toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kong, L.; Wang, W.; Murphy, A.B.; Xia, G. pdf  url
doi  openurl
  Title Numerical analysis of direct-current microdischarge for space propulsion applications using the particle-in-cell/Monte Carlo collision (PIC/MCC) method Type A1 Journal article
  Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue 16 Pages 165203  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Microdischarges are an important type of plasma discharge that possess several unique characteristics, such as the presence of a stable glow discharge, high plasma density and intense excimer radiation, leading to several potential applications. The intense and controllable gas heating within the extremely small dimensions of microdischarges has been exploited in microthruster technologies by incorporating a micro-nozzle to generate the thrust. This kind of microthruster has a significantly improved specific impulse performance compared to conventional cold gas thrusters, and can meet the requirements arising from the emerging development and application of micro-spacecraft. In this paper, we performed a self-consistent 2D particle-in-cell simulation, with a Monte Carlo collision model, of a microdischarge operating in a prototype micro-plasma thruster with a hollow cylinder geometry and a divergent micro-nozzle. The model takes into account the thermionic electron emission including the Schottky effect, the secondary electron emission due to cathode bombardment by the plasma ions, several different collision processes, and a non-uniform argon background gas density in the cathode-anode gap. Results in the high-pressure (several hundreds of Torr), high-current (mA) operating regime showing the behavior of the plasma density, potential distribution, and energy flux towards the hollow cathode and anode are presented and discussed. In addition, the results of simulations showing the effect of different argon gas pressures, cathode material work function and discharge voltage on the operation of the microdischarge thruster are presented. Our calculated properties are compared with experimental data under similar conditions and qualitative and quantitative agreements are reached.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000398856300001 Publication Date 2017-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 8 Open Access OpenAccess  
  Notes Approved (down) Most recent IF: 2.588  
  Call Number UA @ lucian @ c:irua:143642 Serial 4674  
Permanent link to this record
 

 
Author Wang, W.; Kong, L.; Geng, J.; Wei, F.; Xia, G. url  doi
openurl 
  Title Wall ablation of heated compound-materials into non-equilibrium discharge plasmas Type A1 Journal article
  Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue 7 Pages 074005  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results show a non-equilibrium region near the plasma-wall interaction region and this indicates the need for the consideration of the influence of the possible departure from LTE in the plasma bulk on the determination of ablation rate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000394097200001 Publication Date 2017-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 19 Open Access OpenAccess  
  Notes Approved (down) Most recent IF: 2.588  
  Call Number UA @ lucian @ c:irua:141965 Serial 4702  
Permanent link to this record
 

 
Author Wang, H.; Wang, W.; Yan, J.D.; Qi, H.; Geng, J.; Wu, Y. pdf  doi
openurl 
  Title Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications Type A1 Journal article
  Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue 39 Pages 395204  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al's derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto's electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000410390100001 Publication Date 2017-07-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 3 Open Access Not_Open_Access  
  Notes Approved (down) Most recent IF: 2.588  
  Call Number UA @ lucian @ c:irua:145603 Serial 4754  
Permanent link to this record
 

 
Author Pauwels, D.; Geboes, B.; Hereijgers, J.; Choukroun, D.; De Wael, K.; Breugelmans, T. pdf  url
doi  openurl
  Title The application of an electrochemical microflow reactor for the electrosynthetic aldol reaction of acetone to diacetone alcohol Type A1 Journal article
  Year 2017 Publication Chemical engineering research and design Abbreviated Journal Chem Eng Res Des  
  Volume 128 Issue Pages 205-213  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The design and application of an electrochemical micro-flow reactor for the aldol reaction of acetone to diacetone alcohol (DAA) is reported. The modular reactor could be readily disassembled and reassembled to change the electrodes, incorporate a membrane and remove possible obstructions. The productivity and efficiency was quantified. Using a platinum deposit as electrocatalyst or an inert glassy carbon electrode as working electrode, the maximum obtainable equilibrium concentration of ±15 m% was reached after a single pass up to a flow rate of 8 ml min−1, yielding 0.57 g min−1 DAA (3.46 mmol cm−3 min−1) at an efficiency of 0.33 g C−1 on platinum and 0.50 g min−1 (3.04 mmol cm−3 min−1) at 1.20 g C−1 on glassy carbon. Note that no optimisation studies have been made in the present paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424736500018 Publication Date 2017-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0263-8762 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.538 Times cited 2 Open Access  
  Notes ; The authors would like to thank Bert De Mot for assisting with the measurements. Jonas Hereijgers greatly acknowledges the Research Foundation – Flanders (FWO) for support through a Post-Doctoral grant (12Q8817N). ; Approved (down) Most recent IF: 2.538  
  Call Number UA @ admin @ c:irua:146943 Serial 5871  
Permanent link to this record
 

 
Author Rozova, M.G.; Grigoriev, V.V.; Tyablikov, O.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Antipov, E.V.; Abakumov, A.M. pdf  doi
openurl 
  Title Doping of Bi4Fe5O13F with pentagonal Cairo lattice with Cr and Mn: Synthesis, structure and magnetic properties Type A1 Journal article
  Year 2017 Publication Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 87 Issue 87 Pages 54-60  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The substitution of Cr3+ and Mn3+ for Fe3+ in the Bi4Fe6O13F oxyfluoride featuring the magnetically frustrated pentagonal Cairo lattice is reported. Bi4Fe4.1Cr0.9O13F and BiFe4.2Mn0.8O13F have been prepared using a solid state reaction in inert atmosphere. Their crystal structures were studied with transmission electron microscopy, powder X-ray diffraction and Fe-57 Mossbauer spectroscopy (S.G. P4(2)/mbc, a = 8.27836(2)angstrom, c = 18.00330(9) angstrom, R-F = 0.031 (Bi4Fe4.1Cr0.9O13F)), a= 8.29535(3)angstrom, c= 18.0060(1)angstrom, R-F = 0.027 (Bi4Fe4.1Cr0.9O13F)). The structures are formed by infinite rutile-like chains of the edge sharing BO6 octahedra (B transition metal cations) linked by the Fe2O7 groups of two corner-sharing tetrahedra. The"voids in thus formed framework are occupied by the Bi4F tetrahedra. The Fe-57 Mossbauer spectroscopy reveals that Cr3+ and Mn3+ replace Fe3+. exclusively at the octahedral positions. The Mn- and Cr-doped compounds demonstrate antiferromagnetic ordering below T-N =165 K and 120 K, respectively. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000392681800009 Publication Date 2016-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 1 Open Access Not_Open_Access  
  Notes ; The work has been supported by the Russian Science Foundation (grant 14-13-00680). ; Approved (down) Most recent IF: 2.446  
  Call Number UA @ lucian @ c:irua:141535 Serial 4498  
Permanent link to this record
 

 
Author Torfs, E.; Vajs, J.; Bidart de Macedo, M.; Cools, F.; Vanhoutte, B.; Gorbanev, Y.; Bogaerts, A.; Verschaeve, L.; Caljon, G.; Maes, L.; Delputte, P.; Cos, P.; Komrlj, J.; Cappoen, D. pdf  url
doi  openurl
  Title Synthesis and in vitro investigation of halogenated 1,3-bis(4-nitrophenyl)triazenide salts as antitubercular compounds Type A1 Journal article
  Year 2017 Publication Chemical biology and drug design Abbreviated Journal Chem Biol Drug Des  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The diverse pharmacological properties of the diaryltriazenes have sparked the interest to investigate their potential to be repurposed as antitubercular drug candidates. In an attempt to improve the antitubercular activity of a previously constructed diaryltriazene library, eight new halogenated nitroaromatic triazenides were synthesized and underwent biological evaluation. The potency of the series was confirmed against the Mycobacterium tuberculosis lab strain H37Ra, and for the most potent derivative, we observed a minimal inhibitory concentration of 0.85 μm. The potency of the triazenide derivatives against M. tuberculosis H37Ra was found to be highly dependent on the nature of the halogenated phenyl substituent and less dependent on cationic species used for the preparation of the salts. Although the inhibitory concentration against J774A.1 macrophages was observed at 3.08 μm, the cellular toxicity was not mediated by the generation of nitroxide intermediate as confirmed by electron paramagnetic resonance spectroscopy, whereas no in vitro mutagenicity could be observed for the new halogenated nitroaromatic triazenides when a trifluoromethyl substituent was present on both the aryl moieties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000422952300027 Publication Date 2017-08-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1747-0277; 1747-0285; 1397-002x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.396 Times cited 5 Open Access OpenAccess  
  Notes Approved (down) Most recent IF: 2.396  
  Call Number UA @ lucian @ c:irua:147182 Serial 4794  
Permanent link to this record
 

 
Author Yang, W.; Misko, V.R.; Tempère, J.; Kong, M.; Peeters, F.M. url  doi
openurl 
  Title Artificial living crystals in confined environment Type A1 Journal article
  Year 2017 Publication Physical Review E Abbreviated Journal Phys Rev E  
  Volume 95 Issue 6 Pages 062602  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract Similar to the spontaneous formation of colonies of bacteria, flocks of birds, or schools of fish, “living crystals” can be formed by artificial self-propelled particles such as Janus colloids. Unlike usual solids, these “crystals” are far from thermodynamic equilibrium. They fluctuate in time forming a crystalline structure, breaking apart and re-forming again. We propose a method to stabilize living crystals by applying a weak confinement potential that does not suppress the ability of the particles to perform self-propelled motion, but it stabilizes the structure and shape of the dynamical clusters. This gives rise to such configurations of living crystals as “living shells” formed by Janus colloids. Moreover, the shape of the stable living clusters can be controlled by tuning the potential strength. Our proposal can be verified experimentally with either artificial microswimmers such as Janus colloids, or with living active matter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402667600006 Publication Date 2017-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 10 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Research Foundation (FWO-Vl) (Belgium), the Flemish Research Foundation (through Projects No. G.0115.12N, No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N), and the Research Fund of the University of Antwerp. W.Y. acknowledges the support from the National Natural Science Foundation of China under Grants No. 11204199 and No. 51135007, the China Scholarship Council, the 131 project and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, and a project under Grant No. 2016-096 by Shanxi Scholarship Council of China. ; Approved (down) Most recent IF: 2.366  
  Call Number UA @ lucian @ c:irua:144205 Serial 4641  
Permanent link to this record
 

 
Author Domingos, J.L.C.; Peeters, F.M.; Ferreira, W.P. pdf  doi
openurl 
  Title Self-assembly of rigid magnetic rods consisting of single dipolar beads in two dimensions Type A1 Journal article
  Year 2017 Publication Physical review E Abbreviated Journal Phys Rev E  
  Volume 96 Issue 1 Pages 012603  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Molecular dynamics simulations are used to investigate the structural properties of a two-dimensional ensemble of magnetic rods, which are modeled as aligned single dipolar beads. The obtained self-assembled configurations can be characterized as (1) clusters, (2) percolated, and (3) ordered structures, and their structural properties are investigated in detail. By increasing the aspect ratio of the magnetic rods, we show that the percolation transition is suppressed due to the reduced mobility of the rods in two dimensions. Such a behavior is opposite to the one observed in three dimensions. A magnetic bulk phase is found with local ferromagnetic order and an unusual nonmonotonic behavior of the nematic order is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405713900014 Publication Date 2017-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 8 Open Access  
  Notes ; This work was supported by the Brazilian agencies FUNCAP, CAPES, program Science without borders, and CNPq (Project No. 400748/2013-4), the joint CNPq-FWO bilateral project, and the Flemish Science Foundation (FWO-V1). ; Approved (down) Most recent IF: 2.366  
  Call Number UA @ lucian @ c:irua:145210 Serial 4723  
Permanent link to this record
 

 
Author Zebrowski, D.P.; Peeters, F.M.; Szafran, B. pdf  doi
openurl 
  Title Driven spin transitions in fluorinated single- and bilayer-graphene quantum dots Type A1 Journal article
  Year 2017 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume 32 Issue 6 Pages 065016  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Spin transitions driven by a periodically varying electric potential in dilute fluorinated graphene quantum dots are investigated. Flakes of monolayer graphene as well as electrostatic electron traps induced in bilayer graphene are considered. The stationary states obtained within the tight-binding approach are used as the basis for description of the system dynamics. The dilute fluorination of the top layer lifts the valley degeneracy of the confined states and attenuates the orbital magnetic dipole moments due to current circulation within the flake. The spin-orbit coupling introduced by the surface deformation of the top layer induced by the adatoms allows the spin flips to be driven by the AC electric field. For the bilayer quantum dots the spin flip times is substantially shorter than the spin relaxation. Dynamical effects including many-photon and multilevel transitions are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000402405800007 Publication Date 2017-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.305 Times cited Open Access  
  Notes ; This work was supported by the National Science Centre according to decision DEC-2013/11/B/ST3/03837 and by the Flemish Science Foundation (FWO-VL). ; Approved (down) Most recent IF: 2.305  
  Call Number UA @ lucian @ c:irua:144238 Serial 4646  
Permanent link to this record
 

 
Author Ben Hafsia, A.; Hendrickx, M.; Batuk, M.; Khitouni, M.; Hadermann, J.; Greneche, J.-M.; Rammeh, N. pdf  doi
openurl 
  Title Crystal structure study of manganese and titanium substituted BaLaFe2O6-δ Type A1 Journal article
  Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 251 Issue 251 Pages 186-193  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Barium lanthanum ferrite and four Mn/Ti substituted materials were synthesized by the sol-gel method. The crystal structure of the materials was studied by a combination of X-ray powder diffraction, electron diffraction, scanning transmission electron microscopy and 57Fe Mössbauer spectrometry. BaLaFe2O6-δ has a cubic perovskite structure and Ba0.7La1.3FeMnO6-δ is distorted perovskite with the R-3c symmetry, both from electron diffraction and X-ray powder diffraction. However, according to transmission electron microscopy, the crystals of BaLaFeTiO6-δ, BaLaFeTi0.5Mn0.5O6-δ, and BaLaFe0.5Ti0.5MnO6-δ consist of nanodomains with different symmetries (Pm3m next to R-3c due to octahedral tilts), whereas the bulk X-ray powder diffraction patterns for these compounds correspond to the simple cubic structure. 57Fe Mössbauer spectrometry confirms that all materials contain high spin state Fe3+ ions which are strongly influenced by the chemical disorder

resulting from various cationic environments.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402581200024 Publication Date 2017-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited Open Access Not_Open_Access  
  Notes This study has been supported by the Tunisian Ministry of Higher Education and Scientific Research and by the University of Antwerp BOF Grant 33024 funding scheme. Approved (down) Most recent IF: 2.299  
  Call Number EMAT @ emat @ c:irua:143988 Serial 4582  
Permanent link to this record
 

 
Author Hunter, E.C.; Battle, P.D.; Sena, R.P.; Hadermann, J. doi  openurl
  Title Ferrimagnetism as a consequence of cation ordering in the perovskite LaSr2Cr2SbO9 Type A1 Journal article
  Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 248 Issue Pages 96-103  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of LaSr2Cr2SbO9 has been synthesised using a standard ceramic method and characterized by x-ray and neutron diffraction, magnetometry and electron microscopy. The perovskite-related compound crystallises in the triclinic space group I1 with unit cell parameters of a=5.5344(6) angstrom, b=5.5562(5) angstrom, c=7.8292(7) angstrom, a=89.986(12)degrees, beta=90.350(5)degrees and gamma=89.926(9)degrees at room temperature. The two crystallographically-distinct, six-coordinate cation sites are occupied by Cr3+ and Sb5+ in ratios of 0.868(2):0.132(2) and 0.462(2):0.538(2). Ac and de magnetometry revealed that LaSr2Cr2SbO9 is ferrimagnetic below 150 K with a magnetisation of similar to 1.25 mu(B) per formula unit in 50 kOe at 5 K. Neutron diffraction showed that the cations on the two sites order in a G-type arrangement with a mean Cr3+ moment of 2.17(1) mu(B) at 5 K, consistent with a magnetisation of 1.32 mu(B) per formula unit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000396386300012 Publication Date 2017-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 14 Open Access Not_Open_Access  
  Notes ; Experiments at the ISIS Pulsed Neutron and Muon Source were supported by the STFC. We are grateful to I. da Silva for the assistance provided at ISIS and to the EPSRC for financial support under Grant EP/M018954/1. We also thank Diamond Light Source Ltd (EE13284) for the award of beamtime. ; Approved (down) Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:142413 Serial 4657  
Permanent link to this record
 

 
Author Chin, C.-M.; Sena, R.P.; Hunter, E.C.; Hadermann, J.; Battle, P.D. url  doi
openurl 
  Title Interplay of structural chemistry and magnetism in perovskites : a study of CaLn2Ni2WO9: Ln=La, Pr, Nd Type A1 Journal article
  Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 251 Issue Pages 224-232  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline samples of CaLn(2)Ni(2)WO(9) (Ln=La, Pr, Nd) have been synthesized and characterised by a combination of X-ray and neutron diffraction, electron microscopy and magnetometry. Each composition adopts a perovskite-like structure with a similar to 5.50, b similar to 5.56, c similar to 7.78 angstrom beta similar to 90.1 degrees in space group P2(1)/n. Of the two crystallographically distinct six-coordinate sites, one is occupied entirely (Ln=Pr) or predominantly (Ln=La, Nd) by Ni2+ and the other by Ni2+ and W6+ in a ratio of approximately 1:2. None of the compounds shows long-range magnetic order at 5 K. The magnetometry data show that the magnetic moments of the Ni2+ cations form a spin glass below 30 K in each case. The Pr3+ moments in CaPr2Ni2WO9 also freeze but the Nd3+ moments in CaNd2Ni2WO9 do not. This behaviour is contrasted with that observed in other (A,A')B2B'O-9 perovskites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000402581200030 Publication Date 2017-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 5 Open Access OpenAccess  
  Notes ; We thank EPSRC for funding through grant EP/M0189541. CMC thanks the Croucher Foundation and Oxford University for a graduate scholarship. We are grateful to Ivan da Silva who provided experimental assistance at ISIS and to Maria Batuk for help with the STEM-EDX analysis. ; Approved (down) Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:144179 Serial 4664  
Permanent link to this record
 

 
Author Tang, Y.; Sena, R.P.; Aydeev, M.; Battle, P.D.; Cadogan, J.M.; Hadermann, J.; Hunter, E.C. url  doi
openurl 
  Title Magnetic properties of the 6H perovskite Ba3Fe2TeO9 Type A1 Journal article
  Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 253 Issue Pages 347-354  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of Ba3Fe2TeO9 having the 6H perovskite structure has been prepared in a solid-state reaction and studied by a combination of electron microscopy, Mossbauer spectroscopy, magnetometry, X-ray diffraction and neutron diffraction. Partial ordering of Fe3+ and Te6+ cations occurs over the six-coordinate sites; the corner-sharing octahedra are predominantly occupied by the former and the face-sharing octahedra by a 1:1 mixture of the two. On cooling through the temperature range 18 < T/K < 295 an increasing number of spins join an antiferromagnetic backbone running through the structure while the remainder show complex relaxation effects. At 3 K an antiferromagnetic phase and a spin glass coexist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000406572600047 Publication Date 2017-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 6 Open Access OpenAccess  
  Notes ; We thank EPSRC for financial support through grant EP/M018954/1. ; Approved (down) Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:145692 Serial 4743  
Permanent link to this record
 

 
Author Bogaerts, A.; Ameye, L.; Bijlholt, M.; Amuli, K.; Heynickx, D.; Devlieger, R. url  doi
openurl 
  Title INTER-ACT : prevention of pregnancy complications through an e-health driven interpregnancy lifestyle intervention: study protocol of a multicentre randomised controlled trial Type A1 Journal article
  Year 2017 Publication BMC pregnancy and childbirth Abbreviated Journal Bmc Pregnancy Childb  
  Volume 17 Issue Pages 154  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Centre for Research and Innovation in Care (CRIC)  
  Abstract Background Excessive maternal pre-pregnancy and gestational weight gain are related to pregnancy- and birth outcomes. The interpregnancy time window offers a unique opportunity to intervene in order to acquire a healthy lifestyle before the start of a new pregnancy. Methods INTER-ACT is an e-health driven multicentre randomised controlled intervention trial targeting women at high risk of pregnancy- and birth related complications. Eligible women are recruited for the study at day 2 or 3 postpartum. At week 6 postpartum, participants are randomised into the intervention or control arm of the study. The intervention focuses on weight, diet, physical activity and mental well-being, and comprises face-to-face coaching, in which behavioural change techniques are central, and use of a mobile application, which is Bluetooth-connected to a weighing scale and activity tracker. The intervention is rolled out postpartum (4 coaching sessions between week 6 and month 6) and in a new pregnancy (3 coaching sessions, one in each trimester of pregnancy); the mobile app is used throughout the two intervention phases. Data collection includes data from the medical record of the participants (pregnancy outcomes and medical history), anthropometric data (height, weight, waist- and hip circumferences, skinfold thickness and body composition by bio-electrical impedance analysis), data from the mobile app (physical activity and weight; intervention group only) and questionnaires (socio-demographics, breastfeeding, food intake, physical activity, lifestyle, psychosocial factors and process evaluation). Medical record data are collected at inclusion and at delivery of the subsequent pregnancy. All other data are collected at week 6 and month 6 postpartum and every subsequent 6 months until a new pregnancy, and in every trimester in the new pregnancy. Primary outcome is the composite endpoint score of pregnancy-induced hypertension, gestational diabetes mellitus, caesarean section, and large-for-gestational-age infant in the subsequent pregnancy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000402116300002 Publication Date 2017-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-2393 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.263 Times cited 4 Open Access OpenAccess  
  Notes Approved (down) Most recent IF: 2.263  
  Call Number UA @ lucian @ c:irua:143234 Serial 4663  
Permanent link to this record
 

 
Author Jorli, M.; Van Passel, S.; Sadeghi, H.; Nasseri, A.; Agheli, L. url  doi
openurl 
  Title Estimating human health impacts and costs due to Iranian fossil fuel power plant emissions through the impact pathway approach Type A1 Journal article
  Year 2017 Publication Energies Abbreviated Journal Energies  
  Volume 10 Issue 12 Pages 2136-29  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Air pollutants from fossil fuel fired power plants harm the environment and human health. More than 91% of Irans electricity production is from thermal power plants that use natural gas, diesel, and fuel oil. We apply the impact pathway approach to estimate the health impacts arising from Iranian fossil-based electricity generation emission, and in a next step, we calculate monetary costs of the estimated damages, for a one-year period starting from 20 March 2016 through 2017. We use the new version of SIMPACTS (International Atomic Energy Agency, Vienna, Austria) to investigate the health effects from 61 major Iran fossil-based power plants separately. The selected plants represent 95.6% of total Iran fossil-based power generation. Using the individual and different power plant estimates, we avoid extrapolation and our results can be considered more reliable, taking into account spatial differences. The total damage cost is 723.42 million USD (2000). The damage cost per generated electricity varies from 0.06 to 22.41 USD/MWh and average plant damage cost is 2.85 USD/MWh. Accounting for these external costs indicates the actual costs of fossil energy. The results are useful for policy makers to compare the health costs from these plants and to decide on cleaner energy sources and to take measures to increase benefits for society.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000423156900207 Publication Date 2017-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1073 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.262 Times cited 4 Open Access  
  Notes ; ; Approved (down) Most recent IF: 2.262  
  Call Number UA @ admin @ c:irua:149041 Serial 6200  
Permanent link to this record
 

 
Author Magnus, W.; Lemmens, L.; Brosens, F. pdf  doi
openurl 
  Title Quantum canonical ensemble : a projection operator approach Type A1 Journal article
  Year 2017 Publication Physica: A : theoretical and statistical physics Abbreviated Journal Physica A  
  Volume 482 Issue Pages 1-13  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function Z(N) and the Helmholtz free energy F-N as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 – F-N, as illustrated for a two-dimensional fermion gas. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000405885500001 Publication Date 2017-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4371 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.243 Times cited 1 Open Access  
  Notes ; ; Approved (down) Most recent IF: 2.243  
  Call Number UA @ lucian @ c:irua:145145 Serial 4722  
Permanent link to this record
 

 
Author Tit, N.; Al Ezzi, M.M.; Abdullah, H.M.; Yusupov, M.; Kouser, S.; Bahlouli, H.; Yamani, Z.H. pdf  url
doi  openurl
  Title Detection of CO2 using CNT-based sensors: Role of Fe catalyst on sensitivity and selectivity Type A1 Journal article
  Year 2017 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys  
  Volume 186 Issue 186 Pages 353-364  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The adsorption of CO2 on surfaces of graphene and carbon nanotubes (CNTs), decorated with Fe atoms, are investigated using the self-consistent-charge density-functional tight-binding (SCC-DFTB) method, neglecting the heat effects. Fe ad-atoms are more stable when they are dispersed on hollow sites. They introduce a large density of states at the Fermi level (N-F); where keeping such density low would help in gas sensing. Furthermore, the Fe ad-atom can weaken the C=O double bonds of the chemisorbed CO2 molecule, paving the way for oxygen atoms to drain more charges from Fe. Consequently, chemisorption of CO2 molecules reduces both N-F and the conductance while it enhances the sensitivity with the increasing gas dose. Conducting armchair CNTs (ac-CNTs) have higher sensitivity than graphene and semiconducting zigzag CNTs (zz-CNT5). Comparative study of sensitivity of ac-CNT-Fe composite towards various gases (e.g., O-2, N-2, H-2, H2O, CO and CO2) has shown high sensitivity and selectivity towards CO, CO2 and H2O gases. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000390621200044 Publication Date 2016-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0254-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.084 Times cited 17 Open Access Not_Open_Access  
  Notes Approved (down) Most recent IF: 2.084  
  Call Number UA @ lucian @ c:irua:140333 Serial 4465  
Permanent link to this record
 

 
Author Dutta, S.; Sankaran, K.; Moors, K.; Pourtois, G.; Van Elshocht, S.; Bommels, J.; Vandervorst, W.; Tokei, Z.; Adelmann, C. doi  openurl
  Title Thickness dependence of the resistivity of platinum-group metal thin films Type A1 Journal article
  Year 2017 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 122 Issue 2 Pages 025107  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We report on the thin film resistivity of several platinum-group metals (Ru, Pd, Ir, and Pt). Platinum-group thin films show comparable or lower resistivities than Cu for film thicknesses below about 5 nm due to a weaker thickness dependence of the resistivity. Based on experimentally determined mean linear distances between grain boundaries as well as ab initio calculations of the electron mean free path, the data for Ru, Ir, and Cu were modeled within the semiclassical Mayadas-Shatzkes model [Phys. Rev. B 1, 1382 (1970)] to assess the combined contributions of surface and grain boundary scattering to the resistivity. For Ru, the modeling results indicated that surface scattering was strongly dependent on the surrounding material with nearly specular scattering at interfaces with SiO2 or air but with diffuse scattering at interfaces with TaN. The dependence of the thin film resistivity on the mean free path is also discussed within the Mayadas-Shatzkes model in consideration of the experimental findings. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000405663800038 Publication Date 2017-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 42 Open Access Not_Open_Access  
  Notes Approved (down) Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:145213 Serial 4729  
Permanent link to this record
 

 
Author Longo, R.; Ferrarotti, M.; Garcia Sánchez, C.; Derudi, M.; Parente, A. pdf  doi
openurl 
  Title Advanced turbulence models and boundary conditions for flows around different configurations of ground-mounted buildings Type A1 Journal article
  Year 2017 Publication Journal of wind engineering and industrial aerodynamics Abbreviated Journal J Wind Eng Ind Aerod  
  Volume 167 Issue Pages 160-182  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract When dealing with Atmospheric Boundary Layer (ABL) simulations, commercial computational fluid dynamics (CFD) acquires a strategic resonance. Thanks to its good compromise between accuracy of results and calculation time, RANS still represents a valid alternative to more resource-demanding methods. However, focusing on the models' performances in urban studies, LES generally outmatches RANS results, even if the former is at least one order of magnitude more expensive. Consequently, the present work aims to propose a variety of approaches meant to solve some of the major problems linked to RANS simulations and to further improve its accuracy in typical urban contexts. All of these models are capable of switching from an undisturbed flux formulation to a disturbed one through a local deviation or a marker function. For undisturbed flows, a comprehensive approach is adopted, solving the issue of the erroneous stream-wise gradients affecting the turbulent profiles. Around obstacles, Non-Linear Eddy-Viscosity closures are adopted, due to their prominent capability in capturing the anisotropy of turbulence. The purpose of this work is then to propose a new Building Influence Area concept and to offer more affordable alternatives to LES simulations without sacrificing a good grade of accuracy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000405766600013 Publication Date 2017-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-6105 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.049 Times cited 9 Open Access Not_Open_Access  
  Notes ; ; Approved (down) Most recent IF: 2.049  
  Call Number UA @ lucian @ c:irua:145191 Serial 4713  
Permanent link to this record
 

 
Author Lambrinou, K.; Charalampopoulou, E.; Van der Donck, T.; Delville, R.; Schryvers, D. pdf  url
doi  openurl
  Title Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C Type A1 Journal article
  Year 2017 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater  
  Volume 490 Issue 490 Pages 9-27  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10-8 mass%) static liquid lead-bismuth eutectic (LBE) for 253e3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was nonuniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403132300002 Publication Date 2017-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 24 Open Access OpenAccess  
  Notes The authors would like to acknowledge the following 316L stainless steel suppliers: Industeel, ArcelorMittal Group, for the 316LSA plate procured and characterised in the FP6 EUROTRANSDEMETRA project (Contract no. FI6W-CT-2004-516520); OLARRA Aceros Inoxidables, Spain, for the 316LH1 rod; and SIDERO STAAL nv, Belgium, for the 316LH2 rod. K. Lambrinou would like to thank J. Joris for technical support during the launching and follow up of all corrosion tests, J. Lim for the manufacturing and calibration of the oxygen sensors used in these tests, T. Lapauw for the XRD measurements on the pristine steels, and S. Van den Broeck for the FIB sample preparation. Special thanks to S. Gavrilov for fruitful and intense discussions. The authors gratefully acknowledge the funding provided in the framework of the ongoing development of the MYRRHA irradiation facility. The research leading to these results falls within the framework of the European Energy Research Alliance Joint Programme on Nuclear Materials (EERA JPNM). Approved (down) Most recent IF: 2.048  
  Call Number EMAT @ emat @ c:irua:142644 Serial 4563  
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Dietz, W.; Verwerft, M. pdf  url
doi  openurl
  Title Thermal creep properties of Ti-stabilized DIN 1.4970 (15-15Ti) austenitic stainless steel pressurized cladding tubes Type A1 Journal article
  Year 2017 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater  
  Volume 493 Issue Pages 154-167  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This paper presents a large database of thermal creep data from pressurized unirradiated DIN 1.4970 Ti-stabilized austenitic stainless steel (i.e. EN 1515CrNiMoTiB or “15-15Ti”) cladding tubes from more than 1000 bi-axial creep tests conducted during the fast reactor R&D program of the DeBeNe (Deutschland-Belgium- Netherlands) consortium between the 1960's to the late 1980's. The data comprises creep rate and time-to-rupture between 600 and 750 degrees C and a large range of stresses. The data spans tests on material from around 70 different heats and 30 different melts. Around one fourth of the data was obtained from cold worked material, the rest was obtained on cold worked + aged (800 degrees C, 2 h) material. The data are graphically presented in log-log graphs. The creep rate data is fit with a sinh correlation, the time to rupture data is fit with a modified exponential function through the Larson-Miller parameter. Local equivalent parameters to Norton's law are calculated and compared to literature values for these types of steels and related to possible creep mechanisms. Some time to rupture data above 950 degrees C is compared to literature dynamic recrystallization data. Time to rupture data between 600 and 750 degrees C is also compared to literature data from 316 steel. Time to rupture was correlated directly to creep rate with the Monkman-Grant relationship at different temperatures. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000408044000018 Publication Date 2017-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 5 Open Access OpenAccess  
  Notes ; ; Approved (down) Most recent IF: 2.048  
  Call Number UA @ lucian @ c:irua:145686 Serial 4753  
Permanent link to this record
 

 
Author Bliokh, K.Y.; Ivanov, I.P.; Guzzinati, G.; Clark, L.; Van Boxem, R.; Béché, A.; Juchtmans, R.; Alonso, M.A.; Schattschneider, P.; Nori, F.; Verbeeck, J. url  doi
openurl 
  Title Theory and applications of free-electron vortex states Type A1 Journal article
  Year 2017 Publication Physics reports Abbreviated Journal Phys Rep  
  Volume 690 Issue 690 Pages 1-70  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Both classical and quantum waves can form vortices: with helical phase fronts and azimuthal current densities. These features determine the intrinsic orbital angular momentum carried by localized vortex states. In the past 25 years, optical vortex beams have become an inherent part of modern optics, with many remarkable achievements and applications. In the past decade, it has been realized and demonstrated that such vortex beams or wavepackets can also appear in free electron waves, in particular, in electron microscopy. Interest in free-electron vortex states quickly spread over different areas of physics: from basic aspects of quantum mechanics, via applications for fine probing of matter (including individual atoms), to high-energy particle collision and radiation processes. Here we provide a comprehensive review of theoretical and experimental studies in this emerging field of research. We describe the main properties of electron vortex states, experimental achievements and possible applications within transmission electron microscopy, as well as the possible role of vortex electrons in relativistic and high-energy processes. We aim to provide a balanced description including a pedagogical introduction, solid theoretical basis, and a wide range of practical details. Special attention is paid to translate theoretical insights into suggestions for future experiments, in electron microscopy and beyond, in any situation where free electrons occur.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000406169900001 Publication Date 2017-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.425 Times cited 210 Open Access OpenAccess  
  Notes AFOSR, FA9550-14-1-0040 ; CREST, JPMJCR1676 ; Portuguese Fundação para a Ciência e a Tecnologia (FCT), IF/00989/2014/CP1214/CT0004 ; Austrian Science Fund, I543-N20 ; ERC, 278510 VORTEX ; We acknowledge discussions with Mark R. Dennis and Andrei Afanasev. This work was supported by the RIKEN Interdisciplinary Theoretical Science Research Group (iTHES) Project, the Multi-University Research Initiative (MURI) Center for Dynamic Magneto-Optics via the Air Force Office of Scientific Research (AFOSR) (Grant No. FA9550-14-1-0040), Grant-in-Aid for Scientific Research (A), Core Research for Evolutionary Science and Technology (CREST), the John Templeton Foundation, the Australian Research Council, the Portuguese Funda¸c˜ao para a Ciˆencia e a Tecnologia (FCT) (contract IF/00989/2014/CP1214/CT0004 under the IF2014 Program), contracts UID/FIS/00777/2013 and CERN/FIS-NUC/0010/2015 (partially funded through POCTI, COMPETE, QREN, and the European Union), Austrian Science Fund Grant No. I543-N20, the European Research Council under the 7th Framework Program (FP7) (ERC Starting Grant No. 278510 VORTEX), and FWO PhD Fellowship grants (Aspirant Fonds Wetenschappelijk OnderzoekVlaanderen). Approved (down) Most recent IF: 17.425  
  Call Number EMAT @ emat @ c:irua:143262 Serial 4574  
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Saba, M.I.; Gaceur, M.; Heidari, H.; Videlot-Ackermann, C.; Margeat, O.; Guerrero, A.; Bisquert, J.; Garcia-Belmonte, G.; Mattoni, A.; Bals, S.; Ackermann, J. pdf  doi
openurl 
  Title Toward high-temperature stability of PTB7-based bulk heterojunction solar cells : impact of fullerene size and solvent additive Type A1 Journal article
  Year 2017 Publication Laser physics review Abbreviated Journal Adv Energy Mater  
  Volume 7 Issue 7 Pages 1601486  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The use of fullerene as acceptor limits the thermal stability of organic solar cells at high temperatures as their diffusion inside the donor leads to phase separation via Ostwald ripening. Here it is reported that fullerene diffusion is fully suppressed at temperatures up to 140 degrees C in bulk heterojunctions based on the benzodithiophene-based polymer (the poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b: 4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl) carbonyl]thieno[3,4-b]thiophenediyl]], (PTB7) in combination with the fullerene derivative [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM). The blend stability is found independently of the presence of diiodooctane (DIO) used to optimize nanostructuration and in contrast to PTB7 blends using the smaller fullerene derivative PC70BM. The unprecedented thermal stability of PTB7: PC70BM layers is addressed to local minima in the mixing enthalpy of the blend forming stable phases that inhibit fullerene diffusion. Importantly, although the nanoscale morphology of DIO processed blends is thermally stable, corresponding devices show strong performance losses under thermal stress. Only by the use of a high temperature annealing step removing residual DIO from the device, remarkably stable high efficiency solar cells with performance losses less than 10% after a continuous annealing at 140 degrees C over 3 days are obtained. These results pave the way toward high temperature stable polymer solar cells using fullerene acceptors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Place of publication unknown Editor  
  Language Wos 000396328500009 Publication Date 2016-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 27 Open Access Not_Open_Access  
  Notes ; The authors acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (grant number: F1110019V/ 201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, grant number: 287594). Generalitat Valenciana (ISIC/2012/008 Institute of Nanotechnologies for Clean Energies) is also acknowledged for providing financial support. The authors further acknowledge financial support via ERC Starting Grant Colouratoms (335078). ; Approved (down) Most recent IF: 16.721  
  Call Number UA @ lucian @ c:irua:141991UA @ admin @ c:irua:141991 Serial 4697  
Permanent link to this record
 

 
Author Zhang, L.; Lin, B.-C.; Wu, Y.-F.; Wu, H.; Huang, T.-W.; Chang, C.-R.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Xu, J.; Yu, D.; Liao, Z.-M. url  doi
openurl 
  Title Electronic Coupling between Graphene and Topological Insulator Induced Anomalous Magnetotransport Properties Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue 11 Pages 6277-6285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It has been theoretically proposed that the spin textures of surface states in a topological insulator can be directly transferred to graphene by means of the proximity effect, which is very important for realizing the two-dimensional topological insulator based on graphene. Here we report the anomalous magnetotransport properties of graphene-topological insulator Bi2Se3 heterojunctions, which are sensitive to the electronic coupling between graphene and the topological surface state. The coupling between the p_z orbitals of graphene and the p orbitals of the surface states on the Bi2Se3 bottom surface can be enhanced by applying a perpendicular negative magnetic field, resulting in a giant negative magnetoresistance at the Dirac point up to about -91%. Obvious resistances dip in the transfer curve at the Dirac point is also observed in the hybrid devices, which is consistent with theoretical predictions of the distorted Dirac bands with nontrivial spin textures inherited from the Bi2Se3 surface states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404808000110 Publication Date 2017-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 12 Open Access OpenAccess  
  Notes ; This work was supported by National Key Research and Development Program of China (Nos. 2016YFA0300802, 2013CB934600) and NSFC (No. 11234001). ; Approved (down) Most recent IF: 13.942  
  Call Number EMAT @ emat @ c:irua:143192 Serial 4569  
Permanent link to this record
 

 
Author Montanarella, F.; Altantzis, T.; Zanaga, D.; Rabouw, F.T.; Bals, S.; Baesjou, P.; Vanmaekelbergh, D.; van Blaaderen, A. pdf  url
doi  openurl
  Title Composite Supraparticles with Tunable Light Emission Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue 11 Pages 9136-9142  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Robust luminophores emitting light with broadly tunable colors are desirable in many applications such as light-emitting diode (LED)-based lighting, displays, integrated optoelectronics and biology. Nanocrystalline quantum dots with multicolor emission, from core- and shell-localized excitons, as well as solid layers of mixed quantum dots that emit different colors have been proposed. Here, we report on colloidal supraparticles that are composed of three types of Cd(Se,ZnS) core/(Cd,Zn)S shell nanocrystals with emission in the red, green, and blue. The emission of the supraparticles can be varied from pure to composite colors over the entire visible region and finetuned into variable shades of white light by mixing the nanocrystals in controlled proportions. Our approach results in supraparticles with sizes spanning the colloidal domain and beyond that combine versatility and processability with a broad, stable, and tunable emission, promising applications in lighting devices and biological research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411918200062 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 36 Open Access OpenAccess  
  Notes We thank J. J. Geuchies for help with the optical analysis, W. Vlug for providing silica particles filled with RITC, J. D. Meeldijk for his assistance with SE-STEM measurements, E. B. van der Wee for help with the calculation of the radial distribution functions, and M. van Huis and S. Dussi for very fruitful discussions. This work was supported by the European Comission via the Marie-Sklodowska Curie action Phonsi (H2020-MSCA-ITN-642656). D.V. wishes to thank the Dutch FOM (program DDC13), NWO−CW (Toppunt 718.015.002), and the European Research Council under HORIZON 2020 (grant 692691 FIRSTSTEP) for financial support. A.v.B. and F.M. acknowledge partial funding from the European Research Council under the European Union’s Seventh Framework Programme (FP-2007-2013)/ERC advanced grant agreement 291667: HierarSACol. S.B. and D.Z. acknowledge financial support from the European Research Council (starting grant no. COLOURATOM 335078), and T.A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. ECAS_Sara (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved (down) Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:146095UA @ admin @ c:irua:146095 Serial 4732  
Permanent link to this record
 

 
Author Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; Okotrub, A.V. pdf  doi
openurl 
  Title Single-walled carbon nanotube reactor for redox transformation of mercury dichloride Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue 9 Pages 8643-8649  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411918200012 Publication Date 2017-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 11 Open Access Not_Open_Access  
  Notes ; Collaboration between partner institutions was partially supported by European FP7 IRSES project 295180. We are grateful to the bilateral Program “Russian-German Laboratory at BESSY II” for the assistance in XPS and NEXAFS measurements. We acknowledge C. Tollan for proofreading the manuscript. We are grateful to Dr. Y.V. Shubin for XRD measurements of graphite with HgCl<INF>2</ INF>. ; Approved (down) Most recent IF: 13.942  
  Call Number UA @ lucian @ c:irua:146770 Serial 4895  
Permanent link to this record
 

 
Author van der Stam, W.; Geuchies, J.J.; Altantzis, T.; van den Bos, K.H.W.; Meeldijk, J.D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C. pdf  url
doi  openurl
  Title Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3Perovskite Nanocrystals through Cation Exchange Type A1 Journal article
  Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages 4087-4097  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal CsPbX3 (X = Br, Cl, and I) perovskite nanocrystals (NCs) have emerged as promising phosphors and solar cell materials due to their remarkable optoelectronic properties. These properties can be tailored by not only controlling the size and shape of the NCs but also postsynthetic composition tuning through topotactic

anion exchange. In contrast, property control by cation exchange is still underdeveloped for colloidal CsPbX3 NCs. Here, we present a method that allows partial cation exchange in colloidal CsPbBr3 NCs, whereby Pb2+ is exchanged for several isovalent cations, resulting in doped CsPb1−xMxBr3 NCs (M= Sn2+, Cd2+, and Zn2+; 0 < x ≤ 0.1), with preservation of the original NC shape. The size of the parent NCs is also preserved in the product NCs, apart from a small (few

%) contraction of the unit cells upon incorporation of the guest cations. The partial Pb2+ for M2+ exchange leads to a blue-shift of the optical spectra, while maintaining the high photoluminescence quantum yields (>50%), sharp absorption features, and narrow emission of the parent CsPbBr3 NCs. The blue-shift in the optical spectra is attributed to the lattice contraction that accompanies the Pb2+ for M2+ cation exchange and is observed to scale linearly with the lattice contraction. This work opens up new possibilities to engineer the properties of halide perovskite NCs, which to date are demonstrated to be the only known

system where cation and anion exchange reactions can be sequentially combined while preserving the original NC shape, resulting in compositionally diverse perovskite NCs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397477700027 Publication Date 2017-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 535 Open Access OpenAccess  
  Notes W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. J.J.G. and D.V. acknowledge financial support from the Debye Graduate program. S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). K.H.W.v.d.B., S.B., S.V.A. and T.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0368.15N, G.0369.15N), a Ph.D. grant to K.H.W.v.d.B, and a postdoctoral research grant to T.A. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved (down) Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:141754UA @ admin @ c:irua:141754 Serial 4482  
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Zhang, K.; Marleny Rodriguez-Albelo, L.; Masala, A.; Bordiga, S.; Jiang, J.; Navarro, J.A.R.; Kirschhock, C.E.A.; Martens, J.A. doi  openurl
  Title 1D-2D-3D Transformation Synthesis of Hierarchical Metal-Organic Framework Adsorbent for Multicomponent Alkane Separation Type A1 Journal article
  Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages 819-828  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new hierarchical MOF consisting of Cu(II) centers connected by benzene-tricarboxylates (BTC) is prepared by thermoinduced solid transformation of a dense CuBTC precursor phase. The mechanism of the material formation has been thoroughly elucidated and revealed a transformation of a ribbon-like 1D building unit into 2D layers and finally a 3D network. The new phase contains excess copper, charge compensated by systematic hydroxyl groups, which leads to an open microporous framework with tunable permanent mesoporosity. The new phase is particularly attractive for molecular separation. Energy consumption of adsorptive separation processes can be lowered by using adsorbents that discriminate molecules based on adsorption entropy rather than enthalpy differences. In separation of a 11-component mixture of C-1-C-6 alkanes, the hierarchical phase outperforms the structurally related microporous HKUST-1 as well as silicate-based hierarchical materials. Grand canonical Monte Carlo (GCMC) simulation provides microscopic insight into the structural host-guest interaction, confirming low adsorption enthalpies and significant entropic contributions to the molecular separation. The unique three-dimensional hierarchical structure as well as the systematic presence of Cu(II) unsaturated coordination sites cause this exceptional behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000392459300041 Publication Date 2016-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 33 Open Access Not_Open_Access  
  Notes ; L.H.W. and S.T. thank Research Foundation Flanders (FWO) for a postdoctoral research fellowship under contract numbers 12M1415N and G004613N, respectively. J.J. is grateful to the National University of Singapore for financial supports (R261-508-001-646/733 and R-279-000-474-112). J.A.R.N. acknowledges generous funding from Spanish Ministry of Economy (CTQ2014-53486-R) and FEDER and Marie Curie IIF-625939 (L.M.R.A) funding from European Union. J.A.M. gratefully acknowledges financial support from Flemish Government (Long-term structural funding Methusalem). Collaboration among universities was supported by the Belgian Government (IAP-PAI network). We thank E. Gobechiya for XRD measurements. We would like to acknowledge Matthias Thommes for the discussion on the interpretation of N<INF>2</INF> physisorption isotherms. ; Approved (down) Most recent IF: 13.858  
  Call Number UA @ lucian @ c:irua:141513 c:irua:141513 c:irua:141513 c:irua:141513 Serial 4492  
Permanent link to this record
 

 
Author Niu, H.; Pitcher, M.J.; Corkett, A.J.; Ling, S.; Mandal, P.; Zanella, M.; Dawson, K.; Stamenov, P.; Batuk, D.; Abakumov, A.M.; Bull, C.L.; Smith, R.I.; Murray, C.A.; Day, S.J.; Slater, B.; Cora, F.; Claridge, J.B.; Rosseinsky, M.J. url  doi
openurl 
  Title Room Temperature Magnetically Ordered Polar Corundum GaFeO3 Displaying Magnetoelectric Coupling Type A1 Journal article
  Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 4 Pages 1520-1531  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The polar corundum structure type offers a route to new room temperature multiferroic materials, as the partial LiNbO3-type cation ordering that breaks inversion symmetry may be combined with long-range magnetic ordering of high spin d(5) cations above room temperature in the AFeO(3) system. We report the synthesis of a polar corundum GaFeO3 by a high-pressure, high-temperature route and demonstrate that its polarity arises from partial LiNbO3 -type cation ordering by complementary use of neutron, X-ray, and electron diffraction methods. In situ neutron diffraction shows that the polar corundum forms directly from AlFeO3-type GaFeO3 under the synthesis conditions. The A(3+)/Fe3+ cations are shown to be more ordered in polar corundum GaFeO3 than in isostructural ScFeO3. This is explained by DFT calculations which indicate that the extent of ordering is dependent on the configurational entropy available to each system at the very different synthesis temperatures required to form their corundum structures. Polar corundum GaFeO3 exhibits weak ferromagnetism at room temperature that arises from its Fe2O3-like magnetic ordering, which persists to a temperature of 408 K. We demonstrate that the polarity and magnetization are coupled in this system with a measured linear magnetoelectric coupling coefficient of 0.057 ps/m. Such coupling is a prerequisite for potential applications of polar corundum materials in multiferroic/magnetoelectric devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393355600034 Publication Date 2016-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 12 Open Access OpenAccess  
  Notes This work was funded by the EPSRC under EP/N004884. We thank the STFC for provision of beam time at ISIS and Diamond Light Source. We thank the Materials Chemistry Consortium (EPSRC, EP/L000202) for access to computer time on the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). A.M.A. is grateful to the Russian Science Foundation (Grant 14-13-00680) for financial support. MJ.R is a Royal Society Research Professor. We wish to thank Dr. Ming Li (University of Nottingham, UK) for helpful discussion and advice. Original data is available at the University of Liverpool's DataCat repository at DOI: 10.17638/datacat.liverpool.ac.uk/235. The supporting crystallographic information file may also be obtained from FIZ Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (e-mail: crysdata@fiz-karlsruhe.de), on quoting the deposition number CSD-432419. Approved (down) Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:147507 Serial 4777  
Permanent link to this record
 

 
Author Kumar, A.; Kundu, S.; Samantaray, D.; Kundu, P.; Zanaga, D.; Bals, S.; Ravishankar, N. url  doi
openurl 
  Title Designing diameter-modulated heterostructure nanowires of PbTe/Te by controlled dewetting Type A1 Journal article
  Year 2017 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 17 Issue 17 Pages 7226-7233  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Heterostructures consisting of semiconductors with controlled morphology and interfaces find applications in many fields. A range of axial, radial, and diameter-modulated nanostructures have been synthesized primarily using vapor phase methods. Here, we present a simple wet chemical routine to synthesize heterostructures of PbTe/Te using Te nanowires as templates. A morphology evolution study for the formation of these heterostructures has been performed. On the basis of these control experiments, a pathway for the formation of these nanostructures is proposed. Reduction of a Pb precursor to Pb on Te nanowire templates followed by interdiffusion of Pb/Te leads to the formation of a thin shell of PbTe on the Te wires. Controlled dewetting of the thin shell leads to the formation of cube-shaped PbTe that is periodically arranged on the Te wires. Using control experiments, we show that different reactions parameters like rate of addition of the reducing agent, concentration of Pb precursor and thickness of initial Te nanowire play a critical role in controlling the spacing between the PbTe cubes on the Te wires. Using simple surface energy arguments, we propose a mechanism for the formation of the hybrid. The principles presented are general and can be exploited for the synthesis of other nanoscale heterostructures.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000418393300009 Publication Date 2017-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 11 Open Access OpenAccess  
  Notes ; N.R acknowledges financial support from SERB, DST, Government of India. The authors acknowledge the electron microscopy facilities at the Advanced Facility for Microscopy and Microanalysis, IISc. S.B., P.K., and D.Z. acknowledge ERC Starting Grant 335078 COLOURATOMS for financial support. ; ecas_Sara Approved (down) Most recent IF: 12.712  
  Call Number UA @ lucian @ c:irua:148557UA @ admin @ c:irua:148557 Serial 4870  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: