as model analyte. PFOA is known to bind hSA by occupying Sudlow’s I site (FA7) which is spatially related to the haem-binding site (FA1). The latter undergoes a conformational change, which is expected to affect hemin’s binding kinetics. To verify this hypothesis, hemin:albumin complexes in the presence/absence of PFOA were first screened by UV–Vis spectroscopy. Once the complex formation was verified, haem was further characterised via electrochemical methods to estimate its electron transfer kinetics. The hemin:albumin:PFOA system was studied in solution, with the aim of describing the multiple equilibria at stake and designing an electrochemical assay for PFOA monitoring. This latter could be integrated with protein-based bioremediation approaches for the treatment of per- and polyfluoroalkyl substances polluted waters. Overall, our preliminary results show how hemin can be applied as a redox probe in albumin-based voltammetric sensing strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000971630400001 Publication Date 2023-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-5394 ISBN Additional Links UA library record; WoS full record
Impact Factor 5 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 5; 2023 IF: 3.346
Call Number UA @ admin @ c:irua:195069 Serial 8876
Permanent link to this record
 

 
Author Castanheiro, A.; Hofman, J.; Nuyts, G.; Joosen, S.; Spassov, S.; Blust, R.; Lenaerts, S.; De Wael, K.; Samson, R.
Title Leaf accumulation of atmospheric dust : biomagnetic, morphological and elemental evaluation using SEM, ED-XRF and HR-ICP-MS Type A1 Journal article
Year 2020 Publication Atmospheric Environment Abbreviated Journal Atmos Environ
Volume 221 Issue 221 Pages 117082
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Atmospheric dust deposition on plants enables the collection of site-specific particulate matter (PM). Knowing the morphology and composition of PM aids in disclosing their emitting sources as well as the associated human health risk. Therefore, this study aimed for a leaf-level holistic analysis of dust accumulation on plant leaves. Plant species (ivy and strawberry) with distinct leaf macro- and micro-morphology were exposed during 3 months at a moderate road traffic site in Antwerp, Belgium. Leaves collected every three weeks were analyzed for their magnetic signature, morphology and elemental content, by a combination of techniques (biomagnetic analyses, ED-XRF, HR-ICP-MS, SEM). Dust accumulation on the leaves was observed both visually (SEM) and magnetically, while the metal enrichment was limited (only evident for Cr) and more variable over time. Temporal dynamics during the second half of the exposure period, due to precipitation events and reduction of atmospheric pollution input, were evidenced in our results (elements/magnetically/SEM). Ivy accumulated more dust than strawberry leaves and seemed less susceptible to wash-off, even though strawberry leaves contain trichomes and a rugged micromorphology, leaf traits considered to be important for capturing PM. The magnetic enrichment (in small-grained, SD/PSD magnetite particles), on the other hand, was not species-specific, indicating a common contributing source. Variations in pollution contributions, meteorological phenomena, leaf traits, particle deposition (and encapsulation) versus micronutrients depletion, are discussed in light of the conducted monitoring campaign. Although not completely elucidative, the complex, multifactorial process of leaf dust accumulation can better be understood through a combination of techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000503097100001 Publication Date 2019-11-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5 Times cited Open Access
Notes ; The authors thank the Flemish Environment Agency (VMM) for their collaboration and air quality and meteorological data, and Karen Wuyts for the discussion about plant leaf characteristics. A.C. gratefully acknowledges the Research Foundation Flanders (FWO) for her PhD fellowship (1S21418N). J.H. received a FWO postdoctoral fellowship grant (1214816N). ; Approved (down) Most recent IF: 5; 2020 IF: 3.629
Call Number UA @ admin @ c:irua:165458 Serial 5691
Permanent link to this record
 

 
Author Moro, G.; Bottari, F.; Liberi, S.; Covaceuszach, S.; Cassetta, A.; Angelini, A.; De Wael, K.; Moretto, L.M.
Title Covalent immobilization of delipidated human serum albumin on poly(pyrrole-2-carboxylic) acid film for the impedimetric detection of perfluorooctanoic acid Type A1 Journal article
Year 2020 Publication Bioelectrochemistry Abbreviated Journal Bioelectrochemistry
Volume 134 Issue Pages 107540
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The immobilization of biomolecules at screen printed electrodes for biosensing applications is still an open challenge. To enrich the toolbox of bioelectrochemists, graphite screen printed electrodes (G-SPE) were modified with an electropolymerized film of pyrrole-2-carboxilic acid (Py-2-COOH), a pyrrole derivative rich in carboxylic acid functional groups. These functionalities are suitable for the covalent immobilization of biomolecular recognition layers. The electropolymerization was first optimized to obtain stable and conductive polymeric films, comparing two different electrolytes: sodium dodecyl sulphate (SDS) and sodium perchlorate. The G-SPE modified with Py-2-COOH in 0.1 M SDS solution showed the required properties and were further tested. A proof-of-concept study for the development of an impedimetric sensor for perfluorooctanoic acid (PFOA) was carried out using the delipidated human serum albumin (hSA) as bioreceptor. The data interpretation was supported by size exclusion chromatography and small-angle X-ray scattering (SEC-SAXS) analysis of the bioreceptor-target complex and the preliminary results suggest the possibility to further develop this biosensing strategy for toxicological and analytical studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000579727300004 Publication Date 2020-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-5394 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5 Times cited Open Access
Notes Approved (down) Most recent IF: 5; 2020 IF: 3.346
Call Number UA @ admin @ c:irua:172494 Serial 6477
Permanent link to this record
 

 
Author Lybaert, J.; Trashin, S.; Maes, B.U.W.; De Wael, K.; Abbaspour Tehrani, K.
Title Cooperative electrocatalytic and chemoselective alcohol oxidation by Shvo's catalyst Type A1 Journal article
Year 2017 Publication Advanced synthesis and catalysis Abbreviated Journal Adv Synth Catal
Volume 359 Issue 6 Pages 919-925
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY)
Abstract A new electrocatalytic conversion of alcohols to ketones and aldehydes was developed based on an electrochemical study of Shvos complex. The oxidation of secondary alcohols was efficiently performed under mild conditions using a catalytic amount of Shvos catalyst, in combination with a sub-stoichiometric amount of 2,6-dimethoxy-1,4- benzoquinone in N,N-dimethylformamide at 80 8C. The hydroquinone thus formed is continuously reoxidized with the aid of an electrochemical device. Excellent yields for different ketones, aromatic as well as aliphatic and a,b-unsaturated ketones, are obtained. In addition, chemoselectivity towards oxidation of the secondary alcohol is achieved when converting vicinal diols such as 1,2-octanediol and 1,2-decanediol.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000397584000003 Publication Date 2017-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1615-4150; 1615-4169 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.646 Times cited 4 Open Access
Notes ; This work was financially supported by the University of Antwerp (BOF), the Research Foundation – Flanders (FWO) and the Hercules Foundation. ; Approved (down) Most recent IF: 5.646
Call Number UA @ admin @ c:irua:139795 Serial 5559
Permanent link to this record
 

 
Author Truta, F.; Florea, A.; Cernat, A.; Tertis, M.; Hosu, O.; De Wael, K.; Cristea, C.
Title Tackling the problem of sensing commonly abused drugs through nanomaterials and (bio)recognition approaches Type A1 Journal article
Year 2020 Publication Frontiers In Chemistry Abbreviated Journal Front Chem
Volume 8 Issue Pages 561638
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract We summarize herein the literature in the last decade, involving the use of nanomaterials and various (bio)recognition elements, such as antibodies, aptamers and molecularly imprinted polymers, for the development of sensitive and selective (bio)sensors for illicit drugs with a focus on electrochemical transduction systems. The use and abuse of illicit drugs remains an increasing challenge for worldwide authorities and, therefore, it is important to have accurate methods to detect them in seized samples, biological fluids and wastewaters. They are recently classified as the latest group of “emerging pollutants,” as their consumption has increased tremendously in recent years. Nanomaterials, antibodies, aptamers and molecularly imprinted polymers have gained much attention over the last decade in the development of (bio)sensors for a myriad of applications. The applicability of these (nano)materials, functionalized or not, has significantly increased, and are therefore highly suitable for use in the detection of drugs. Lately, such functionalized nanoscale materials have assisted in the detection of illicit drugs fingerprints, providing large surface area, functional groups and unique properties that facilitate sensitive and selective sensing. The review discusses the types of commonly abused drugs and their toxicological implications, classification of functionalized nanomaterials (graphene, carbon nanotubes), their fabrication, and their application on real samples in different fields of forensic science. Biosensors for drugs of abuse from the last decade's literature are then exemplified. It also offers insights into the prospects and challenges of bringing the functionalized nanobased technology to the end user in the laboratories or in-field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000589960100001 Publication Date 2020-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-2646 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited Open Access
Notes Approved (down) Most recent IF: 5.5; 2020 IF: 3.994
Call Number UA @ admin @ c:irua:174278 Serial 8639
Permanent link to this record
 

 
Author Mendonça, C.D.; Rahemi, V.; Hereijgers, J.; Breugelmans, T.; Machado, S.A.S.; De Wael, K.
Title Integration of a photoelectrochemical cell in a flow system for quantification of 4-aminophenol with titanium dioxide Type A1 Journal article
Year 2020 Publication Electrochemistry Communications Abbreviated Journal Electrochem Commun
Volume 117 Issue Pages 106767-5
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The photoelectrochemical quantification of phenolic compounds such as hydroquinone (HQ) and 4-aminophenol (4-AP) is accomplished by integrating a photoelectrochemical cell into a flow injection analysis (FIA) setup. It is a well-known fact that during the electroanalysis of phenolic compounds, the electrode surface is susceptible to poisoning. However, electrode fouling can be reduced significantly by using the FIA system with periodic washing of the electrode. Reactive oxygen species (ROS), which are generated on the surface of TiO2 under UV light, can oxidize phenolic compounds such as 4-AP. The oxidized form of 4-AP is reduced back at the electrode surface, generating a measurable signal proportional to its concentration. The factors influencing the perfor-mance of the sensor, such as flow rate, applied potential for back reduction and pH, are investigated in detail. In the concentration range 0.0125-1.0 mu M, a linear correlation between the photocurrent and the concentration of 4-AP was observed with a sensitivity of 0.6 A M-1 cm(-2) and a limit of detection of 18 nM. A straightforward analytical methodology for the on-site, highly sensitive and low-cost quantification of phenolic compounds is presented, based on the use of TiO2 in a photoelectrochemical flow cell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000552618700004 Publication Date 2020-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.4 Times cited 1 Open Access
Notes ; The authors thank FAPESP funding for the fellowship to Camila D. Mendonca (Grant #2018/13724-0) and FWO funding (grant 12T4219N and 28761) for the postdoctoral fellowship to Dr. Vanoushe Rahemi and Dr. Jonas Hereijgers. ; Approved (down) Most recent IF: 5.4; 2020 IF: 4.396
Call Number UA @ admin @ c:irua:169924 Serial 6547
Permanent link to this record
 

 
Author Qurashi, A.; Rather, J.A.; Yamazaki, T.; Sohail, M.; De Wael, K.; Merzougui, B.; Hakeem, A.S.
Title Swift electrochemical detection of paraben an endocrine disruptor by In2O3 nanobricks Type A1 Journal article
Year 2015 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 221 Issue Pages 167-171
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Novel indium oxide (In2O3) nanobricks have been prepared by template-less and surfactant-free hydrothermal synthesis method and were characterized by X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL) spectroscopy and field emission scanning electronic microscopy (FESEM). The synthesized In2O3 nanobricks were successfully immobilized on the surface of glassy carbon electrode for the detection of Parabens (butylparaben). Owing to the unique structure and intriguing properties of these In2O3 nanobricks, the nanostructured thin-film electrode has shown an obvious electrocatalytic activity for the detection of butylparaben (BP). The detection limit (LOD) was estimated as 3 s/m and the sensitivity (LOQ) was calculated as 10 s/m and were found to be 0.08 μM and 0.26 μA μM−1 cm−2 respectively. This sensor showed high sensitivity compared with the reported electrochemical sensors for the detection of BP. The fabricated sensor was successfully applied for the detection of butyl paraben in real cosmetic samples with good recovery ranging from 96.0 to 100.3%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362918100021 Publication Date 2015-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 11 Open Access
Notes ; ; Approved (down) Most recent IF: 5.401; 2015 IF: 4.097
Call Number UA @ admin @ c:irua:127463 Serial 5859
Permanent link to this record
 

 
Author Rather, J.A.; Pilehvar, S.; De Wael, K.
Title A graphene oxide amplification platform tagged with tyrosinase-zinc oxide quantum dot hybrids for the electrochemical sensing of hydroxylated polychlorobiphenyls Type A1 Journal article
Year 2014 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 190 Issue Pages 612-620
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Graphene oxide can act as an amplification platform for the immobilization of a hybrid structure composed of tyrosinase (Tyr) and zinc oxide quantum dots (ZnO QDs). This article describes how this platform increases the sensitivity for the detection of hydroxylated polychlorobiphenyls (OH-PCBs). The adsorption of Tyr (with low isoelectric point) on the positively charged surface of ZnO QDs is based on electrostatic interactions. The scanning electron microscopic images and UVvis spectroscopic analysis demonstrated the adsorption of Tyr on ZnO QDs. The stepwise assembly process of the fabricated biosensor was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The synthesized ZnO QDs and graphene oxide were characterized by Raman spectroscopy, infrared spectroscopy, X-ray diffraction and scanning electron microscopic techniques. The determination of OH-PCBs was carried out by using square wave voltammetry over the concentration range of 2.827.65 μM with a detection limit of 0.15 μM with good reproducibility, selectivity and acceptable stability. The high value of surface coverage of ZnO QDs and small value of MichaelisMenten constant (View the MathML source) confirmed an excellent loading of the Tyr and a high affinity of the biosensor toward the detection of OH-PCBs. This biosensor and the described sensing platform offer a great potential for rapid, cost-effective and on-field analysis of OH-PCBs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326687700082 Publication Date 2013-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 26 Open Access
Notes ; The authors are highly thankful for the mobility grant (Non-Europe Postdoc Fellowship) for one of the author (Jahangir Ahmad Rather) supported by the Belgian Federal Science Policy (Belspo) co-funded by the Marie Curie Actions from the European Commission. Sanaz Pilehvar is funded by BOF-DOCPRO UA. We are also thankful to the EMAT (Electron Microscopy for Materials Science) group and Laboratory of adsorption and catalysis group of the University of Antwerp for the XRD, Raman and FTIR characterization of samples (GO and ZnO QDs). ; Approved (down) Most recent IF: 5.401; 2014 IF: 4.097
Call Number UA @ admin @ c:irua:110566 Serial 5636
Permanent link to this record
 

 
Author Rather, J.A.; De Wael, K.
Title Fullerene-C60 sensor for ultra-high sensitive detection of bisphenol-A and its treatment by green technology Type A1 Journal article
Year 2013 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 176 Issue Pages 110-117
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Endocrine disruptors (EDCs) are environmental pollutants that, once incorporated into an organism, affect the hormonal balance of humans and various species. Its presence in environment is of great importance in water quality related questions. The proposed method describes the development of an accurate, sensitive and selective sensor for the detection of bisphenol-A (BPA) and its treatment by green technology. A fullerene (C60) fabricated electrochemical sensor was developed for the ultrasensitive detection of BPA. The homemade sensor was characterized by scanning electron microscopy, electrochemical impedance spectroscopy and chronocoulometry. The influence of measuring parameters such as pH and C60 loading on the analytical performance of the sensor was evaluated. Various kinetic parameters such as electron transfer number (n); charge transfer coefficient (α); electrode surface area (A) and diffusion coefficient (D) were also calculated. Under the optimal conditions, the oxidation peak current was linear over the concentration range of 74 nM to 0.23 μM with the detection limit (LOD) of 3.7 nM. The fabricated sensor was successfully applied to the determination of BPA in wastewater samples and it has promising analytical applications for the direct determination of BPA at trace level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319867500017 Publication Date 2012-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 79 Open Access
Notes ; The authors are highly thankful for the mobility grant (Non-Europe Postdoc Fellowship) for one of the author (Jahangir Ahmad Rather) supported by the Belgian Federal Science Policy (Belspo) co-funded by the Marie Curie Actions from the European Commission. ; Approved (down) Most recent IF: 5.401; 2013 IF: 3.840
Call Number UA @ admin @ c:irua:101055 Serial 5630
Permanent link to this record
 

 
Author Rather, J.A.; De Wael, K.
Title C60-functionalized MWCNT based sensor for sensitive detection of endocrine disruptor vinclozolin in solubilized system and wastewater Type A1 Journal article
Year 2012 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 171/172 Issue Pages 907-915
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A novel fullerene (C60) functionalized multi-walled carbon nanotubes (MWCNTs) fabricated electrochemical sensor was developed for the sensitive determination of the endocrine disruptor vinclozolin in a solubilized system of cetyltrimethyl ammonium bromide (CTAB). The home-made sensor was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. It was found that the nanocomposite film of C60MWCNTs on GCE exhibits electrocatalytic activity towards vinclozolin reduction and also lowers the reduction overpotential. The influence of the optimization parameters such as pH, effect of CTAB concentration and effect of loading of composite mixture of C60 and MWCNTs on the analytical performance of the sensor was evaluated. Various kinetic parameters such as electron transfer number (n), proton transfer number (m), charge transfer coefficient (α) and diffusion coefficient (D) were also calculated. Under optimized conditions, the squarewave reduction peak current was linear over the concentration range of 2.548.75 μM with the detection and quantification limit of 0.091 μM and 0.3 μM respectively. The fabricated sensor was successfully applied to the detection of vinclozolin in wastewater with good recovery ranging from 97.6 to 103.6%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000308572700120 Publication Date 2012-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 26 Open Access
Notes ; The authors are highly thankful for the mobility grant (Non-Europe Postdoc Fellowship) for one of the authors (Jahangir Ahmad Rather) supported by the Belgian Federal Science Policy (Belspo) co-funded by the Marie Curie Actions from the European Commission. ; Approved (down) Most recent IF: 5.401; 2012 IF: 3.535
Call Number UA @ admin @ c:irua:100576 Serial 5870
Permanent link to this record
 

 
Author Moro, G.; Bottari, F.; Sleegers, N.; Florea, A.; Cowen, T.; Moretto, L.M.; Piletsky, S.; De Wael, K.
Title Conductive imprinted polymers for the direct electrochemical detection of beta-lactam antibiotics: The case of cefquinome Type A1 Journal article
Year 2019 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 297 Issue 297 Pages 126786
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A biomimetic sensor for cefquinome (CFQ) was designed at multi-walled carbon nanotubes modified graphite screen-printed electrodes (MWCNTs-G-SPEs) as a proof-of-concept for the creation of a sensors array for beta-lactam antibiotics detection in milk. The sensitive and selective detection of antibiotic residues in food and environment is a fundamental step in the elaboration of prevention strategies to fight the insurgence of antimicrobial resistance (AMR) as recommended by authorities around the world (EU, WHO, FDA). The detection strategy is based on the characteristic electrochemical fingerprint of the target antibiotic cefquinome. A conducive electropolymerized molecularly imprinted polymer (MIP) coupled with MWCNTs was found to be the optimal electrode modifier, able to provide an increased selectivity and sensitivity for CFQ detection. The design of CFQ-MIP was facilitated by the rational selection of the monomer, 4-aminobenzoic acid (4-ABA). The electropolymerization process of 4-ABA have not been fully elucidated yet; for this reason a thorough study and optimization of electropolymerization conditions was performed to obtain a conducive and stable poly(4-ABA) film. The modified electrodes were characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and cyclic voltammetry (CV). CFQ-MIP were synthesized at MWCNT-G-SPEs by electropolyrnerization in pH approximate to 1 (0.1 M sulphuric acid) with a monomer:template ratio of 5:1. Two different analytical protocols were tested (single and double step detection) to minimize unspecific adsorptions and improve the sensitivity. Under optimal conditions, the lowest CFQ concentration detectable by square wave voltammetry (SWV) at the modified sensor was 50 nM in 0.1 M phosphate buffer pH 2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000478562700020 Publication Date 2019-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 4 Open Access
Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223. This work was also supported by FWO. ; Approved (down) Most recent IF: 5.401
Call Number UA @ admin @ c:irua:161777 Serial 5549
Permanent link to this record
 

 
Author Rahemi, V.; Trashin, S.; Hafideddine, Z.; Meynen, V.; Van Doorslaer, S.; De Wael, K.
Title Enzymatic sensor for phenols based on titanium dioxide generating surface confined ROS after treatment with H2O2 Type A1 Journal article
Year 2019 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 283 Issue 283 Pages 343-348
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Titanium dioxide (TiO2) is a popular material as host matrix for enzymes. We now evidence that TiO2 can accumulate and retain reactive oxygen species after treatment by hydrogen peroxide (H2O2) and support redox cycling of a phenolic analyte between horseradish peroxidase (HRP) and an electrode. The proposed detection scheme is identical to that of second generation biosensors, but the measuring solution requires no dissolved H2O2. This significantly simplifies the analysis and overcomes issues related to H2O2 being present (or generated) in the solution. The modified electrodes showed rapid stabilization of the baseline, a low noise level, fast realization of a steady-state current response, and, in addition, improved sensitivity and limit of detection compared to the conventional approach, i.e. in the presence of H2O2 in the measuring solution. Hydroquinone, 4-aminophenol, and other phenolic compounds were successfully detected at sub-μM concentrations. Particularly, a linear response in the concentration range between 0.025 and 2 μM and LOD of 24 nM was demonstrated for 4-aminophenol. The proposed sensor design goes beyond the traditional concept with three sensors generations offering a new possibility for the development of enzymatic sensors based on peroxidases and the formation of ROS on titania after treatment with H2O2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455854000043 Publication Date 2018-12-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 1 Open Access
Notes ; The authors thank the University of Antwerp for GOA funding and the Scientific Research-Flanders (FWO) (grant 12T4219N). V. Rahemi is financially supported through a postdoctoral fellowship of the Research Foundation-Flanders (FWO). ; Approved (down) Most recent IF: 5.401
Call Number UA @ admin @ c:irua:155665 Serial 5605
Permanent link to this record
 

 
Author Pilehvar, S.; Reinemann, C.; Bottari, F.; Vanderleyden, E.; Van Vlierberghe, S.; Blust, R.; Strehlitz, B.; De Wael, K.
Title A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin Type A1 Journal article
Year 2017 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 240 Issue Pages 1024-1035
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A joint action of ssDNA aptamers and electrochemistry is a key element in developing successful biosensing platforms, since aptamers are capable of binding various targets with high specificity, and electrochemistry is one of the most sensitive techniques for on-site detections. A continuous search for improved immobilization and sensing strategies of aptamers on transducer surfaces resulted in the strategy presented in this article. The strategy is based on the covalent attachment of gold nanoparticles on the surface of glassy carbon electrodes through sulfhydryl-terminated monolayer, acting as a glue to connect AuNPs on the electrode. The covalently attached gold nanoparticles modified glassy carbon electrodes have been applied for the efficient immobilization of thiolated ssDNA probes, with a surface coverage of about 8.54 × 1013 molecules cm−2 which was 7-fold higher than that on the electrochemically deposited gold nanoparticles. Consequently, improved sensitivity, good reproducibility and stability are achieved for electrochemical aptasensor. Combined with the high affinity and specificity of an aptamer, a simple, novel, rapid, sensitive and label-free electrochemical aptasensor was successfully fabricated for ofloxacin (OFL) detection. The linear dynamic range of the sensor varies between 5 × 10−8 to 2 × 10−5 M OFL with a detection limit of 1 × 10−9 M OFL. A potential application in environmental monitoring was demonstrated by using this sensing strategy for the determination of OFL in (experimentally spiked) real samples such as tap water and effluent of sewage treatment plant. The proposed nanoaptasensor combines the advantages of the covalent attachment of neatly arranged AuNPs (enlarged active surface area and strengthened electrochemical signal) and the elimination of labels for the amplified detection of OFL, with the covalent attachment of highly specific aptamers to the surface of the modified electrode.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000390622300123 Publication Date 2016-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 21 Open Access
Notes ; This work was financially supported by the University of Antwerp (BOF), The Research Foundation – Flanders (FWO) and The Hercules Foundation. S. P. is thankful to UA for DOCPRO financial support. C.R. and B.S. acknowledge funding by the Federal Ministry of Education and Research (BMBF) under contract no. 03X0094B. ; Approved (down) Most recent IF: 5.401
Call Number UA @ admin @ c:irua:135410 Serial 5682
Permanent link to this record
 

 
Author Parrilla, M.; Montiel, F.N.; Van Durme, F.; De Wael, K.
Title Derivatization of amphetamine to allow its electrochemical detection in illicit drug seizures Type A1 Journal article
Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 337 Issue Pages 129819
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Amphetamine (AMP) is posing critical issues in our society being one of the most encountered drugs-of-abuse in the current illicit market. The continuous drug production in Europe urges the development of new tools for the rapid on-site determination of illicit drugs such as AMP. However, the direct electrochemical detection of AMP is a challenge because the molecule is non-electroactive at the potential window of conventional graphite SPEs. For this reason, a derivatization step is needed to convert the primary amine into an electroactive oxidizable group. Herein, the rapid electrochemical detection of AMP in seized samples based on the derivatization by 1,2-naphthoquinone-4-sulfonate (NQS) is presented by using square wave voltammetry (SWV) at graphite screen-printed electrodes (SPEs). First, a detailed optimization of the key parameters and the analytical performance is provided. The method showed a sensitivity of 7.9 µA mM-1 within a linear range from 50 to 500 µM, a limit of detection of 22.2 µM, and excellent reproducibility (RSD = 4.3%, n = 5 at 500 µM). Subsequently, the effect of NQS on common cutting agents for the selective detection of AMP is addressed. The comparison of the method with drugs-of-abuse containing secondary and tertiary amines confirms the selectivity of the method. Finally, the concept is applied to quantify AMP in 20 seized samples provided by forensic laboratories, exhibiting an accuracy of 97.3 ± 10.5%. Overall, the fast analysis of samples with the electrochemical profiling of derivatized AMP exhibits a straightforward on-site screening aiming to facilitate the tasks of law enforcement agents in the field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000640386500001 Publication Date 2021-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 5.401
Call Number UA @ admin @ c:irua:176353 Serial 7762
Permanent link to this record
 

 
Author Parrilla, M.; Joosten, F.; De Wael, K.
Title Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution Type A1 Journal article
Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 348 Issue Pages 130659
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Illicit drug consumption is a worldwide worrying phenomenon that troubles modern society. For this reason, law enforcement agencies (LEAs) are placing tremendous efforts into tackling the spreading of such substances among our community. New sensing technologies can facilitate the LEAs duties by providing portable and affordable analytical devices. Herein, we present for the first time a sensitive and low-cost electrochemical method, i.e. square-wave adsorptive stripping voltammetry on carbon screen-printed electrodes (SPE), for the detection of five illicit drugs (i.e. cocaine, heroin, 3,4-methylenedioxymethamphetamine, 4-chloro-alpha-pyrrolidinovalerophenone, and ketamine) in oral fluid by the aid of a surfactant. Particularly, the surfactant is adsorbed at the carbon electrode’s surface and yields the adsorption of illicit drug molecules, allowing for an enhanced electrochemical signal in comparison to surfactant-free media. First, the surfactant-mediated behavior is deeply explored at the SPE by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier-transform infrared spectroscopy. Subsequently, the electrochemical behavior of the five illicit drugs is studied and optimized to render optimal analytical performance. Accordingly, the analytical system exhibited a wide linear concentration range from 1 to 30 µM with sub-micromolar limits of detection and high sensitivity. This performance is similar to other reported electrochemical sensors, but with the advantage of using an unmodified SPE, thus avoiding costly and complex functionalization of the SPE. Finally, the methodology was evaluated in diluted oral fluid samples spiked with illicit drugs. Overall, this work describes a simple, rapid, portable, and sensitive method for the detection of illicit drugs aiming to provide oral fluid testing opportunities to LEAs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000701915600005 Publication Date 2021-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 5.401
Call Number UA @ admin @ c:irua:181307 Serial 7912
Permanent link to this record
 

 
Author Drăgan, A.-M.; Feier, B.G.; Tertis, M.; Bodoki, E.; Truta, F.; Stefan, M.-G.; Kiss, B.; Van Durme, F.; De Wael, K.; Oprean, R.; Cristea, C.
Title Forensic analysis of synthetic cathinones on nanomaterials-based platforms : chemometric-assisted voltametric and UPLC-MS/MS investigation Type A1 Journal article
Year 2023 Publication Nanomaterials Abbreviated Journal
Volume 13 Issue 17 Pages 2393-19
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Synthetic cathinones (SCs) are a group of new psychoactive substances often referred to as “legal highs” or “bath salts”, being characterized by a dynamic change, new compounds continuously emerging on the market. This creates a lack of fast screening tests, making SCs a constant concern for law enforcement agencies. Herein, we present a fast and simple method for the detection of four SCs (alpha-pyrrolidinovalerophenone, N-ethylhexedrone, 4-chloroethcathinone, and 3-chloromethcathinone) based on their electrochemical profiles in a decentralized manner. In this regard, the voltametric characterization of the SCs was performed by cyclic and square wave voltammetry. The elucidation of the SCs redox pathways was successfully achieved using liquid chromatography coupled to (tandem) mass spectrometry. For the rational identification of the ideal experimental conditions, chemometric data processing was employed, considering two critical qualitative and quantitative variables: the type of the electrochemical platform and the pH of the electrolyte. The analytical figures of merit were determined on standard working solutions using the optimized method, which exhibited wide linear ranges and LODs suitable for confiscated sample screening. Finally, the performance of the method was evaluated on real confiscated samples, the resulting validation parameters being similar to those obtained with another portable device (i.e., Raman spectrometer).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001061205100001 Publication Date 2023-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.3 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 5.3; 2023 IF: 3.553
Call Number UA @ admin @ c:irua:199221 Serial 8869
Permanent link to this record
 

 
Author Borah, R.; Ninakanti, R.; Nuyts, G.; Peeters, H.; Pedrazo-Tardajos, A.; Nuti, S.; Vande Velde, C.; De Wael, K.; Lenaerts, S.; Bals, S.; Verbruggen, S.
Title Selectivity in ligand functionalization of photocatalytic metal oxide nanoparticles for phase transfer and self‐assembly applications Type A1 Journal article
Year 2021 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J
Volume Issue Pages chem.202100029-15
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Functionalization of photocatalytic metal oxide nanoparticles of TiO 2 , ZnO, WO 3 and CuO with amine‐terminated (oleylamine) and thiol‐terminated (1‐dodecanethiol) alkyl chained ligands was studied under ambient conditions. A high selectivity was observed in the binding specificity of a ligand towards nanoparticles of these different oxides. It was observed that oleylamine binds stably to only TiO 2 and WO 3 , while 1‐dodecanethiol binds stably only to ZnO and CuO. Similarly, polar to non‐polar solvent phase transfer of TiO 2 and WO 3 nanoparticles could be achieved by using oleylamine, but not by 1‐dodecanethiol, while the contrary holds for ZnO and CuO. The surface chemistry of ligand functionalized nanoparticles was probed by ATR‐FTIR spectroscopy, that enabled to elucidate the occupation of the ligands at the active sites. The photo‐stability of the ligands on the nanoparticle surface was determined by the photocatalytic self‐cleaning properties of the material. While TiO 2 and WO 3 degrade the ligands within 24 hours under both UV and visible light, ligands on ZnO and CuO remain unaffected. The gathered insights are also highly relevant from an application point of view. As an example, since the ligand functionalized nanoparticles are hydrophobic in nature, they can thus be self‐assembled at the air‐water interface, for obtaining nanoparticle films with demonstrated photocatalytic as well as anti‐fogging properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000652651400001 Publication Date 2021-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 15 Open Access OpenAccess
Notes R.B. and S.W.V. acknowledge financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Program by means of the grant agreement no. 731019 EUSMI and the ERC Consolidator grant no. 815128 REALNANO.; sygmaSB Approved (down) Most recent IF: 5.317
Call Number UA @ admin @ c:irua:177495 Serial 6787
Permanent link to this record
 

 
Author Khan, S.U.; Matshitse, R.; Borah, R.; Nemakal, M.; Moiseeva, E.O.; Dubinina, T.V.; Nyokong, T.; Verbruggen, S.W.; De Wael, K.
Title Coupling of phthalocyanines with plasmonic gold nanoparticles by click chemistry for an enhanced singlet oxygen based photoelectrochemical sensing Type A1 Journal article
Year 2024 Publication ChemElectroChem Abbreviated Journal
Volume Issue Pages 1-11
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)
Abstract Coupling photosensitizers (PSs) with plasmonic nanoparticles increases the photocatalytic activity of PSs as the localized surface plasmon resonance (LSPR) of plasmonic nanoparticles leads to extreme concentration of light in their vicinity known as the near-field enhancement effect. To realize this in a colloidal phase, efficient conjugation of the PS molecules with the plasmonic nanoparticle surface is critical. In this work, we demonstrate the coupling of phthalocyanine (Pc) molecules with gold nanoparticles (AuNPs) in the colloidal phase via click chemistry. This conjugated Pc-AuNPs colloidal system is shown to enhance the photocatalytic singlet oxygen (1O2) production over non-conjugated Pcs and hence improve the photoelectrochemical detection of phenols. The plasmonic enhancement of the 1O2 generation by Pcs was clearly elucidated by complementary experimental and computational classical electromagnetic models. The dependence of plasmonic enhancement on the spectral position of the excitation laser wavelength and the absorbance of the Pc molecules with respect to the wavelength specific near-field enhancement is clearly demonstrated. A high similar to 8 times enhancement is obtained with green laser (532 nm) at the LSPR due to the maximum near-field enhancement at the resonance wavelength. Zinc phthalocyanine is covalently linked to plasmonic AuNPs via click chemistry to investigate the synergistic effect that boosts the overall activity toward the detection of HQ under visible light illumination. The 1O2 quantum yield of ZnPc improved significantly after conjugating with AuNPs, resulting in enhanced photoelectrochemical activity. image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001214481000001 Publication Date 2024-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record
Impact Factor 4 Times cited Open Access
Notes Approved (down) Most recent IF: 4; 2024 IF: 4.136
Call Number UA @ admin @ c:irua:205962 Serial 9142
Permanent link to this record
 

 
Author Anaf, W.; Bencs, L.; Van Grieken, R.; Janssens, K.; De Wael, K.
Title Indoor particulate matter in four Belgian heritage sites : case studies on the deposition of dark-colored and hygroscopic particles Type A1 Journal article
Year 2015 Publication The science of the total environment Abbreviated Journal Sci Total Environ
Volume 506 Issue Pages 361-368
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Atmospheric total suspended particulate (TSP) was passively sampled by means of deployed horizontal and vertical filters in various rooms of four Belgian cultural heritage buildings, installed with various heating/ventilation systems. Soiling/blackening and deposition of inorganic, water-soluble aerosol components were considered. The extent of soiling was determined by means of two independent methods: (1) in terms of the covering rate of the samplers by optical reflection microscopy and (2) the reduction in lightness of the samplers using the CIE L*a*b* color space by spectrophotometry. A fairly good correlation was found between both methods. The inorganic composition of the deposited water-soluble TSP was quantified by means of ion chromatography. Compared to controlled environments, uncontrolled environments showed increased water-soluble aerosol content of the total deposited mass. Higher chloride deposition was observed on horizontal surfaces, compared to vertical surfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347576800039 Publication Date 2014-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited 12 Open Access
Notes ; ; Approved (down) Most recent IF: 4.9; 2015 IF: 4.099
Call Number UA @ admin @ c:irua:120640 Serial 5662
Permanent link to this record
 

 
Author Buczyńska, A.J.; Krata, A.; Van Grieken, R.; Brown, A.; Polezer, G.; De Wael, K.; Potgieter-Vermaak, S.
Title Composition of PM2.5 and PM1 on high and low pollution event days and its relation to indoor air quality in a home for the elderly Type A1 Journal article
Year 2014 Publication The science of the total environment Abbreviated Journal Sci Total Environ
Volume 490 Issue Pages 134-143
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Many studies probing the link between air quality and health have pointed towards associations between particulate matter (PM) exposure and decreased lung function, aggravation of respiratory diseases like asthma, premature death and increased hospitalisation admissions for the elderly and individuals with cardiopulmonary diseases. Of recent, it is believed that the chemical composition and physical properties of PM may contribute significantly to these adverse health effects. As part of a Belgian Science Policy project (Health effects of particulate matter in relation to physicalchemical characteristics and meteorology), the chemical composition (elemental and ionic compositions) and physical properties (PM mass concentrations) of PM were investigated, indoors and outdoors of old age homes in Antwerp. The case reported here specifically relates to high versus normal/low pollution event periods. PM mass concentrations for PM1 and PM2.5 fractions were determined gravimetrically after collection via impaction. These same samples were hence analysed by EDXRF spectrometry and IC for their elemental and ionic compositions, respectively. During high pollution event days, PM mass concentrations inside the old age home reached 53 μg m− 3 and 32 μg m− 3 whilst outside concentrations were 101 μg m− 3 and 46 μg m− 3 for PM2.5 and PM1, respectively. The sum of nss-sulphate, nitrate and ammonium, dominate the composition of PM, and contribute the most towards an increase in the PM during the episode days constituting 64% of ambient PM2.5 (52 μg m− 3) compared to 39% on non-episode days (10 μg m− 3). Other PM components, such as mineral dust, sea salt or heavy metals were found to be considerably higher during PM episodes but relatively less important. Amongst heavy metals Zn and Pb were found at the highest concentrations in both PM2.5 and PM1. Acidbase ionic balance equations were calculated and point to acidic aerosols during event days and acidic to alkaline aerosols during non-event days. No significant sources of indoor pollutants could be identified inside the old-age home as high correlations were found between outdoor and indoor PM, confirming mainly the outdoor origin of indoor air.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347293800015 Publication Date 2014-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited 27 Open Access
Notes ; The work reported in this paper was financed by the Belgian Science Policy under the Science for Sustainable Development programme (SD/HE/01), the Flemish Scientific Fund (FWO:G.0873.11). We thank the direction and staff of the elderly homes for their support. The authors are thankful to the partners of the project Lotte Jacobs, Tim Nawrot and Benoit Nemery for taking care of project organization, Andy Delcoo, Jo Dewulf and Hugo De Backer from Royal Meteorological Institute, Brussels, Belgium for supplying the meteorological data. We acknowledge Dr. Laszlo Bencs for assistance regarding backward trajectory analyses and two reviewers for their constructive comments. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this publication. ; Approved (down) Most recent IF: 4.9; 2014 IF: 4.099
Call Number UA @ admin @ c:irua:117005 Serial 5544
Permanent link to this record
 

 
Author Godoi, R.H.M.; Godoi, A.F.L.; Gonçalves jr., S.J.; Paralovo, S.L.; Borillo, G.C.; Gregório Barbosa, C.G.; Arantes, M.G.; Rosário Filho, N.A.; Grassi, M.T.; Yamamoto, C.I.; Potgieter-Vermaak, S.; Rotondo, G.G.; De Wael, K.; Van Grieken, R.
Title Healthy environment : indoor air quality of Brazilian elementary schools nearby petrochemical industry Type A1 Journal article
Year 2013 Publication The science of the total environment Abbreviated Journal Sci Total Environ
Volume 463 Issue Pages 639-646
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The mitigation of pollution released to the environment originating fromthe industrial sector has been the aimof all policy-makers and its importance is evident if the adverse health effects on the world population are considered. Although this concern is controversial, petroleum refinery has been linked to some adverse health effects for people living nearby. Apart from home, school is the most important indoor environment for children and there is increasing concern about the school environment and its impact on health, also in developing countries where the prevalence of pollution is higher. As most of the children spend more than 40% of their time in schools, it is critical to evaluate the pollution level in such environment. In the metropolitan region of Curitiba, South Brazil, five schools nearby industries and highways with high density traffic, were selected to characterize the aerosol and gaseous compounds indoor and outdoor of the classrooms, during 20092011. Size segregated aerosol samples were collected for analyses of bulk and single particle elemental profiles. They were analyzed by electron probe X-ray micro-analysis (EPXMA), and by energy-dispersive X-ray fluorescence (EDXRF), to investigate the elemental composition of individual particles and bulk samples. The concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX); NO2; SO2; acetic acid; and formic acid were assessed indoor and outdoor using passive diffusion tubes. BTEX were analyzed by GCMS and other collected gasses by ion chromatography. Individual exposition of BTEX was assessed by personal passive diffusion tubes. Results are interpreted separately and as a whole with the specific aim of identifying compounds that could affect the health of the scholars. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the children's respiratory systems were calculated, revealing the deposition of particles at extrathoracic, tracheobronchial and pulmonary levels.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000325831200072 Publication Date 2013-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited 22 Open Access
Notes ; We would like to thank Araucaria Foundation and the National Council for Scientific and Technological Development (CNPq) who supported the funding and promoted the development of this study. ; Approved (down) Most recent IF: 4.9; 2013 IF: 3.163
Call Number UA @ admin @ c:irua:108954 Serial 5637
Permanent link to this record
 

 
Author Hellar-Kihampa, H.; De Wael, K.; Lugwisha, E.; Govindan, M.; Covaci, A.; Van Grieken, R.
Title Spatial monitoring of organohalogen compounds in surface water and sediments of a rural-urban river basin in Tanzania Type A1 Journal article
Year 2013 Publication The science of the total environment Abbreviated Journal Sci Total Environ
Volume 447 Issue Pages 186-197
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre
Abstract The presence of persistent organic pollutants in Tanzanian environment is not well monitored despite the existing pollution potential from a number of sources. In this study, we investigated for the first time, the concentration profiles of different organohalogen compounds such as organochlorine pesticide residues (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in environmental samples (water and sediments) from the Pangani river basin (PRB). The PRB is one of the largest drainage basins in Tanzania, with its watershed exposed to multiple input sources of trace organic contaminants. Surface water and sediments were sampled from 12 representative stations of diverse characteristics and land-use practices, in three distinct seasons, and extracted by liquidliquid and Soxhlet extraction methods, respectively. Water samples were analyzed by GC-ECD for OCPs only, while sediment samples were analyzed for OCPs, PCBs and PBDEs by GC/MS. Seven compounds, dominated by HCH isomers (5104460 pg/L) and DDT analogs (1601460 pg/L),were detected in the water samples. These concentrations are far below the WHO guidelines for drinking water quality. A total of 42 compounds (8 OCPs, 28 PCB congeners and 6 PBDE congeners) were detected in the sediment samples. Their respective total concentration ranges were 24510,230; 35711,000 and 382175 pg/g dry weight. The spatial distribution patterns and Hierarchical Cluster Analysis reflected the impact of historical agricultural usage in sugarcane plantations (OCPs), and urbanization (PCBs and PBDEs). Risk assessment using sediment quality guidelines indicated no ecotoxicological risks. The results we have found provide preliminary data on levels of the organic contaminants in Pangani river basin as a new insight on the environmental quality of the area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000317538100022 Publication Date 2013-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited 42 Open Access
Notes ; This research project was funded by the International Foundation for Science (IFS, Project Number W/4945-1). The authors wish to acknowledge the contribution of the Pangani Basin Water Office (PBWO) in Moshi, Tanzania; especially Ms. Arafa Maggidi in provision of valuable information and assistance with the sampling campaigns, and Salim Lyimo in mapping of the study area. The contributions of Mr. Peter Machibya of the Department of Geology, University of Dar es Salaam, Tanzania in sediment characterization; and Mr. Emmanuel Gwae, of the Government Chemists Laboratory Agency (GCLA) Dar es Salaam, Tanzania, for instrumental analysis of the water samples, are highly appreciated. Harieth Hellar-Kihampa acknowledges financial support from the Belgian Technical Agency (BTC). Govindan Malarvannan and Adrian Covaci acknowledge financial support from the University of Antwerp. ; Approved (down) Most recent IF: 4.9; 2013 IF: 3.163
Call Number UA @ admin @ c:irua:105260 Serial 5836
Permanent link to this record
 

 
Author Hofman, J.; Castanheiro, A.; Nuyts, G.; Joosen, S.; Spassov, S.; Blust, R.; De Wael, K.; Lenaerts, S.; Samson, R.
Title Impact of urban street canyon architecture on local atmospheric pollutant levels and magneto-chemical PM10 composition : an experimental study in Antwerp, Belgium Type A1 Journal article
Year 2019 Publication The science of the total environment Abbreviated Journal Sci Total Environ
Volume 712 Issue 712 Pages 135534
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)
Abstract As real-life experimental data on natural ventilation of atmospheric pollution levels in urban street canyons is still scarce and has proven to be complex, this study, experimentally evaluated the impact of an urban street canyon opening on local atmospheric pollution levels, during a 2-week field campaign in a typical urban street canyon in Antwerp, Belgium. Besides following up on atmospheric particulate matter (PM), ultrafine particles (UFPs) and black carbon (BC) levels, the magneto-chemical PM10 composition was quantified to identify contributions of specific elements in enclosed versus open street canyon sections. Results indicated no higher overall PM, UFP and BC concentrations at the enclosed site compared to the open site, but significant day-to-day variability between both monitoring locations, depending on the experienced wind conditions. On days with oblique wind regimes (4 out of 14), natural ventilation was observed at the open location while higher element contributions of Ca, Fe, Co, Ni, Cu, Zn and Sr were exhibited at the enclosed location. Magnetic properties correlated with the PM10 filter loading, and elemental content of Fe, Cr, Mn and Ti. Magnetic bivariate ratios identified finel-grained magnetite carriers with grain sizes below 0.1 μm, indicating similar magnetic source contributions at both monitoring locations. Our holistic approach, combining atmospheric monitoring with magneto-chemical PM characterization has shown the complex impact of real-life wind flow regimes, different source contributions and local traffic dynamics on the resulting pollutant concentrations and contribute to a better understanding on the urban ventilation processes of atmospheric pollution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000512369600078 Publication Date 2019-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited Open Access
Notes Approved (down) Most recent IF: 4.9
Call Number UA @ admin @ c:irua:165459 Serial 5654
Permanent link to this record
 

 
Author Castanheiro, A.; Samson, R.; De Wael, K.
Title Magnetic- and particle-based techniques to investigate metal deposition on urban green Type A1 Journal article
Year 2016 Publication The science of the total environment Abbreviated Journal Sci Total Environ
Volume 571 Issue Pages 594-602
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Urban green works as a recorder of atmospheric PM. This paper reports on the utility of combining magnetic- and particle-based techniques to investigate PM leaf deposition as a bio-indicator of metal pollution. Ivy (Hedera helix) leaves were collected from five different land use classes, i.e. forest, rural, roadside, industrial, train. Leaf magnetic measurements were done in terms of saturation isothermal remanent magnetization (leaf SIRM), while ca. 40,000 leaf-deposited particles were analyzed through SEM/EDX to estimate the elemental composition. The influence of the different land use classes was registered both magnetically and in terms of metal content. Leaf area-normalized SIRM values ranged from 19.9 to 444.0 μA, in the following order forest < rural < roadside < industrial < train. Leaf SIRM showed to be significantly correlated (p < 0.01) with the content in Fe, Zn, and Pb, followed by Mn and Cd (p < 0.05), while no significant correlation was found with the metals Cr and Cu. Although presenting a similar metal content, roadside and train were magnetically very distinct. By exhibiting a very high content in Pb, and with an Fe content being comparable to the one observed at the forest and rural land uses, the industrial leaf-deposited particles showed to be mainly due to industrial activity. While SEM/EDX is a suitable approach for detailed particle analysis, leaf SIRM of ivy can be used as a rapid discriminatory tool for metal pollution. Their complementary use delivers further knowledge on land use classes reflecting different PM conditions and/or sources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383930400059 Publication Date 2016-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited 17 Open Access
Notes ; This research was supported by a PhD grant of the Research Foundation Flanders (FWO). The authors thank W. Dorrine for his help and supervision on operating the SEM, and G. Nuyts and K Wuyts for their valuable comments on data treatment The authors also acknowledge the three anonymous reviewers for their constructive comments, which helped to improve the manuscript. ; Approved (down) Most recent IF: 4.9
Call Number UA @ admin @ c:irua:134845 Serial 5703
Permanent link to this record
 

 
Author Drăgan, A.-M.; Parrilla, M.; Cambré, S.; Domínguez-Robles, J.; Detamornrat, U.; Donnelly, R.F.; Oprean, R.; Cristea, C.; De Wael, K.
Title Microneedle array-based electrochemical sensor functionalized with SWCNTs for the highly sensitive monitoring of MDMA in interstitial fluid Type A1 Journal article
Year 2023 Publication Microchemical journal Abbreviated Journal
Volume 193 Issue Pages 109257-11
Keywords A1 Journal article; Pharmacology. Therapy; Nanostructured and organic optical and electronic materials (NANOrOPT); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Illicit drug consumption constitutes a great concern worldwide due to its increased spread and abuse, and the negative consequences exerted on society. For instance, 3,4-methylenedioxymethamphetamine (MDMA), a synthetic amphetamine-type substance, was abused by 20 million people worldwide in 2020. This psychoactive substance exerts a myriad of effects on the human body being dangerous for the consumer’s health. Besides, MDMA has been used in the treatment of some psychiatric conditions. Therefore, the development of wearable devices for MDMA sensing in biological fluids is of great importance for forensic toxicology (e.g., monitoring of patients with suspected or known MDMA consumption) as well as for therapeutic management of patients. Herein, we report the development of a wearable electrochemical platform based on a hollow microneedle (MN) array sensor for the monitoring of MDMA in the interstitial fluid by square-wave voltammetry. First, the holes of the MN array were modified with conductive pastes to devise a MN patch with a three-electrode system. Subsequently, the functionalization of the working electrode with nanomaterials enhanced MDMA detection. Thereafter, analytical parameters were evaluated exhibiting a slope of 0.05 µA µM−1 within a linear range from 1 to 50 µM and a limit of detection of 0.75 µM in artificial interstitial fluid. Importantly, critical parameters such as selectivity, piercing capability, temperature, reversibility and stability were assessed. Overall, the obtained MN sensor exhibited excellent analytical performance, making it a promising tool for MDMA tracking in interstitial fluid for individuals on probation or under therapeutic treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001067945900001 Publication Date 2023-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access Not_Open_Access: Available from 27.02.2024
Notes Approved (down) Most recent IF: 4.8; 2023 IF: 3.034
Call Number UA @ admin @ c:irua:198183 Serial 8898
Permanent link to this record
 

 
Author Truta, F.; Cruz, A.G.; Tertis, M.; Zaleski, C.; Adamu, G.; Allcock, N.S.; Suciu, M.; Stefan, M.-G.; Kiss, B.; Piletska, E.; De Wael, K.; Piletsky, S.A.; Cristea, C.
Title NanoMIPs-based electrochemical sensors for selective detection of amphetamine Type A1 Journal article
Year 2023 Publication Microchemical journal Abbreviated Journal
Volume 191 Issue Pages 108821-10
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract A highly sensitive and portable electrochemical sensor based on molecularly imprinted nanoparticles (nanoMIPs) was developed. NanoMIPs were computationally designed for specific recognition of amphetamine, and then synthetized using solid phase synthesis. NanoMIPs were immobilized onto screen-printed carbon electrodes using a composite film comprising chitosan, nanoMIPs, and graphene oxide.Ferrocenylmethyl methacrylate was incorporated in nanoMIPs allowing electrochemical detection. The signal recorded for the electrochemical oxidation of ferrocene has proven to be dependent on the presence of amphetamine interacting with nanMIPs. The sensor was tested successfully with street samples, with high sensitivity and satisfactory recoveries (from 100.9% to 107.6%). These results were validated with UPL-MS/MS. The present technology is suitable for forensic applications in selective determination of amphetamine in street samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001008428600001 Publication Date 2023-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access Not_Open_Access
Notes Approved (down) Most recent IF: 4.8; 2023 IF: 3.034
Call Number UA @ admin @ c:irua:197397 Serial 8903
Permanent link to this record
 

 
Author Van Echelpoel, R.; Parrilla, M.; Sleegers, N.; Thiruvottriyur Shanmugam, S.; van Nuijs, A.L.N.; Slosse, A.; Van Durme, F.; De Wael, K.
Title Validated portable device for the qualitative and quantitative electrochemical detection of MDMA ready for on-site use Type A1 Journal article
Year 2023 Publication Microchemical journal Abbreviated Journal
Volume 190 Issue Pages 108693-10
Keywords A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Identifying and quantifying 3,4-methyl​enedioxy​methamphetamine (MDMA) on-site in suspected illicit drug samples, whether it be at recreational settings or manufacturing sites, is a major challenge for law enforcement agencies (LEAs). Various analytical techniques exist to fulfil this goal, e.g. colourimetry and portable spectroscopic techniques, each having its specific limitations (e.g. low accuracy, fluorescence, no quantification) and strengths (e.g. fast, easy to use). In this work, for the first time, an electrochemical MDMA sensor is presented to become a detection tool that can realistically be used on-site. More specifically, the use of a single buffer solution and an unmodified screen-printed electrode, along with the integration of a data analysis algorithm and mobile application permits the straightforward on-site identification and quantification of MDMA in suspicious samples. Multiple studies investigating different parameters, including pH, concentration, reproducibility, temperature and binary mixture analyses, were executed. To fully understand all the occurring redox processes, liquid chromatography coupled with high-resolution mass spectrometry analysis of partially electrolyzed MDMA samples was performed unravelling oxidation of the methylenedioxy group. Validation of the methodology was executed on 15 MDMA street samples analysed by gas chromatography coupled with mass spectrometry and compared with the performance of a commercial portable Raman and Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) device. The novel methodology outperformed the spectroscopic techniques, correctly identifying all 15 street samples. Additionally, the electrochemical sensor predicted the purity of the tablets with a mean absolute error of 2.3%. Overall, this new, electrochemical detection strategy provides LEAs the rapid, low-cost, on-site detection and quantification of MDMA in suspicious samples, without requiring specialized training.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000977060400001 Publication Date 2023-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 4.8; 2023 IF: 3.034
Call Number UA @ admin @ c:irua:195415 Serial 8952
Permanent link to this record
 

 
Author Lybaert, J.; Maes, B.U.W.; Tehrani, K.A.; De Wael, K.
Title The electrochemistry of tetrapropylammonium perruthenate, its role in the oxidation of primary alcohols and its potential for electrochemical recycling Type A1 Journal article
Year 2015 Publication Electrochimica acta Abbreviated Journal Electrochim Acta
Volume 182 Issue Pages 693-698
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY)
Abstract The search for strategies aiming at more sustainable (oxidation) reactions has led to the application of electrochemistry for recycling the spent catalyst. In this work, an electrochemical study of the tetrapropylammonium perruthenate catalyst (TPAP) and its activity towards a primary alcohol, n-butanol, has been carried out as well as a control study with tert-butanol. The redox chemistry of TPAP and the transition between the perruthenate anion and ruthenium tetroxide in a non-aqueous solvent have been, for the first time, investigated in depth. The oxidation reaction of n-butanol in the presence of TPAP has been electrochemically elucidated by performing potentiostatic experiments and registration of the corresponding oxidation current. Furthermore, it was shown that, by applying a specific potential, the reoxidized TPAP is able to oxidize/convert the primary alcohol, paving the way for practical applications using TPAP in electrochemical synthesis. The conversion of n-butanol into n-butanal was proven by the use of GC-MS.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000365075800084 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited 2 Open Access
Notes ; ; Approved (down) Most recent IF: 4.798; 2015 IF: 4.504
Call Number UA @ admin @ c:irua:127676 Serial 5599
Permanent link to this record
 

 
Author Pauwels, D.; Ching, H.Y.V.; Samanipour, M.; Neukermans, S.; Hereijgers, J.; Van Doorslaer, S.; De Wael, K.; Breugelmans, T.
Title Identifying intermediates in the reductive intramolecular cyclisation of allyl 2-bromobenzyl ether by an improved electron paramagnetic resonance spectroelectrochemical electrode design combined with density functional theory calculations Type A1 Journal article
Year 2018 Publication Electrochimica acta Abbreviated Journal Electrochim Acta
Volume 271 Issue 271 Pages 10-18
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The electrochemical activation of C-X bonds requires very negative electrode potentials. Lowering the overpotentials and increasing the catalytic activity requires intensive electrocatalytic research. A profound understanding of the reaction mechanism and the influence of the electrocatalyst allows optimal tuning of the electrocatalyst. This can be achieved by combining electrochemical techniques with electron paramagnetic resonance (EPR) spectroscopy. Although this was introduced in the mid-twentieth century, the application of this combined approach in electrocatalytic research is underexploited. Several reasons can be listed, such as the limited availability of EPR instrumentation and electrochemical devices for such in situ experiments. In this work, a simple and inexpensive construction adapted for in situ EPR electrocatalytic research is proposed. The proof of concept is provided by studying a model reaction, namely the reductive cyclisation of allyl 2-bromobenzyl ether which has interesting industrial applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430369800002 Publication Date 2018-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited 2 Open Access
Notes ; The authors would like to thank Melissa Van Landeghem for her assistance with the experimental work and analysis of the data. Jonas Hereijgers greatly acknowledges the Research Foundation Flanders (FWO) for support through a Post-Doctoral grant (12Q8817N). H.Y. Vincent Ching gratefully acknowledges the University of Antwerp for a Post-Doctoral grant. Sabine Van Doorslaer and Tom Breugelmans acknowledge the FWO for research funding (research grant G093317N). ; Approved (down) Most recent IF: 4.798
Call Number UA @ admin @ c:irua:150463 Serial 5652
Permanent link to this record
 

 
Author Lybaert, J.; Tehrani, K.A.; De Wael, K.
Title Mediated electrolysis of vicinal diols by neocuproine palladium catalysts Type A1 Journal article
Year 2017 Publication Electrochimica acta Abbreviated Journal Electrochim Acta
Volume 247 Issue Pages 685-691
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY)
Abstract Synthetic electrochemistry agrees well with the principles of sustainable chemistry, therefore it is considered as a more environmentally friendly approach than some current synthetic methods Here, we present a new strategy for the chemoselective oxidation of vicinal diols, viz. the integration of neocuproine palladium catalysts and electrosynthesis. Benzoquinones are used as an effective mediator as the reduced species (hydroquinones) can be easily reoxidized at relative low potentials at an electrode surface. NeocuproinePd(OAc)2 efficiently works as a catalyst in an electrolysis reaction for vicinal diols at room temperature. This is a remarkable observation given the fact that aerobic oxidation reactions of alcohols typically need a more complex catalyst, i.e. [neocuproinePdOAc]2[OTf]2. In this article we describe the optimization of the electrolysis conditions for the neocuproinePd(OAc)2 catalyst to selectively oxidize diols. The suggested approach leads to conversion of alcohols with high yields and provides an interesting alternative to perform oxidation reactions under mild conditions by the aid of electrochemistry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000408582300072 Publication Date 2017-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited Open Access
Notes ; ; Approved (down) Most recent IF: 4.798
Call Number UA @ admin @ c:irua:144118 Serial 5706
Permanent link to this record