|   | 
Details
   web
Records
Author Meng, X.; Pant, A.; Cai, H.; Kang, J.; Sahin, H.; Chen, B.; Wu, K.; Yang, S.; Suslu, A.; Peeters, F.M.; Tongay, S.;
Title Engineering excitonic dynamics and environmental stability of post-transition metal chalcogenides by pyridine functionalization technique Type A1 Journal article
Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 7 Issue 7 Pages 17109-17115
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf Publication Date 2015-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 11 Open Access
Notes ; ; Approved (up) Most recent IF: 7.367; 2015 IF: 7.394
Call Number UA @ lucian @ c:irua:129434 Serial 4175
Permanent link to this record
 

 
Author Omranian, S.R.; Geluykens, M.; Van Hal, M.; Hasheminejad, N.; Rocha Segundo, I.; Pipintakos, G.; Denys, S.; Tytgat, T.; Fraga Freitas, E.; Carneiro, J.; Verbruggen, S.; Vuye, C.
Title Assessing the potential of application of titanium dioxide for photocatalytic degradation of deposited soot on asphalt pavement surfaces Type A1 Journal article
Year 2022 Publication Construction and building materials Abbreviated Journal Constr Build Mater
Volume 350 Issue Pages 128859-13
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract It is known that pollutants and their irreparable influence can considerably jeopardize the environment and human health. Such disastrous, growing, hazardous particles urged researchers to find effective ways and diminish their destructive impacts and preserve our planet. This study evaluates the potential of incorporating Titanium Dioxide (TiO2) semiconductor nanoparticles on asphalt pavements to degrade pollutants without compromising bitumen performance. Accordingly, the Response Surface Method (RSM) was employed to develop an experimental matrix based on the central composite design. Image Analysis (IA) was used to determine the rate of soot degradation (as pollutant representative) using MATLAB and ImageJ software. Confocal Laser Scanning Microscopy (CLSM), Fourier Transform Infrared spectroscopy (FTIR), and Dynamic Shear Rheometer (DSR) were finally carried out to estimate the effects of adding different percentages of TiO2 on the micro -structural features and dispersion of the TiO2, chemical fingerprinting, and rheological performance of the bituminous binder. The results showed a promising potential of TiO2 to degrade soot (over 50%) during the conducted experiments. In addition, the RSM outcomes showed that applying a higher amount of TiO2 is more efficient for pollutant degradation. Finally, no negative impact was observed, neither on the rheological behavior nor on the aging susceptibility of the bitumen, even though the homogenous dispersion of the TiO2 was clearly captured via CLSM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000848227000001 Publication Date 2022-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0618 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 7.4
Call Number UA @ admin @ c:irua:189820 Serial 7128
Permanent link to this record
 

 
Author Schrittwieser, S.; Pelaz, B.; Parak, W.J.; Lentijo-Mozo, S.; Soulantica, K.; Dieckhoff, J.; Ludwig, F.; Altantzis, T.; Bals, S.; Schotter, J.
Title Homogeneous Protein Analysis by Magnetic Core-Shell Nanorod Probes Type A1 Journal article
Year 2016 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 8 Issue 8 Pages 8893-8899
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins. By adjusting the excitation frequency, we are able to optimize the measurement signal for each analyte protein size. In addition, due to the locking of the optical signal to the magnetic excitation frequency, background signals are suppressed, thus allowing exclusive studies of processes at the nanoprobe surface only. We study target proteins (soluble domain of the human epidermal growth factor receptor 2 – sHER2) specifically binding to antibodies (trastuzumab) immobilized on the surface of our nanoprobes and demonstrate direct deduction of their respective sizes. Additionally, we examine the dependence of our measurement signal on the concentration of the analyte protein, and deduce a minimally detectable sHER2 concentration of 440 pM. For our homogeneous measurement platform, good dispersion stability of the applied nanoprobes under physiological conditions is of vital importance. To that end, we support our measurement data by theoretical modeling of the total particle-particle interaction energies. The successful implementation of our platform offers scope for applications in biomarker-based diagnostics as well as for answering basic biology questions.
Address Molecular Diagnostics, AIT Austrian Institute of Technology , Vienna, Austria
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000374274900007 Publication Date 2016-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 16 Open Access OpenAccess
Notes The authors thank Frauke Alves, Julia Bode and Fernanda Ramos Gomes from the Max-Planck-Institute of Experimental Medicine in Göttingen for providing the trastuzumab antibody in form of the Herceptin therapeutic drug. The figure showing the measurement principle has been created by Darragh Crotty (www.darraghcrotty.com). Parts of this research were supported by the European Commission FP7 NAMDIATREAM project (EU NMP4-LA-2010−246479), by the German research foundation (DFG grant GRK 1782 to W.J.P.), and by the European Research Council (ERC Starting Grant #335078 Colouratom). B.P. acknowledges a PostDoctoral fellowship from the Alexander von Humboldt foundation. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ; ECAS_Sara; Approved (up) Most recent IF: 7.504
Call Number c:irua:132889 Serial 4059
Permanent link to this record
 

 
Author Lu, A.K.A.; Houssa, M.; Radu, I.P.; Pourtois, G.
Title Toward an understanding of the electric field-induced electrostatic doping in van der Waals heterostructures : a first-principles study Type A1 Journal article
Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 9 Issue 8 Pages 7725-7734
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Since the discovery of graphene, a broad range of two-dimensional (2D) materials has captured the attention of the scientific communities. Materials, such as hexagonal boron nitride (hBN) and the transition metal dichalcogenides (TMDs) family, have shown promising semiconducting and insulating properties that are very appealing for the semiconductor industry. Recently, the possibility of taking advantage of the properties of 2D-based heterostructures has been investigated for low-power nanoelectronic applications. In this work, we aim at evaluating the relation between the nature of the materials used in such heterostructures and the amplitude of the layer-to-layer charge transfer induced by an external electric field, as is typically present in nanoelectronic gated devices. A broad range of combinations of TMDs, graphene, and hBN has been investigated using density functional theory. Our results show that the electric field induced charge transfer strongly depends on the nature of the 2D materials used in the van der Waals heterostructures and to a lesser extent on the relative orientation of the materials in the structure. Our findings contribute to the building of the fundamental understanding required to engineer electrostatically the doping of 2D materials and to establish the factors that drive the charge transfer mechanisms in electron tunneling-based devices. These are key ingredients for the development of 2D -based nanoelectronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000395494200119 Publication Date 2017-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 10 Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 7.504
Call Number UA @ lucian @ c:irua:142483 Serial 4696
Permanent link to this record
 

 
Author Retuerto, M.; Calle-Vallejo, F.; Pascual, L.; Lumbeeck, G.; Fernandez-Diaz, M.T.; Croft, M.; Gopalakrishnan, J.; Pena, M.A.; Hadermann, J.; Greenblatt, M.; Rojas, S.
Title La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity Type A1 Journal article
Year 2019 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 11 Issue 24 Pages 21454-21464
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Perovskites (ABO(3)) with transition metals in active B sites are considered alternative catalysts for the water oxidation to oxygen through the oxygen evolution reaction (OER) and for the oxygen reduction through the oxygen reduction reaction (ORR) back to water. We have synthesized a double perovskite (A(2)BB'O-6) with different cations in A, B, and B' sites, namely, ((La15Sr0.5)-Sr-.)(A)(Ni0.5Mn0.5)(B)(Ni0.5Ru0.5)(B)O-6 (LSNMR), which displays an outstanding OER/ORR bifunctional performance. The composition and structure of the oxide has been determined by powder X-ray diffraction, powder neutron diffraction, and transmission electron microscopy to be monoclinic with the space group P2(1)/n and with cationic ordering between the ions in the B and B' sites. X-ray absorption near-edge spectroscopy suggests that LSNMR presents a configuration of similar to Ni2+, similar to Mn4+, and similar to Ru5+. This bifunctional catalyst is endowed with high ORR and OER activities in alkaline media, with a remarkable bifunctional index value of similar to 0.83 V (the difference between the potentials measured at -1 mA cm(-2) for the ORR and +10 mA cm(-2) for the OER). The ORR onset potential (E-onset) of 0.94 V is among the best reported to date in alkaline media for ORR-active perovskites. The ORR mass activity of LSNMR is 1.1 A g(-1) at 0.9 V and 7.3 A g(-1) at 0.8 V. Furthermore, LSNMR is stable in a wide potential window down to 0.05 V. The OER potential to achieve a current density of 10 mA cm(-2) is 1.66 V. Density functional theory calculations demonstrate that the high ORR/OER activity of LSNMR is related to the presence of active Mn sites for the ORR- and Ru-active sites for the OER by virtue of the high symmetry of the respective reaction steps on those sites. In addition, the material is stable to ORR cycling and also considerably stable to OER cycling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472683300019 Publication Date 2019-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 12 Open Access
Notes ; This work was supported by the ENE2016-77055-C3-3-R project from the Spanish Ministry of Economy and Competitiveness (MINECO) and PIE 201480E122 from CSIC. M.R. thanks MINECO's Juan de la Cierva program for a grant (FPDI-2013-17582). F.C.-V. thanks the Spanish MEC for a Ramon y Cajal research contract (RYC-2015-18996). M.G. acknowledges the support from NSF-DMR-1507252 grant, NJ, USA. ; Approved (up) Most recent IF: 7.504
Call Number UA @ admin @ c:irua:161320 Serial 5400
Permanent link to this record
 

 
Author Zeng, Y.-J.; Schouteden, K.; Amini, M.N.; Ruan, S.-C.; Lu, Y.-F.; Ye, Z.-Z.; Partoens, B.; Lamoen, D.; Van Haesendonck, C.
Title Electronic band structures and native point defects of ultrafine ZnO nanocrystals Type A1 Journal article
Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 7 Issue 7 Pages 10617-10622
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Ultrafine ZnO nanocrystals with a thickness down to 0.25 nm are grown by a metalorganic chemical vapor deposition method. Electronic band structures and native point defects of ZnO nanocrystals are studied by a combination of scanning tunneling microscopy/spectroscopy and first-principles density functional theory calculations. Below a critical thickness of nm ZnO adopts a graphitic-like structure and exhibits a wide band gap similar to its wurtzite counterpart. The hexagonal wurtzite structure, with a well-developed band gap evident from scanning tunneling spectroscopy, is established for a thickness starting from similar to 1.4 nm. With further increase of the thickness to 2 nm, V-O-V-Zn defect pairs are easily produced in ZnO nanocrystals due to the self-compensation effect in highly doped semiconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000355055000063 Publication Date 2015-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 15 Open Access
Notes Hercules; EWI Approved (up) Most recent IF: 7.504; 2015 IF: 6.723
Call Number c:irua:126408 Serial 999
Permanent link to this record
 

 
Author Li, S.; Liu, C.; Bogaerts, A.; Gallucci, F.
Title Editorial: Special issue on CO2 utilization with plasma technology Type Editorial
Year 2022 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util
Volume 61 Issue Pages 102017
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma technology has advanced significantly in recent years, with application ranging from chemical conversion, to surface treatment, material development and several other fields. Special attention has been paid to the development of possible novel approaches for the conversion of chemicals in a more sustainable way. Plasma technology offers advantages over thermochemical routes such as high process versatility, mild reaction condition, one-step synthesis, fast reaction and instant control. More importantly, it can be easily combined with elec­tricity generated from various renewable sources and is suitable for energy storage via the conversion of intermittent renewable energy into carbon-neutral fuels or other chemicals. In recent years, there has been a growing interest in the development of plasma technology for CO2 uti­lization. Investigation on different reactions such as CO2 splitting, dry reforming of methane (DRM) and CO2 hydrogenation with different types of plasma reactors and catalysts have been reported by researchers worldwide. Although technological maturity still needs to be increased, the potential of plasma has been well-recognized by the scientific community and industry. More research output in the future is expected as a result of intensive research activities and various kinds of invest­ment. In this context, we present this special issue on CO2 utilization with plasma technology, which collects 22 articles, covering topics in related areas such as plasma reactor design, plasma catalysis, plasmamaterial interaction, modeling and new ideas for possible applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000798071200005 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record
Impact Factor 7.7 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 7.7
Call Number PLASMANT @ plasmant @c:irua:188287 Serial 7058
Permanent link to this record
 

 
Author Pilehvar, S.; Rather, J.A.; Dardenne, F.; Robbens, J.; Blust, R.; De Wael, K.
Title Carbon nanotubes based electrochemical aptasensing platform for the detection of hydroxylated polychlorinated biphenyl in human blood serum Type A1 Journal article
Year 2014 Publication Biosensors and bioelectronics Abbreviated Journal Biosens Bioelectron
Volume 54 Issue Pages 78-84
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A novel strategy to sense target molecules in human blood serum is achieved by immobilizing aptamers (APTs) on multiwalled carbon nanotubes (MWCNT) modified electrodes. In this work, the aminated aptamer selected for hydroxylated polychlorinated biphenyl (OHPCB) was covalently immobilized on the surface of the MWCNTCOOH modified glassy carbon electrode through amide linkage. The aptamers function as recognition probes for OHPCB by the binding induced folding of the aptamer. The developed aptasensing device was characterized by Electrochemical Impedance Spectroscopy (EIS), Atomic Force Microscopy (AFM) and Fourier Transform Infrared Spectroscopy (FTIR). The aptasensor displayed excellent performance for OHPCB detection with a linear range from 0.16 to 7.5 μM. The sensitivity of the developed aptasensing platform is improved (1×10−8 M) compared to the published report (1×10−6 M) for the determination of OH-PCB (Turner et al., 2007). The better performance of the sensor is due to the unique platform, i.e. the presence of APTs onto electrodes and the combination with nanomaterials. The aptamer density on the electrode surface was estimated by chronocoulometry and was found to be 1.4×1013 molecules cm−2. The validity of the method and applicability of the aptasensor was successfully evaluated by the detection of OHPCB in a blood serum sample. The described approach for aptasensing opens up new perspectives in the field of biomonitoring providing a device with acceptable stability, high sensitivity, good accuracy and precision.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000333071500012 Publication Date 2013-11-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.78 Times cited 40 Open Access
Notes ; We are thankful to UA-DOCPRO and BELSPO for financial support (respectively S. Pilehvar and J. Ahmad Rather). We also thank Prof. A. Covaci (UA) for the kind gift of human blood serum samples. Special thanks to Prof. L Van Vaeck and Y. Vercammen (UA) for AFM imaging and Prof. V. Meynen and M. Kus (LADCA, UA) for performing IR measurements. ; Approved (up) Most recent IF: 7.78; 2014 IF: 6.409
Call Number UA @ admin @ c:irua:111262 Serial 5495
Permanent link to this record
 

 
Author Kelly, S.; Mercer, E.; Gorbanev, Y.; Fedirchyk, I.; Verheyen, C.; Werner, K.; Pullumbi, P.; Cowley, A.; Bogaerts, A.
Title Plasma-based conversion of martian atmosphere into life-sustaining chemicals: The benefits of utilizing martian ambient pressure Type A1 Journal article
Year 2024 Publication Journal of CO2 utilization Abbreviated Journal Journal of CO2 Utilization
Volume 80 Issue Pages 102668
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We explored the potential of plasma-based In-Situ Resource Utilization (ISRU) for Mars through the conversion of Martian atmosphere (~96% CO2, 2% N2, and 2% Ar) into life-sustaining chemicals. As the Martian surface pressure is about 1% of the Earth’s surface pressure, it is an ideal environment for plasma-based gas conversion using microwave reactors. At 1000 W and 10 Ln/min (normal liters per minute), we produced ~76 g/h of O2 and ~3 g/h of NOx using a 2.45 GHz waveguided reactor at 25 mbar, which is ~3.5 times Mars ambient pressure. The energy cost required to produce O2 was ~0.013 kWh/g, which is very promising compared to recently concluded MOXIE experiments on the Mars surface. This marks a crucial step towards realizing the extension of human exploration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001156084300001 Publication Date 2024-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record
Impact Factor 7.7 Times cited Open Access Not_Open_Access
Notes We acknowledge financial support by a European Space Agency (ESA) Open Science Innovation Platform study (contract no. 4000137001/21/NL/GLC/ov), the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), the Excellence of Science FWOFNRS PLASyntH2 project (FWO grant no. G0I1822N and EOS no. 4000751) and the Methusalem project of the University of Antwerp. Approved (up) Most recent IF: 7.7; 2024 IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:202389 Serial 8986
Permanent link to this record
 

 
Author Bervoets, A.R.J.; Behets, G.J.; Schryvers, D.; Roels, F.; Yang, Z.; Verberckmoes, S.C.; Damment, S.J.P.; Dauwe, S.; Mubiana, V.K.; Blust, R.; de Broe, M.E.; d' Haese, P.C.
Title Hepatocellular transport and gastrointestinal absorption of lanthanum in chronic renal failure Type A1 Journal article
Year 2009 Publication Kidney international Abbreviated Journal Kidney Int
Volume 75 Issue Pages 389-398
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Pathophysiology
Abstract Lanthanum carbonate is a new phosphate binder that is poorly absorbed from the gastrointestinal tract and eliminated largely by the liver. After oral treatment, we and others had noticed 23 fold higher lanthanum levels in the livers of rats with chronic renal failure compared to rats with normal renal function. Here we studied the kinetics and tissue distribution, absorption, and subcellular localization of lanthanum in the liver using transmission electron microscopy, electron energy loss spectrometry, and X-ray fluoresence. We found that in the liver lanthanum was located in lysosomes and in the biliary canal but not in any other cellular organelles. This suggests that lanthanum is transported and eliminated by the liver via a transcellular, endosomal-lysosomal-biliary canicular transport route. Feeding rats with chronic renal failure orally with lanthanum resulted in a doubling of the liver levels compared to rats with normal renal function, but the serum levels were similar in both animal groups. These levels plateaued after 6 weeks at a concentration below 3 g/g in both groups. When lanthanum was administered intravenously, thereby bypassing the gastrointestinal tract-portal vein pathway, no difference in liver levels was found between rats with and without renal failure. This suggests that there is an increased gastrointestinal permeability or absorption of oral lanthanum in uremia. Lanthanum levels in the brain and heart fluctuated near its detection limit with long-term treatment (20 weeks) having no effect on organ weight, liver enzyme activities, or liver histology. We suggest that the kinetics of lanthanum in the liver are consistent with a transcellular transport pathway, with higher levels in the liver of uremic rats due to higher intestinal absorption.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000263145800009 Publication Date 2008-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0085-2538;1523-1755; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.395 Times cited 29 Open Access
Notes Fwo; Iwt Approved (up) Most recent IF: 8.395; 2009 IF: 6.193
Call Number UA @ lucian @ c:irua:72290 Serial 1417
Permanent link to this record
 

 
Author Kanda, A.; Baelus, B.J.; Peeters, F.M.; Kadowaki, K.; Ootuka, Y.
Title Experimental evidence for giant vortex states in a mesoscopic superconducting disk Type A1 Journal article
Year 2004 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 93 Issue 25 Pages 257002,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000225785200056 Publication Date 2004-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 234 Open Access
Notes Approved (up) Most recent IF: 8.462; 2004 IF: 7.218
Call Number UA @ lucian @ c:irua:69420 Serial 1139
Permanent link to this record
 

 
Author Grigorieva, I.V.; Escoffier, W.; Misko, V.R.; Baelus, B.J.; Peeters, F.; Vinnikov, L.Y.; Dubonos, S.V.
Title Pinning-induced formation of vortex clusters and giant vortices in mesoscopic superconducting disks Type A1 Journal article
Year 2007 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 99 Issue 14 Pages 147003,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000249974000059 Publication Date 2007-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 75 Open Access
Notes Approved (up) Most recent IF: 8.462; 2007 IF: 6.944
Call Number UA @ lucian @ c:irua:66681 Serial 2625
Permanent link to this record
 

 
Author Cambré, S.; Schoeters, B.; Luyckx, S.; Goovaerts, E.; Wenseleers, W.
Title Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3) Type A1 Journal article
Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 104 Issue 20 Pages 207401,1-207401,4
Keywords A1 Journal article; Particle Physics Group; Nanostructured and organic optical and electronic materials (NANOrOPT); Condensed Matter Theory (CMT)
Abstract Single-file transport of water into carbon nanotubes is experimentally demonstrated for the first time through the splitting of the radial breathing mode (RBM) vibration in Raman spectra of bile salt solubilized tubes when both empty (closed) and water-filled (open-ended) tubes are present. D2O filling is observed for a wide range of diameters, d, down to very thin tubes [e.g., (5,3) tube, d=0.548  nm] for which only a single water molecule fits in the cross section of the internal nanotube channel. The shift in RBM frequency upon filling is found to display a very complex dependence on nanotube diameter and chirality, in support of a different yet well-defined ordering and orientation of water molecules at room temperature. Large shifts of the electronic transitions are also observed.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000277945900051 Publication Date 2010-05-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 140 Open Access
Notes ; Financial support from the Fund for Scientific Research Flanders, Belgium (FWO-Vlaanderen) (Project No. G.0129.07), is gratefully acknowledged. ; Approved (up) Most recent IF: 8.462; 2010 IF: 7.622
Call Number UA @ lucian @ c:irua:83383 Serial 1141
Permanent link to this record
 

 
Author Silhanek, A.V.; Milošević, M.V.; Kramer, R.B.G.; Berdiyorov, G.R.; Vondel van de, J.; Luccas, R.F.; Puig, T.; Peeters, F.M.; Moshchalkov, V.V.
Title Formation of stripelike flux patterns obtained by freezing kinematic vortices in a superconducting Pb film Type A1 Journal article
Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 104 Issue 1 Pages
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We demonstrate experimentally and theoretically that the dissipative state of superconducting samples with a periodic array of holes at high current densities consists of flux rivers resulting from a short-range attractive interaction between vortices. This dynamically induced vortex-vortex attraction results from the migration of quasiparticles out of the vortex core (kinematic vortices). We have directly visualized the formation of vortex chains by scanning Hall probe microscopy after freezing the dynamic state by a field cooling procedure at a constant bias current. Similar experiments carried out in a sample without holes show no hint of flux river formation. We shed light on this nonequilibrium phenomena modeled by time-dependent Ginzburg-Landau simulations.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000273881900033 Publication Date 2010-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 60 Open Access
Notes ; This work was supported by Methusalem funding by the Flemish government, the Flemish Science Foundation (FWO-VI), the Belgian Science Policy, and the ESF NES network. A. V. S., G. R. B., and J. V. d. V. acknowledge support from FWO-VI R. F. L. acknowledges support from I3P CSIC program and MAT2008-01022. ; Approved (up) Most recent IF: 8.462; 2010 IF: 7.622
Call Number UA @ lucian @ c:irua:81009 Serial 1265
Permanent link to this record
 

 
Author Fang, C.M.; Sluiter, M.H.F.; van Huis, M.; Ande, C.K.; Zandbergen, H.W.
Title Origin of predominance of cementite among iron carbides in steel at elevated temperature Type A1 Journal article
Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 105 Issue 5 Pages 4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A long-standing challenge in physics is to understand why cementite is the predominant carbide in steel. Here we show that the prevalent formation of cementite can be explained only by considering its stability at elevated temperature. A systematic highly accurate quantum mechanical study was conducted on the stability of binary iron carbides. The calculations show that all the iron carbides are unstable relative to the elemental solids, -Fe and graphite. Apart from a cubic Fe23C6 phase, the energetically most favorable carbides exhibit hexagonal close-packed Fe sublattices. Finite-temperature analysis showed that contributions from lattice vibration and anomalous Curie-Weis magnetic ordering, rather than from the conventional lattice mismatch with the matrix, are the origin of the predominance of cementite during steel fabrication processes.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000280472900008 Publication Date 2010-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 65 Open Access
Notes Approved (up) Most recent IF: 8.462; 2010 IF: 7.622
Call Number UA @ lucian @ c:irua:84064 Serial 2526
Permanent link to this record
 

 
Author Clark, L.; Béché, A.; Guzzinati, G.; Lubk, A.; Mazilu, M.; Van Boxem, R.; Verbeeck, J.
Title Exploiting lens aberrations to create electron-vortex beams Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 6 Pages 064801-64805
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A model for a new electron-vortex beam production method is proposed and experimentally demonstrated. The technique calls on the controlled manipulation of the degrees of freedom of the lens aberrations to achieve a helical phase front. These degrees of freedom are accessible by using the corrector lenses of a transmission electron microscope. The vortex beam is produced through a particular alignment of these lenses into a specifically designed astigmatic state and applying an annular aperture in the condenser plane. Experimental results are found to be in good agreement with simulations.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000322921200009 Publication Date 2013-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 66 Open Access
Notes Vortex; Esteem2; Countatoms; FWO; Esteem2jra3 ECASJO; Approved (up) Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:109340UA @ admin @ c:irua:109340 Serial 1148
Permanent link to this record
 

 
Author Lubk, A.; Guzzinati, G.; Börrnert, F.; Verbeeck, J.
Title Transport of intensity phase retrieval of arbitrary wave fields including vortices Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 17 Pages 173902-173905
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The phase problem can be considered as one of the cornerstones of quantum mechanics intimately connected to the detection process and the uncertainty relation. The latter impose fundamental limits on the manifold phase reconstruction schemes invented to date, in particular, at small magnitudes of the quantum wave. Here, we show that a rigorous solution of the transport of intensity reconstruction (TIE) scheme in terms of a linear elliptic partial differential equation for the phase provides reconstructions even in the presence of wave zeros if particular boundary conditions are given. We furthermore discuss how partial coherence hampers phase reconstruction and show that a modified version of the TIE reconstructs the curl-free current density at arbitrary (in)coherence. Our results open the way for TIE-based phase retrieval of arbitrary wave fields, eventually containing zeros such as phase vortices.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000326148400006 Publication Date 2013-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 40 Open Access
Notes Esteem2; Vortex; esteem2ta ECASJO; Approved (up) Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:111093 Serial 3726
Permanent link to this record
 

 
Author Lubk, A.; Béché, A.; Verbeeck, J.
Title Electron Microscopy of Probability Currents at Atomic Resolution Type A1 Journal article
Year 2015 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 115 Issue 115 Pages 176101
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Atomic resolution transmission electron microscopy records the spatially resolved scattered electron density to infer positions, density, and species of atoms. These data are indispensable for studying the relation between structure and properties in solids. Here, we show how this signal can be augmented by the lateral probability current of the scattered electrons in the object plane at similar resolutions and fields of view. The currents are reconstructed from a series of three atomic resolution TEM images recorded under a slight difference of perpendicular line foci. The technique does not rely on the coherence of the electron beam and can be used to reveal electric, magnetic, and strain fields with incoherent electron beams as well as correlations in inelastic transitions, such as electron magnetic chiral dichroism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000363023700011 Publication Date 2015-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 12 Open Access
Notes J. V. and A. B. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. The Qu-Ant- EM microscope was partly funded by the Hercules fund from the Flemish Government. All authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483- ESTEEM2. J. V. acknowledges funding from the FWO under Project No. G.0044.13N.; esteem2jra2; esteem2jra3 ECASJO_; Approved (up) Most recent IF: 8.462; 2015 IF: 7.512
Call Number c:irua:129190 c:irua:129190UA @ admin @ c:irua:129190 Serial 3954
Permanent link to this record
 

 
Author van der Sluijs, M.M.; Salzmann, B.B.V.; Arenas Esteban, D.; Li, C.; Jannis, D.; Brafine, L.C.; Laning, T.D.; Reinders, J.W.C.; Hijmans, N.S.A.; Moes, J.R.; Verbeeck, J.; Bals, S.; Vanmaekelbergh, D.
Title Study of the Mechanism and Increasing Crystallinity in the Self-Templated Growth of Ultrathin PbS Nanosheets Type A1 Journal article
Year 2023 Publication Chemistry of materials Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Colloidal 2D semiconductor nanocrystals, the analogue of solid-state quantum wells, have attracted strong interest in material science and physics. Molar quantities of suspended quantum objects with spectrally pure absorption and emission can be synthesized. For the visible region, CdSe nanoplatelets with atomically precise thickness and tailorable emission have been (almost) perfected. For the near-infrared region, PbS nanosheets (NSs) hold strong promise, but the photoluminescence quantum yield is low and many questions on the crystallinity, atomic structure, intriguing rectangular shape, and formation mechanism remain to be answered. Here, we report on a detailed investigation of the PbS NSs prepared with a lead thiocyanate single source precursor. Atomically resolved HAADF-STEM imaging reveals the presence of defects and small cubic domains in the deformed orthorhombic PbS crystal lattice. Moreover, variations in thickness are observed in the NSs, but only in steps of 2 PbS monolayers. To study the reaction mechanism, a synthesis at a lower temperature allowed for the study of reaction intermediates. Specifically, we studied the evolution of pseudo-crystalline templates towards mature, crystalline PbS NSs. We propose a self-induced templating mechanism based on an oleylamine-lead-thiocyanate (OLAM-Pb-SCN) complex with two Pb-SCN units as a building block; the interactions between the long-chain ligands regulate the crystal structure and possibly the lateral dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000959572100001 Publication Date 2023-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.6 Times cited 2 Open Access OpenAccess
Notes H2020 Research Infrastructures, 731019 ; H2020 European Research Council, 692691 815128 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 715.016.002 ; Approved (up) Most recent IF: 8.6; 2023 IF: 9.466
Call Number EMAT @ emat @c:irua:195894 Serial 7255
Permanent link to this record
 

 
Author Weiβ, R.; Gritsch, S.; Brader, G.; Nikolic, B.; Spiller, M.; Santolin, J.; Weber, H.K.; Schwaiger, N.; Pluchon, S.; Dietel, K.; Guebitz, G.; Nyanhongo, G.
Title A biobased, bioactive, low CO₂ impact coating for soil improvers Type A1 Journal article
Year 2021 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 23 Issue 17 Pages 6501-6514
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Lignosulfonate-based bioactive coatings as soil improvers for lawns were developed using laccase as a biocatalyst. Incorporation of glycerol, xylitol and sorbitol as plasticizers considerably reduced the brittleness of the synthesized coatings of marine carbonate granules while thermal enzyme inactivation at 100 degrees C enabled the production of stable coatings. Heat inactivation produced stable coatings with a molecular weight of 2000 kDa and a viscosity of 4.5 x 10(-3) Pas. The desired plasticity for the spray coating of soil improver granules was achieved by the addition of 2.7% of xylitol. Agriculture beneficial microorganisms (four different Bacillus species) were integrated into the coatings. The stable coatings protected the marine calcium carbonate granules, maintained the viability of the microorganisms and showed no toxic effects on the germination and growth of model plants including corn, wheat, salad, and tomato despite a slight delay in germination. Moreover, the coatings reduced the dust formation of soil improvers by 70%. CO2 emission analysis showed potential for the reduction of up to 3.4 kg CO2-eq. kg(-1) product, making it a viable alternative to fossil-based coatings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000683056500001 Publication Date 2021-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.125 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 9.125
Call Number UA @ admin @ c:irua:180511 Serial 7558
Permanent link to this record
 

 
Author Demiroglu, I.; Peeters, F.M.; Gulseren, O.; Cakir, D.; Sevik, C.
Title Alkali metal intercalation in MXene/graphene heterostructures : a new platform for ion battery applications Type A1 Journal article
Year 2019 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 10 Issue 4 Pages 727-734
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The adsorption and diffusion of Na, K, and Ca atoms on MXene/graphene heterostructures of MXene systems Sc2C(OH)(2), Ti2CO2, and V2CO2 are systematically investigated by using first-principles methods. We found that alkali metal intercalation is energetically favorable and thermally stable for Ti2CO2/graphene and V2CO2/graphene heterostructures but not for Sc2C(OH)(2). Diffusion kinetics calculations showed the advantage of MXene/graphene heterostructures over sole MXene systems as the energy barriers are halved for the considered alkali metals. Low energy barriers are found for Na and K ions, which are promising for fast charge/discharge rates. Calculated voltage profiles reveal that estimated high capacities can be fully achieved for Na ion in V2CO2/graphene and Ti2CO2/graphene heterostructures. Our results indicate that Ti2CO2/graphene and V2CO2/graphene electrode materials are very promising for Na ion battery applications. The former could be exploited for low voltage applications while the latter will be more appropriate for higher voltages.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459948800005 Publication Date 2019-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.353 Times cited 88 Open Access
Notes ; We acknowledge the support from the TUBITAK (116F080) and the BAGEP Award of the Science Academy. Part of this work was supported by the FLAG -ERA project TRANS-2D-TMD. A part of this work was supported by University of North Dakota Early Career Award (Grant number: 20622-4000-02624). We also acknowledge financial support from ND EPSCoR through NSF grant OIA-1355466. Computational resources were provided by the High Performance and Grid Computing Center (TRGrid e-Infrastructure) of TUBITAK ULAKBIM, the National Center for High Performance Computing (UHeM) of Istanbul Technical University, and Computational Research Center (HPC Linux cluster) at the University of North Dakota. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, and supported by the U.S. Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357. ; Approved (up) Most recent IF: 9.353
Call Number UA @ admin @ c:irua:158618 Serial 5194
Permanent link to this record
 

 
Author Savina, A.A.; Morozov, V.A.; Buzlukov, A.L.; Arapova, I.Y.; Stefanovich, S.Y.; Baklanova, Y.V.; Denisova, T.A.; Medvedeva, N.I.; Bardet, M.; Hadermann, J.; Lazoryak, B.I.; Khaikina, E.G.
Title New solid electrolyte Na9Al(MoO4)6 : structure and Na+ ion conductivity Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 20 Pages 8901-8913
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)(6). The monoclinic Na9Al(MoO4)(6) consists of isolated polyhedral, [Al(MoO4)(6)](9-) clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one NalO(6) octahedron and two Na2O(6) octahedra. Na3-Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)(3). High-temperature conductivity measurements revealed that the conductivity (sigma) of Na9Al(MoO4)(6) at 803 K equals 1.63 X 10(-2) S cm(-1). The temperature behavior of the Na-23 and Al-27 nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the Na-23 nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T\u003C490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3-Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3-Na5 sublattice) only at higher temperatures.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000413884900037 Publication Date 2017-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 13 Open Access OpenAccess
Notes ; The research was performed within the state assignment of FASO of Russia (Themes 01201463330, A16-116122810214-9, and 0339-2016-0007), supported in part by the Russian Foundation for Basic Research (Projects 16-03-00510, 16-03-00164, and 17-03-00333). ; Approved (up) Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:147432 Serial 4886
Permanent link to this record
 

 
Author Luhrs, C.C.; Molins, E.; Van Tendeloo, G.; Beltran-Porter, D.; Fuertes, A.
Title Crystal structure of Bi6Sr8-xCa3+xO22(-0.5\leq x\leq1.7): a mixed valence bismuth oxide related to perovskite Type A1 Journal article
Year 1998 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 10 Issue 7 Pages 1875-1881
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of BiSr8-xCa3+xO22 has been determined by single-crystal X-ray diffraction. This phase is the same as Bi9Sr11Ca5Oy that was previously studied by several authors as a secondary phase in the Bi-Sr-Ca-Cu-O system and coexists in thermodynamic equilibrium with the superconductors Bi2Sr2CuO6 and Bi2Sr2CaCu2O8 It crystallizes in the monoclinic space group P2(1)/c, with cell parameters a 11.037(3) Angstrom, b = 5.971(2) Angstrom, c = 19.703(7) Angstrom, beta = 101.46(3)degrees Z = 2. The structure was solved by direct methods and full-matrix least-squares refinement. It is built up by perovskite-related blocks of composition [Sr8-xBi2Ca3+xO16] that intergrow with double rows [Bi4O6] running along b. The perovskite blocks are formed by groups of five octahedra that are shifted from each other 3/2 root 2a(p) along [110](p) (a(p) being the parameter of the cubic perovskite subcell) in a zigzag configuration and are aligned with this direction parallel to the one forming an angle of 25" with the c axis. In turn, the perovskite blocks [Sr8-xBi2Ca3+xO16] are shifted from each other 1/2 of both a(p) and root 2a(p) along [100](p) and [110](p), respectively. In the double rows, two trivalent bismuth atoms are placed, forming dimeric anion complexes [Bi2O6].(6-).6- The oxygen atoms around bismuth in these dimers are placed in the vertexes of a distorted trigonal bipyramid, with one vacant position that would be occupied by the lone pairs characteristic for the electronic configuration of Bi(III). The B sites in the perovskite blocks are occupied by pentavalent bismuth atoms and calcium atoms; the remaining Sr and Ca ions occupy the A sites of the perovskite blocks with coordination numbers with oxygen ranging from 10 to 12. The mean valence for Bi is +3.67 [33.3% of Bi(V) and 66.7% of Bi(III)]. The oxygen vacancies are located in the boundaries between domains having the two possible configurations of the perovskite subcell as in the anionic superconductor Bi3BaO5.5. The oxidation of Bi6Sr8-xCa3+xO22 at 650 degrees C allows the complete filling of the oxygen vacancies to form the double perovskite (Sr2-xCax)Bi1.4Ca0.6O6 that shows 92.5% of bismuth in +5 oxidation state. The experimental high-resolution electon microscopy image and the electron diffraction pattern of powder samples along the [010]* zone axis are in good agreement with those calculated from the structural model obtained by single-crystal X-ray diffraction. The material is almost free of defects and the occurrence of planar defects is very exceptional.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000075019300023 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access
Notes Approved (up) Most recent IF: 9.466; 1998 IF: 3.359
Call Number UA @ lucian @ c:irua:104328 Serial 570
Permanent link to this record
 

 
Author Dendooven, J.; Goris, B.; Devloo-Casier, K.; Levrau, E.; Biermans, E.; Baklanov, M.R.; Ludwig, K.F.; van der Voort, P.; Bals, S.; Detavernier, C.
Title Tuning the pore size of ink-bottle mesopores by atomic layer deposition Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 11 Pages 1992-1994
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000305092600002 Publication Date 2012-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 52 Open Access
Notes Fwo Approved (up) Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:99078 Serial 3760
Permanent link to this record
 

 
Author Wolf, D.; Rodriguez, L.A.; Béché, A.; Javon, E.; Serrano, L.; Magen, C.; Gatel, C.; Lubk, A.; Lichte, H.; Bals, S.; Van Tendeloo, G.; Fernández-Pacheco, A.; De Teresa, J.M.; Snoeck, E.
Title 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 6771-6778
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap, and carries great potential to impact areas such as data storage, sensing and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nanometers by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic non-planar nanodevices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362920700037 Publication Date 2015-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 50 Open Access OpenAccess
Notes This work was supported by the European Union under the Seventh Framework Program under a contract for an Inte-grated Infrastructure Initiative Reference 312483-ESTEEM2. S.B. and A.B. gratefully acknowledge funding by ERC Starting grants number 335078 COLOURATOMS and number 278510 VORTEX. AF-P acknowledges an EPSRC Early Career fellowship and support from the Winton Foundation. E.S., C.G. and L.A. R. acknowledge the French ANR program for support though the project EMMA.; esteem2jra4; ECASJO;; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved (up) Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:129180 c:irua:129180 c:irua:129180 Serial 3950
Permanent link to this record
 

 
Author Fang, C.; Verbrigghe, N.; Sigurdsson, B.D.D.; Ostonen, I.; Leblans, N.I.W.; Maranon-Jimenez, S.; Fuchslueger, L.; Sigurosson, P.; Meeran, K.; Portillo-Estrada, M.; Verbruggen, E.; Richter, A.; Sardans, J.; Penuelas, J.; Bahn, M.; Vicca, S.; Janssens, I.A.
Title Decadal soil warming decreased vascular plant above and belowground production in a subarctic grassland by inducing nitrogen limitation Type A1 Journal article
Year 2023 Publication New phytologist Abbreviated Journal
Volume 240 Issue 2 Pages 565-576
Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied. Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.3 degrees C and +7.9 degrees C) on below and aboveground plant biomass stocks and production in a subarctic grassland. Soil warming did not change standing root biomass and even decreased fine root production and reduced aboveground biomass and production. Decadal soil warming also did not significantly alter the root-shoot ratio. The linear stepwise regression model suggested that following 10 yr of soil warming, temperature was no longer the direct driver of these responses, but losses of soil N were. Soil N losses, due to warming-induced decreases in organic matter and water retention capacity, were identified as key driver of the decreased above and belowground production. The reduction in fine root production was accompanied by thinner roots with increased specific root area. These results indicate that after a decade of soil warming, plant productivity in the studied subarctic grassland was affected by soil warming mainly by the reduction in soil N.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001043561400001 Publication Date 2023-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-646x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.4 Times cited Open Access
Notes Approved (up) Most recent IF: 9.4; 2023 IF: 7.33
Call Number UA @ admin @ c:irua:198443 Serial 9199
Permanent link to this record
 

 
Author Ben Dkhil, S.; Perkhun, P.; Luo, C.; Mueller, D.; Alkarsifi, R.; Barulina, E.; Quiroz, Y.A.A.; Margeat, O.; Dubas, S.T.; Koganezawa, T.; Kuzuhara, D.; Yoshimoto, N.; Caddeo, C.; Mattoni, A.; Zimmermann, B.; Wuerfel, U.; Pfannmöller, M.; Bals, S.; Ackermann, J.; Videlot-Ackermann, C.
Title Direct correlation of nanoscale morphology and device performance to study photocurrent generation in donor-enriched phases of polymer solar cells Type A1 Journal article
Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 12 Issue 25 Pages 28404-28415
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The nanoscale morphology of polymer blends is a key parameter to reach high efficiency in bulk heterojunction solar cells. Thereby, research typically focusing on optimal blend morphologies while studying nonoptimized blends may give insight into blend designs that can prove more robust against morphology defects. Here, we focus on the direct correlation of morphology and device performance of thieno[3,4-b]-thiophene-alt-benzodithiophene (PTB7):[6,6]phenyl C-71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) blends processed without additives in different donor/acceptor weight ratios. We show that while blends of a 1:1.5 ratio are composed of large donor-enriched and fullerene domains beyond the exciton diffusion length, reducing the ratio below 1:0.5 leads to blends composed purely of polymer-enriched domains. Importantly, the photocurrent density in such blends can reach values between 45 and 60% of those reached for fully optimized blends using additives. We provide here direct visual evidence that fullerenes in the donor-enriched domains are not distributed homogeneously but fluctuate locally. To this end, we performed compositional nanoscale morphology analysis of the blend using spectroscopic imaging of low-energy-loss electrons using a transmission electron microscope. Charge transport measurement in combination with molecular dynamics simulations shows that the fullerene substructures inside the polymer phase generate efficient electron transport in the polymer-enriched phase. Furthermore, we show that the formation of densely packed regions of fullerene inside the polymer phase is driven by the PTB7:PC71BM enthalpy of mixing. The occurrence of such a nanoscale network of fullerene clusters leads to a reduction of electron trap states and thus efficient extraction of photocurrent inside the polymer domain. Suitable tuning of the polymer-acceptor interaction can thus introduce acceptor subnetworks in polymer-enriched phases, improving the tolerance for high-efficiency BHJ toward morphological defects such as donor-enriched domains exceeding the exciton diffusion length.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000543780900058 Publication Date 2020-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited 7 Open Access OpenAccess
Notes ; J.A., O.M., and C.V.-A. acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (Grant Number: F1110019V/ 201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, Grant Number: 287594). J.A., C.V.-A., and E.B. acknowledge the Association Nationale de la Recherche et de la Technologie (ANRT) and the Ministere de l'Enseignement Superieur, de la Recherche et de l'Innovation, awarded through the company Dracula Technologies (Valence, France), for framework of a CIFRE Ph.D. grant 2017/0529. J.A. and P.P. received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant agreement no. 713750. They further acknowledge support of the Regional Council of Provence-Alpes-Cote d'Azur, A*MIDEX (no. ANR-11-IDEX-0001-02), and the Investissements d'Avenir project funded by the French Government, managed by the French National Research Agency (ANR). J.A. and Y.A.A.Q. acknowledge the French Research Agency for funding through the project NFA-15 (ANR-17-CE05-0020-01). N.Y. acknowledges that the synchrotron radiation experiments were performed at BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (proposal nos. 2017B1629 and 2018B1791). S.B. acknowledges financial support from the European Research Council (ERC Consolidator Grant 815128-REALNANO) and from FWO (G.0381.16N). M.P. gratefully acknowledges funding by the Ministerium fur Wissenschaft, Forschung und Kunst Baden-Wurttemberg through the HEiKA materials research centre FunTECH-3D (MWK, 33-753-30-20/3/3) and the Large-Scale-Data-Facility (LSDF) sds@hd through grant INST 35/1314-1 FUGG. A.M. acknowledges Italian MIUR for funding through the project PON04a2 00490 M2M Netergit, PRACE, for awarding access to Marconi KNL at CINECA, Italy, through projects DECONVOLVES (2018184466) and PROVING-IL (2019204911). C.C. acknowledges the CINECA award under the ISCRA initiative for the availability of high-performance computing resources and support (project MITOMASC). ; sygma Approved (up) Most recent IF: 9.5; 2020 IF: 7.504
Call Number UA @ admin @ c:irua:170703 Serial 6484
Permanent link to this record
 

 
Author Windels, S.; Diefenhardt, T.; Jain, N.; Marquez, C.; Bals, S.; Schlummer, M.; De Vos, D.E.
Title Catalytic upcycling of PVC waste-derived phthalate esters into safe, hydrogenated plasticizers Type A1 Journal article
Year 2022 Publication Green chemistry : cutting-edge research for a greener sustainable future Abbreviated Journal Green Chem
Volume 24 Issue 2 Pages 754-766
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Recycling of end-of-life polyvinyl chloride (PVC) calls for solutions to deal with the vast amounts of harmful phthalate plasticizers that have historically been incorporated in PVC. Here, we report on the upcycling of such waste-extracted phthalate esters into analogues of the much safer diisononyl 1,2-cyclohexanedicarboxylate plasticizer (DINCH), via a catalytic one-pot (trans)esterification-hydrogenation process. For most of the virgin phthalates, Ru/Al2O3 is a highly effective hydrogenation catalyst, yielding >99% ring-hydrogenated products under mild reaction conditions (0.1 mol% Ru, 80 degrees C, 50 bar H-2). However, applying this reaction to PVC-extracted phthalates proved problematic, (1) as benzyl phthalates are hydrogenolyzed to benzoic acids that inhibit the Ru-catalyst, and (2) because impurities in the plasticizer extract (PVC, sulfur) further retard the hydrogenation. These complications were solved by coupling the hydrogenation to an in situ (trans)esterification with a higher alcohol, and by pretreating the extract with an activated carbon adsorbent. In this way, a real phthalate extract obtained from post-consumer PVC waste was eventually completely (>99%) hydrogenated to phthalate-free, cycloaliphatic plasticizers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000726865200001 Publication Date 2021-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited 8 Open Access Not_Open_Access
Notes This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 821366 (programma acronym: Circular Flooring). D. E. D. V. thanks FWO for project funding (SBO project S001819N Triple Cycle); N. J. and S. B. acknowledge the financial support from FWO and FNRS (EOS 30489208). Finally, the authors also thank S. Smolders for assistance with the TGA-MS experiments and D. Paredaens for his experimental contribution Approved (up) Most recent IF: 9.8
Call Number UA @ admin @ c:irua:184746 Serial 6958
Permanent link to this record
 

 
Author Lubyshev, D.; Fastenau, J.M.; Fang, X.-M.; Wu, Y.; Doss, C.; Snyder, A.; Liu, W.K.; Lamb, M.S.M.; Bals, S.; Song, C.
Title Comparison of As- and P-based metamorphic buffers for high performance InP heterojunction bipolar transistor and high electron mobility transistor applications Type A1 Journal article
Year 2004 Publication Journal of vacuum science & technology. B. Microelectronics and nanometer structures. Processing, measurement and phenomena Abbreviated Journal
Volume 22 Issue 3 Pages 1565-1569
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Metamorphic buffers (M-buffers) consisting of graded InAlAs or bulk InP were employed for the production of InP-based epiwafers on GaAs substrates by molecular-beam epitaxy. The graded InAlAs is the standard for production metamorphic high electron mobility transistors (M-HEMTs), while the bulk InP offers superior thermal properties for higher current density circuits. The surface morphology and crystal structure of the two M-buffers showed different relaxation mechanisms. The graded InAlAs gave a cross-hatched pattern with nearly full relaxation and very effective dislocation filtering, while the bulk InP had a uniform isotropic surface with dislocations propagating further up towards the active layers. Both types of M-buffers had atomic force microscopy root-mean-square roughness values around 2030 Å. The Hall transport properties of high electron mobility transistors (HEMTs) grown on the InAlAs M-buffer, and a baseline HEMT grown lattice matched on InP, both had room-temperature mobilities >10 000 cm2/V s, while the M-HEMT on the InP M-buffer showed a decrease to 9000 cm2/V  s. Similarly, the dc parameters of a double heterojunction bipolar transistor (DHBT) grown on the InAlAs M-buffer were much closer to the baseline heterojunction bipolar transistor than a DHBT grown on the InP M-buffer. A high breakdown voltage of 11.3 V was achieved on an M-DHBT with the InAlAs M-buffer. We speculate that the degradation in device characteristics on the InP M-buffer was related to the incomplete dislocation filtering.
Address
Corporate Author Thesis
Publisher Place of Publication Woodbury, N.Y. Editor
Language Wos 000222481400141 Publication Date 2004-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-211X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 25 Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:87596 Serial 427
Permanent link to this record
 

 
Author Baelus, B.J.; Kanda, A.; Peeters, F.M.; Ootuka, Y.; Kadowaki
Title Different temperature dependence of the phase boundary for multivortex and giant vortex states in mesoscopic superconductors Type P1 Proceeding
Year 2006 Publication AIP conference proceedings T2 – 24th International Conference on Low Temperature Physics (LT24), AUG 10-17, 2005, Orlando, FL Abbreviated Journal
Volume Issue Pages 743-744
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract Within the framework of the nonlinear Ginzburg-Landau theory, we calculated the full phase diagram for a superconducting disk with radius R = 4 (T = 0) and we studied the behavior of the penetration and expulsion fields as a function of temperature for multivortex and giant vortex states.
Address
Corporate Author Thesis
Publisher Amer inst physics Place of Publication Melville Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume 850 Series Issue Part a-b Edition
ISSN 0-7354-0347-3; 0094-243x ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:103642 Serial 696
Permanent link to this record