toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Al Masud, M.M.; Moni, N.N.; Azadi, H.; Van Passel, S.
  Title Sustainability impacts of tidal river management : towards a conceptual framework Type A1 Journal article
  Year 2018 Publication Ecological Indicators Abbreviated Journal Ecol Indic
  Volume 85 Issue 85 Pages 451-467
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
  Abstract The Southwest Coastal people of Bangladesh have introduced Tidal River Management (TRM) as an environmentally acceptable water resource management practice based on their indigenous knowledge of water logging of low lying coastal land. TRM helps to address problems resulting from different anthropogenic and structural development activities, and it has been successful in helping coastal communities to adapt to climate change and rising sea level vulnerability by forming new land in Tidal Basins. Hence, it is essential to measure sustainability impacts of TRM from the environmental, socio-economic and institutional perspectives. Therefore, firstly, the study identifies sustainability indicators of TRM considering ecosystem services and secondly, develops an inclusive conceptual framework to understand the important impacts of each indicator at various spatial and temporal scales. The conceptual framework is followed by the construction of a Sustainability Index of Tidal River Management (SITRM). It has advantages over the Ramsar Convention framework (2007) and the World Meteorological Organization (WMO) framework (2012) to measure water sustainability as it includes a sustainable model to project future vulnerability of the community, river and Tidal Basin, emphasizing on climate change issues. It also involves trade-offs analysis, livelihood analysis and SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis for a complete impact assessment to enable decision-makers to focus on those services most likely to be of risks and weaknesses or opportunities and strengths for the sustainability of TRM. Moreover, the framework is a useful guide for policymakers in identifying the sustainability impacts of TRM so that they can choose best coping strategies for coastal people to effectively deal with adverse effects of water-logging and undesired climatic events as well as environmental and socio-economic changes in coastal areas.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000430634500046 Publication Date 2017-11-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1470-160x ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
  Impact Factor 3.898 Times cited 7 Open Access
  Notes ; ; Approved (down) Most recent IF: 3.898
  Call Number UA @ admin @ c:irua:149039 Serial 6254
Permanent link to this record
 

 
Author Yang, W.; Misko, V.R.; Nelissen, K.; Kong, M.; Peeters, F.M.
  Title Using self-driven microswimmers for particle separation Type A1 Journal article
  Year 2012 Publication Soft matter Abbreviated Journal Soft Matter
  Volume 8 Issue 19 Pages 5175-5179
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Microscopic self-propelled swimmers capable of autonomous navigation through complex environments provide appealing opportunities for localization, pick-up and delivery of micro and nanoscopic objects. Inspired by motile cells and bacteria, man-made microswimmers have been fabricated, and their motion in patterned surroundings has been experimentally studied. We propose to use self-driven artificial microswimmers for the separation of binary mixtures of colloids. We revealed different regimes of separation, including one with a velocity inversion. Our findings could be of use for various biological and medical applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000303208700009 Publication Date 2012-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1744-683X;1744-6848; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.889 Times cited 45 Open Access
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-V1) (Belgium), the National Natural Science Foundation of China (No. 11047111), the State Key Program of National Natural Science of China (No. 51135007), the Research Fund for the Doctoral Program of Higher Education of China (No. 20111415120002), and the Major State Basic Research Development Program of China (973) (No. 2009CB724201). ; Approved (down) Most recent IF: 3.889; 2012 IF: 3.909
  Call Number UA @ lucian @ c:irua:98326 Serial 3826
Permanent link to this record
 

 
Author Semkina, A.; Abakumov, M.; Grinenko, N.; Abakumov, A.; Skorikov, A.; Mironova, E.; Davydova, G.; Majouga, A.G.; Nukolova, N.; Kabanov, A.; Chekhonin, V.;
  Title Core-shell-corona doxorubicin-loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics Type A1 Journal article
  Year 2015 Publication Colloids and surfaces: B : biointerfaces Abbreviated Journal Colloid Surface B
  Volume 136 Issue 136 Pages 1073-1080
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Superparamagnetic iron oxide magnetic nanoparticles (MNPs) are successfully used as contrast agents in magnetic-resonance imaging. They can be easily functionalized for drug delivery functions, demonstrating great potential for both imaging and therapeutic applications. Here we developed new pH-responsive theranostic core-shell-corona nanoparticles consisting of superparamagentic Fe3O4 core that displays high T2 relaxivity, bovine serum albumin (BSA) shell that binds anticancer drug, doxorubicin (Dox) and poly(ethylene glycol) (PEG) corona that increases stability and biocompatibility. The nanoparticles were produced by adsorption of the BSA shell onto the Fe3O4 core followed by crosslinking of the protein layer and subsequent grafting of the PEG corona using monoamino-terminated PEG via carbodiimide chemistry. The hydrodynamic diameter, zeta-potential, composition and T2 relaxivity of the resulting nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis and T2-relaxometry. Nanoparticles were shown to absorb Dox molecules, possibly through a combination of electrostatic and hydrophobic interactions. The loading capacity (LC) of the nanoparticles was 8 wt.%. The Dox loaded nanoparticles release the drug at a higher rate at pH 5.5 compared to pH 7.4 and display similar cytotoxicity against C6 and HEK293 cells as the free Dox. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000367408100131 Publication Date 2015-11-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0927-7765 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.887 Times cited 37 Open Access
  Notes Approved (down) Most recent IF: 3.887; 2015 IF: 4.152
  Call Number UA @ lucian @ c:irua:131075 Serial 4157
Permanent link to this record
 

 
Author Djoković, V.; Krsmanović, R.; Božanić, D.K.; McPherson, M.; Van Tendeloo, G.; Nair, P.S.; Georges, M.K.; Radhakrishnan, T.
  Title Adsorption of sulfur onto a surface of silver nanoparticles stabilized with sago starch biopolymer Type A1 Journal article
  Year 2009 Publication Colloids and surfaces: B : biointerfaces Abbreviated Journal Colloid Surface B
  Volume 73 Issue 1 Pages 30-35
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Adsorption of sulfide ions onto a surface of starch capped silver nanoparticles upon addition of thioacetamide was investigated. UVvis absorption spectroscopy revealed that the adsorption of the sulfide ion on the surface of the silver nanoparticles induced damping as well as blue shift of the silver surface plasmon resonance band. Further increase in thioacetamide concentration led to shift of the resonance band toward higher wavelengths indicating the formation of the continuous Ag2S layer on the silver surface. Thus fabricated nanoparticles were investigated using electron microscopy techniques (TEM, HRTEM, and HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), which confirmed their coreshell structure.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000268657500005 Publication Date 2009-05-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0927-7765; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.887 Times cited 41 Open Access
  Notes Esteem 026019 Approved (down) Most recent IF: 3.887; 2009 IF: 2.600
  Call Number UA @ lucian @ c:irua:77972 Serial 66
Permanent link to this record
 

 
Author Legrand, S.; Alfeld, M.; Vanmeert, F.; de Nolf, W.; Janssens, K.
  Title Macroscopic Fourier transform infrared scanning in reflection mode (MA-rFTIR), a new tool for chemical imaging of cultural heritage artefacts in the mid-infrared range Type A1 Journal article
  Year 2014 Publication The analyst Abbreviated Journal Analyst
  Volume 139 Issue 10 Pages 2489-2498
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract In this paper we demonstrate that by means of scanning reflection FTIR spectroscopy, it is possible to record highly specific distribution maps of organic and inorganic compounds from flat, macroscopic objects with cultural heritage value in a non-invasive manner. Our previous work involved the recording of macroscopic distributions of chemical elements or crystal phases from painted works of art based on respectively macroscopic X-ray fluorescence or X-ray powder diffraction analysis. The use of infrared radiation instead of X-rays has the advantage that more specific information about the nature and distribution of the chemical compounds present can be gathered. This higher imaging specificity represents a clear advantage for the characterization of painting and artist materials. It allows the distribution of metallo-organic compounds to be visualized and permits distinguishing between pigmented materials containing the same key metal. The prototype instrument allows the recording of hyperspectral datacubes by scanning the surface of the artefact in a contactless and sequential single-point measuring mode, while recording the spectrum of reflected infrared radiation. After the acquisition, spectral line intensities of individual bands and chemical distribution maps can be extracted from the datacube to identify the compounds present and/or to highlight their spatial distribution. Not only is information gained on the surface of the investigated artefacts, but also images of overpainted paint layers and, if present, the underdrawing may be revealed in this manner. A current major limitation is the long scanning times required to record these maps.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000334734200028 Publication Date 2014-02-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.885 Times cited 25 Open Access
  Notes ; ; Approved (down) Most recent IF: 3.885; 2014 IF: 4.107
  Call Number UA @ admin @ c:irua:116595 Serial 5699
Permanent link to this record
 

 
Author Qurashi, A.; Rather, J.A.; De Wael, K.; Merzougui, B.; Tabet, N.; Faiz, M.
  Title Rapid microwave synthesis of high aspect-ration ZnO nanotetrapods for swift bisphenol A detection Type A1 Journal article
  Year 2013 Publication The analyst Abbreviated Journal Analyst
  Volume 138 Issue 17 Pages 4764-4768
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000322389600011 Publication Date 2013-05-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.885 Times cited 15 Open Access
  Notes ; One of the authors (Jahangir Ahmad Rather) is highly thankful for the mobility grant (Non-Europe Postdoc Fellowship) supported by the Belgian Federal Science Policy (Belspo) co-funded by the Marie Curie Actions from the European Commission. ; Approved (down) Most recent IF: 3.885; 2013 IF: 3.906
  Call Number UA @ admin @ c:irua:108959 Serial 5801
Permanent link to this record
 

 
Author Daems, E.; Moro, G.; Berghmans, H.; Moretto, L.M.; Dewilde, S.; Angelini, A.; Sobott, F.; De Wael, K.
  Title Native mass spectrometry for the design and selection of protein bioreceptors for perfluorinated compounds Type A1 Journal article
  Year 2021 Publication Analyst Abbreviated Journal Analyst
  Volume 146 Issue 6 Pages 2065-2073
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Biosensing platforms are answering the increasing demand for analytical tools for environmental monitoring of small molecules, such as per- and polyfluoroalkyl substances (PFAS). By transferring toxicological findings in bioreceptor design we can develop innovative pathways for biosensor design. Indeed, toxicological studies provide fundamental information about PFAS-biomolecule complexes that can help evaluate the applicability of the latter as bioreceptors. The toolbox of native mass spectrometry (MS) can support this evaluation, as shown by the two case studies reported in this work. The analysis of model proteins’ (i.e. albumin, haemoglobin, cytochrome c and neuroglobin) interactions with well-known PFAS, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), demonstrated the potential of this native MS screening approach. In the first case study, untreated albumin and delipidated albumin were compared in the presence and absence of PFOA confirming that the delipidation step increases albumin affinity for PFOA without affecting protein stability. In the second case study, the applicability of our methodology to identify potential bioreceptors for PFOS/PFOA was extended to other proteins. Structurally related haemoglobin and neuroglobin revealed a 1 : 1 complex, whereas no binding was observed for cytochrome c. These studies have value as a proof-of-concept for a general application of native MS to identify bioreceptors for toxic compounds.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000631575100031 Publication Date 2021-01-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2654; 1364-5528 ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.885 Times cited Open Access OpenAccess
  Notes Approved (down) Most recent IF: 3.885
  Call Number UA @ admin @ c:irua:177074 Serial 8294
Permanent link to this record
 

 
Author Grujić, M.M.; Tadic, M.Z.; Peeters, F.M.
  Title Chiral properties of topological-state loops Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 245432
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The angular momentum quantization of chiral gapless modes confined to a circularly shaped interface between two different topological phases is investigated. By examining several different setups, we show analytically that the angular momentum of the topological modes exhibits a highly chiral behavior, and can be coupled to spin and/or valley degrees of freedom, reflecting the nature of the interface states. A simple general one-dimensional model, valid for arbitrarily shaped loops, is shown to predict the corresponding energies and the magnetic moments. These loops can be viewed as building blocks for artificial magnets with tunable and highly diverse properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000356928200005 Publication Date 2015-06-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 6 Open Access
  Notes ; This work was supported by the Ministry of Education, Science and Technological Development (Serbia), and the Fonds Wetenschappelijk Onderzoek (Belgium). ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:127039 Serial 357
Permanent link to this record
 

 
Author Shylau, A.A.; Badalyan, S.M.; Peeters, F.M.; Jauho, A.P.
  Title Electron polarization function and plasmons in metallic armchair graphene nanoribbons Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 205444
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Plasmon excitations in metallic armchair graphene nanoribbons are investigated using the random phase approximation. An exact analytical expression for the polarization function of Dirac fermions is obtained, valid for arbitrary temperature and doping. We find that at finite temperatures, due to the phase space redistribution among inter-band and intra-band electronic transitions in the conduction and valence bands, the full polarization function becomes independent of temperature and position of the chemical potential. It is shown that for a given width of nanoribbon there exists a single plasmon mode whose energy dispersion is determined by the graphene's fine structure constant. In the case of two Coulomb-coupled nanoribbons, this plasmon splits into in-phase and out-of-phase plasmon modes with splitting energy determined by the inter-ribbon spacing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000355315400007 Publication Date 2015-05-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 13 Open Access
  Notes ; The Center for Nanostructured Graphene (CNG) is sponsored by the Danish National Research Foundation (DNRF58). The work at the University of Antwerp was supported by the Flemisch Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. S.M.B. gratefully acknowledges hospitality and support from the Department of Physics at the University of Missouri. ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:126403 Serial 984
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M.
  Title Fano resonances in the conductance of graphene nanoribbons with side gates Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 035444
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The control of side gates on the quantum electron transport in narrow graphene ribbons of different widths and edge types (armchair and zigzag) is investigated. The conductance exhibits Fano resonances with varying side gate potential. Resonant and antiresonant peaks in the conductance can be associated with the eigenstates of a closed system, and these peaks can be accurately fitted with a Fano line shape. The local density of states (LDOS) and the electron current show a specific behavior at these resonances, which depends on the ribbon edge type. In zigzag ribbons, transport is dominated by intervalley scattering, which is reflected in the transmission functions of individual modes. The side gates induce p-n interfaces near the edges at which the LDOS exhibits peaks. Near the resonance points, the electron current flows uniformly through the constriction, while near the antiresonances it creates vortices. In the armchair ribbons the LDOS spreads in areas of high potential, with current flowing near the edges.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000351217900005 Publication Date 2015-01-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 17 Open Access
  Notes ; This work was supported by the Methusalem programme of the Flemish government. ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:125422 Serial 1172
Permanent link to this record
 

 
Author Schoelz, J.K.; Xu, P.; Meunier, V.; Kumar, P.; Neek-Amal, M.; Thibado, P.M.; Peeters, F.M.
  Title Graphene ripples as a realization of a two-dimensional Ising model : a scanning tunneling microscope study Type A1 Journal article
  Year 2015 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 045413
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Ripples in pristine freestanding graphene naturally orient themselves in an array that is alternately curved-up and curved-down; maintaining an average height of zero. Using scanning tunneling microscopy (STM) to apply a local force, the graphene sheet will reversibly rise and fall in height until the height reaches 60%-70% of its maximum at which point a sudden, permanent jump occurs. We successfully model the ripples as a spin-half Ising magnetic system, where the height of the graphene plays the role of the spin. The permanent jump in height, controlled by the tunneling current, is found to be equivalent to an antiferromagnetic-to-ferromagnetic phase transition. The thermal load underneath the STM tip alters the local tension and is identified as the responsible mechanism for the phase transition. Four universal critical exponents are measured from our STM data, and the model provides insight into the statistical role of graphene's unusual negative thermal expansion coefficient.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000348762200011 Publication Date 2015-01-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 21 Open Access
  Notes ; This work was supported in part by Office of Naval Research (USA) under Grant No. N00014-10-1-0181 and National Science Foundation (USA) under Grant No. DMR-0855358. F. M. Peeters and M. Neek-Amal were supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:123866 Serial 1377
Permanent link to this record
 

 
Author Bacaksiz, C.; Sahin, H.; Ozaydin, H.D.; Horzum, S.; Senger, R.T.; Peeters, F.M.
  Title Hexagonal A1N : dimensional-crossover-driven band-gap transition Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 085430
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Motivated by a recent experiment that reported the successful synthesis of hexagonal (h) AlN [Tsipas et al., Appl. Phys. Lett. 103, 251605 (2013)], we investigate structural, electronic, and vibrational properties of bulk, bilayer, and monolayer structures of h-AlN by using first-principles calculations. We show that the hexagonal phase of the bulk h-AlN is a stable direct-band-gap semiconductor. The calculated phonon spectrum displays a rigid-layer shear mode at 274 cm(-1) and an E-g mode at 703 cm(-1), which are observable by Raman measurements. In addition, single-layer h-AlN is an indirect-band-gap semiconductor with a nonmagnetic ground state. For the bilayer structure, AA'-type stacking is found to be the most favorable one, and interlayer interaction is strong. While N-layered h-AlN is an indirect-band-gap semiconductor for N = 1 – 9, we predict that thicker structures (N >= 10) have a direct band gap at the Gamma point. The number-of-layer-dependent band-gap transitions in h-AlN is interesting in that it is significantly different from the indirect-to-direct crossover obtained in the transition-metal dichalcogenides.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000350319200020 Publication Date 2015-02-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 99 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). C.B. and R.T.S. acknowledge the support from TUBITAK Project No 114F397. H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:125416 Serial 1421
Permanent link to this record
 

 
Author Tahir, M.; Vasilopoulos, P.; Peeters, F.M.
  Title Magneto-optical transport properties of monolayer phosphorene Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 92 Issue 92 Pages 045420
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The electronic properties of monolayer phosphorene are exotic due to its puckered structure and large intrinsic direct band gap. We derive and discuss its band structure in the presence of a perpendicular magnetic field. Further, we evaluate the magneto-optical Hall and longitudinal optical conductivities as functions of temperature, magnetic field, and Fermi energy, and show that they are strongly influenced by the magnetic field. The imaginary part of the former and the real part of the latter exhibit regular interband oscillations as functions of the frequency omega in the range (h) over bar omega similar to 1.5-2 eV. Strong intraband responses in the latter and weak ones in the former occur at much lower frequencies. The magneto-optical response can be tuned in the microwave-to-terahertz and visible frequency ranges in contrast with a conventional two-dimensional electron gas or graphene in which the response is limited to the terahertz regime. This ability to isolate carriers in an anisotropic structure may make phosphorene a promising candidate for new optical devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000358373600003 Publication Date 2015-07-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 68 Open Access
  Notes ; This work was supported by the the Canadian NSERC Grant No. OGP0121756 (M.T., P.V.) and by the Flemish Science Foundation (FWO-Vl) (F.M.P.). ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:127192 Serial 1903
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P.
  Title Mixed pairing symmetries and flux-induced spin current in mesoscopic superconducting loops with spin correlations Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 214504
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We numerically investigate the mixed pairing symmetries inmesoscopic superconducting loops in the presence of spin correlations by solving the Bogoliubov-de Gennes equations self-consistently. The spatial variations of the superconducting order parameters and the spontaneous magnetization are determined by the band structure. When the threaded magnetic flux turns on, the charge and spin currents both emerge and depict periodic evolution. In the case of a mesoscopic loop with dominant triplet p(x) +/- ip(y)-wave symmetry, a slight change of the chemical potential may lead to novel flux-dependent evolution patterns of the ground-state energy and the magnetization. The spin-polarized currents show pronounced quantum oscillations with fractional periods due to the appearance of energy jumps in flux, accompanied with a steplike feature of the enhanced spin current. Particularly, at some appropriate flux, the peaks of the zero-energy local density of states clearly indicate the occurrence of the odd-frequency pairing. In the case of a superconducting loop with dominant singlet d(x2-y2)-wave symmetry, the spatial profiles of the zero-energy local density of states and the magnetization show spin-dependent features on different sample diagonals. Moreover, the evolution of the flux-induced spin current always exhibits an hc/e periodicity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000355647100003 Publication Date 2015-06-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 15 Open Access
  Notes ; This work was supported by the National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:126433 Serial 2089
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M.
  Title Disordered graphene Josephson junctions Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 054506
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract A tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method is used to describe disordered single-layer graphene Josephson junctions. Scattering by vacancies, ripples, or charged impurities is included. We compute the Josephson current and investigate the nature of multiple Andreev reflections, which induce bound states appearing as peaks in the density of states for energies below the superconducting gap. In the presence of single-atom vacancies, we observe a strong suppression of the supercurrent, which is a consequence of strong intervalley scattering. Although lattice deformations should not induce intervalley scattering, we find that the supercurrent is still suppressed, which is due to the presence of pseudomagnetic barriers. For charged impurities, we consider two cases depending on whether the average doping is zero, i.e., existence of electron-hole puddles, or finite. In both cases, short-range impurities strongly affect the supercurrent, similar to the vacancies scenario.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000349436500001 Publication Date 2015-02-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 7 Open Access
  Notes This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:129192 Serial 3961
Permanent link to this record
 

 
Author Szaszko-Bogar, V.; Peeters, F.M.; Foeldi, P.
  Title Oscillating spin-orbit interaction in two-dimensional superlattices : sharp transmission resonances and time-dependent spin-polarized currents Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 235311
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We consider ballistic transport through a lateral, two-dimensional superlattice with experimentally realizable, sinusoidally oscillating, Rashba-type spin-orbit interaction (SOI). The periodic structure of the rectangular lattice produces a spin-dependent miniband structure for static SOI. Using Floquet theory, transmission peaks are shown to appear in themini-bandgaps as a consequence of the additional, time-dependent SOI. A detailed analysis shows that this effect is due to the generation of harmonics of the driving frequency, via which, e.g., resonances that cannot be excited in the case of static SOI become available. Additionally, the transmitted current shows space-and time-dependent partial spin polarization, in other words, polarization waves propagate through the superlattice.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000355956500003 Publication Date 2015-06-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 10 Open Access
  Notes ; This work was partially supported by the European Union and the European Social Fund through Projects No. TAMOP-4.2.2.C-11/1/KONV-2012-0010 and No. TAMOP-4.2.2.A-11/1/KONV-2012-0060, and by the Hungarian Scientific Research Fund (OTKA) under Contracts No. T81364 and No. 116688. The ELI-ALPS Project (GOP-1.1.1-12/B-2012-0001) is supported by the European Union and cofinanced by the European Regional Development Fund. ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:126432 Serial 2534
Permanent link to this record
 

 
Author Aierken, Y.; Sahin, H.; Iyikanat, F.; Horzum, S.; Suslu, A.; Chen, B.; Senger, R.T.; Tongay, S.; Peeters, F.M.
  Title Portlandite crystal : bulk, bilayer, and monolayer structures Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 245413
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Ca(OH)(2) crystals, well known as portlandite, are grown in layered form, and we found that they can be exfoliated on different substrates. We performed first principles calculations to investigate the structural, electronic, vibrational, and mechanical properties of bulk, bilayer, and monolayer structures of this material. Different from other lamellar structures such as graphite and transition-metal dichalcogenides, intralayer bonding in Ca(OH)(2) is mainly ionic, while the interlayer interaction remains a weak dispersion-type force. Unlike well-known transition-metal dichalcogenides that exhibit an indirect-to-direct band gap crossover when going from bulk to a single layer, Ca(OH)(2) is a direct band gap semiconductor independent of the number layers. The in-plane Young's modulus and the in-plane shear modulus of monolayer Ca(OH)(2) are predicted to be quite low while the in-plane Poisson ratio is larger in comparison to those in the monolayer of ionic crystal BN. We measured the Raman spectrum of bulk Ca(OH)(2) and identified the high-frequency OH stretching mode A(1g) at 3620 cm(-1). In this study, bilayer and monolayer portlandite [Ca(OH)(2)] are predicted to be stable and their characteristics are analyzed in detail. Our results can guide further research on ultrathin hydroxites.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000356135600007 Publication Date 2015-06-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 29 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:126983 Serial 2675
Permanent link to this record
 

 
Author Zalipaev, V.; Linton, C.M.; Croitoru, M.D.; Vagov, A.
  Title Resonant tunneling and localized states in a graphene monolayer with a mass gap Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 085405
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We study tunneling of quasiparticles through potential barriers in a graphene monolayer with the mass gap using a semiclassical (WKB) approach. The main equations are derived in away similar to the WKB theory for the Schrodinger equation, which allows for explicit solutions at all orders. The analog of the classical action is used to distinguish types of possible stationary states in the system. The analysis focuses on the resonant scattering and the hole states localized in the vicinity of a barrier that are often overlooked. The scattering coefficients for the physically interesting limits are obtained by matching the WKB approximation with the known solutions at turning points. The localized states demonstrate unconventional properties and lead to alterations of the single particle density of states.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000351773900004 Publication Date 2015-02-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 3 Open Access
  Notes ; M.D.C. acknowledges the Belgian Science Policy (BELSPO Back to Belgium Grant). ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:125523 Serial 2891
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Costamagna, S.; Peeters, F.M.
  Title Rippling, buckling, and melting of single- and multilayer MoS2 Type A1 Journal article
  Year 2015 Publication Physical Review B Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 014101
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Large-scale atomistic simulations using the reactive empirical bond order force field approach is implemented to investigate thermal and mechanical properties of single-layer (SL) and multilayer (ML) molybdenum disulfide (MoS2). The amplitude of the intrinsic ripples of SL MoS2 are found to be smaller than those exhibited by graphene (GE). Furthermore, because of the van der Waals interaction between layers, the out-of-plane thermal fluctuations of ML MoS2 decreases rapidly with increasing number of layers. This trend is confirmed by the buckling transition due to uniaxial stress which occurs for a significantly larger applied tension as compared to graphene. For SL MoS2, the melting temperature is estimated to be 3700 K which occurs through dimerization followed by the formation of small molecules consisting of two to five atoms. When different types of vacancies are inserted in the SL MoS2 it results in a decrease of both the melting temperature as well as the stiffness.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000347921300001 Publication Date 2015-01-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 40 Open Access
  Notes ; This work is supported by the ESF-Eurographene project CONGRAN, the Flemish Science Foundation (FWO-VI), and the Methusalem Foundation of the Flemish Government. We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. We would like to thanks Prof. Douglas E. Spearot [26] for giving us the implemented parameters of Mo-S in LAMMPS. ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:123834 Serial 2909
Permanent link to this record
 

 
Author Shakouri, K.; Peeters, F.M.
  Title Spin- and pseudospin-polarized quantum Hall liquids in HgTe quantum wells Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 92 Issue 92 Pages 045416
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract A Hg(Cd)Te insulator heterostructure hosts a two-dimensional electron system that can simulate the physics of Dirac fermions with only a single valley. We investigate the magnetotransport properties of this structure and show that, unlike most two-dimensional crystals with spin and valley coupled levels, the Shubnikov-de Haas oscillations exhibit a high spin polarization in the absence of any valley degree of freedom. This effect can be observed using magnetospectroscopy measurements for quantum well thicknesses corresponding to either the topologically trivial or quantum spin Hall phases. The pseudospin texture of the electrons near the Fermi level is also studied and we show that a tunable pseudospin-polarized quantum Hall liquid can only be observed for thicknesses corresponding to the inverted regime.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000358032000002 Publication Date 2015-07-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 3 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:127097 Serial 3077
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Peeters, F.M.
  Title Tomasch effect in nanoscale superconductors Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 024508
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The Tomasch effect (TE) is due to quasiparticle interference (QPI) as induced by a nonuniform superconducting order parameter, which results in oscillations in the density of states (DOS) at energies above the superconducting gap. Quantum confinement in nanoscale superconductors leads to an inhomogenerous distribution of the Cooperpair condensate, which, as we found, triggers the manifestation of a new TE. We investigate the electronic structure of nanoscale superconductors by solving the Bogoliubov-de Gennes (BdG) equations self-consistently and describe the TE determined by two types of processes, involving two-or three-subband QPIs. Both types of QPIs result in additional BCS-like Bogoliubov-quasiparticles and BCS-like energy gaps leading to oscillations in the DOS and modulated wave patterns in the local density of states. These effects are strongly related to the symmetries of the system. A reduced 4 x 4 inter-subband BdG Hamiltonian is established in order to describe analytically the TE of two-subband QPIs. Our study is relevant to nanoscale superconductors, either nanowires or thin films, Bose-Einsten condensates, and confined systems such as two-dimensional electron gas interface superconductivity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000348473700003 Publication Date 2015-01-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 6 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:123864 Serial 3670
Permanent link to this record
 

 
Author Shakouri, K.; Simchi, H.; Esmaeilzadeh, M.; Mazidabadi, H.; Peeters, F.M.
  Title Tunable spin and charge transport in silicene nanoribbons Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 92 Issue 92 Pages 035413
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using the tight-binding formalism, we study spin and charge transport through a zigzag silicene ribbon subject to an external electric field E-z. The effect of an exchange field M-z is also taken into account and its consequences on the band structure as well as spin transport are evaluated. We show that the band structure lacks spin inversion symmetry in the presence of intrinsic spin-orbit interaction in combination of E-z and M-z fields. Our quantum transport calculations indicate that for certain energy ranges of the incoming electrons the silicene ribbon can act as a controllable high-efficiency spin polarizer. The polarization maxima occur simultaneously with the van Hove singularities of the local density of states. In this case, the combination of electric and exchange fields is the key to achieving nearly perfect spin polarization, which also leads to the appearance of additional narrow plateaus in the quantum conductance. Moreover, we demonstrate that the output current still remains completely spin-polarized for low-energy carriers even when a few edge vacancies are present.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000357806900004 Publication Date 2015-07-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 70 Open Access
  Notes ; ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:127099 Serial 3746
Permanent link to this record
 

 
Author Juchtmans, R.; Béché, A.; Abakumov, A.; Batuk, M.; Verbeeck, J.
  Title Using electron vortex beams to determine chirality of crystals in transmission electron microscopy Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 094112
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We investigate electron vortex beams elastically scattered on chiral crystals. After deriving a general expression for the scattering amplitude of a vortex electron, we study its diffraction on point scatterers arranged on a helix. We derive a relation between the handedness of the helix and the topological charge of the electron vortex on one hand and the symmetry of the higher-order Laue zones in the diffraction pattern on the other for kinematically and dynamically scattered electrons. We then extend this to atoms arranged on a helix as found in crystals which belong to chiral space groups and propose a method to determine the handedness of such crystals by looking at the symmetry of the diffraction pattern. In contrast to alternative methods, our technique does not require multiple scattering, which makes it possible to also investigate extremely thin samples in which multiple scattering is suppressed. In order to verify the model, elastic scattering simulations are performed, and an experimental demonstration on Mn2Sb2O7 is given in which we find the sample to belong to the right-handed variant of its enantiomorphic pair. This demonstrates the usefulness of electron vortex beams to reveal the chirality of crystals in a transmission electron microscope and provides the required theoretical basis for further developments in this field.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000352017000002 Publication Date 2015-03-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 54 Open Access
  Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra1; esteem2jra2 ECASJO_; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:125512 c:irua:125512 Serial 3825
Permanent link to this record
 

 
Author da Costa, D.R.; Chaves, A.; Sena, S.H.R.; Farias, G.A.; Peeters, F.M.
  Title Valley filtering using electrostatic potentials in bilayer graphene Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 92 Issue 92 Pages 045417
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Propagation of an electron wave packet through a quantum point contact (QPC) defined by electrostatic gates in bilayer graphene is investigated. The gates provide a bias between the layers, in order to produce an energy gap. If the gates on both sides of the contact produce the same bias, steps in the electron transmission probability are observed, as in the usual QPC. However, if the bias is inverted on one of the sides of the QPC, only electrons belonging to one of the Dirac valleys are allowed to pass, which provides a very efficient valley filtering.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000358253200009 Publication Date 2015-07-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 47 Open Access
  Notes ; This work was financially supported by CNPq, under PNPD and PRONEX/FUNCAP grants; the CAPES Foundation under ProcessNo. BEX7178/13-1; the Bilateral programme between Flanders and Brazil; the Flemish Science Foundation (FWOVl); and the Brazilian program Science Without Borders (CsF). ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:127152 Serial 3833
Permanent link to this record
 

 
Author Richardson, C.L.; Edkins, S.D.; Berdiyorov, G.R.; Chua, C.J.; Griffiths, J.P.; Jones, G.A.C.; Buitelaar, M.R.; Narayan, V.; Sfigakis, F.; Smith, C.G.; Covaci, L.; Connolly, M.R.;
  Title Vortex detection and quantum transport in mesoscopic graphene Josephson-junction arrays Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 245418
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate mesoscopic Josephson-junction arrays created by patterning superconducting disks on monolayer graphene, concentrating on the high-T/T-c regime of these devices and the phenomena which contribute to the superconducting glass state in diffusive arrays. We observe features in the magnetoconductance at rational fractions of flux quanta per array unit cell, which we attribute to the formation of flux-quantized vortices. The applied fields at which the features occur are well described by Ginzburg-Landau simulations that take into account the number of unit cells in the array. We find that the mean conductance and universal conductance fluctuations are both enhanced below the critical temperature and field of the superconductor, with greater enhancement away from the graphene Dirac point.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000356129800012 Publication Date 2015-06-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 2 Open Access
  Notes ; This work was financially supported by the Engineering and Physical Sciences Research Council, and an NPL/EPSRC Joint Postdoctoral Partnership. Supporting data for this paper is available at the DSpace@Cambridge data repository (https://www.repository.cam.ac.uk/handle/1810/248242). ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:126982 Serial 3865
Permanent link to this record
 

 
Author Adami, O.-A.; Jelić, Ž.L.; Xue, C.; Abdel-Hafiez, M.; Hackens, B.; Moshchalkov, V.V.; Milošević, M.V.; Van de Vondel, J.; Silhanek, A.V.
  Title Onset, evolution, and magnetic braking of vortex lattice instabilities in nanostructured superconducting films Type A1 Journal article
  Year 2015 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 92 Issue 92 Pages 134506
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract In 1976, Larkin and Ovchinnikov [Zh. Eksp. Teor. Fiz. 68, 1915 (1975) [Sov. Phys.–JETP 41, 960 (1976)]] predicted that vortex matter in superconductors driven by an electrical current can undergo an abrupt dynamic transition from a flux-flow regime to a more dissipative state at sufficiently high vortex velocities. Typically, this transition manifests itself as a large voltage jump at a particular current density, so-called instability current density J∗, which is smaller than the depairing current. By tuning the effective pinning strength in Al films, using an artificial periodic pinning array of triangular holes, we show that a unique and well-defined instability current density exists if the pinning is strong, whereas a series of multiple voltage transitions appear in the relatively weaker pinning regime. This behavior is consistent with time-dependent Ginzburg-Landau simulations, where the multiple-step transition can be unambiguously attributed to the progressive development of vortex chains and subsequently phase-slip lines. In addition, we explore experimentally the magnetic braking effects, caused by a thick Cu layer deposited on top of the superconductor, on the instabilities and the vortex ratchet effect.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000362433200003 Publication Date 2015-10-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 21 Open Access
  Notes ACKNOWLEDGMENTS: This work was partially supported by the Fonds de la Recherche Scientifique-FNRS, the Methusalem Funding of the Flemish Government, the Research Foundation-Flanders (FWO), and COST Action MP1201. The work of A.V.S. and Z.L.J. is partially supported by “Mandat d’Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. B.H. is an associate researcher of the Fonds de la Recherche Scientifique- FNRS. The authors thank J. Cuppens for the data analysis at the early stage of this work, R. Delamare for his valuable help during the fabrication of the samples, and G. Grimaldi for helpful discussions. Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:128747 Serial 3981
Permanent link to this record
 

 
Author Aierken, Y.; Leenaerts, O.; Peeters, F.M.
  Title Defect-induced faceted blue phosphorene nanotubes Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 92 Issue 92 Pages 104104
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The properties of a new class of phosphorene nanotubes (PNT) are investigated by performing first-principles calculations. We demonstrate that it is advantageous to use blue phosphorene in order to make small nanotubes and propose a way to create low-energy PNTs by the inclusion of defect lines. Five different types of defect lines are investigated and incorporated in various combinations. The resulting defect-induced faceted PNTs have negligible bending stresses which leads to a reduction in the formation energy with respect to round PNTs. Our armchair faceted PNTs have similar formation energies than the recently proposed multiphase faceted PNTs, but they have a larger variety of possible structures. Our zigzag faceted PNTs have lower formation energies than round tubes and multiphase faceted nanotubes. The electronic properties of the defect-induced faceted PNTs are determined by the defect lines which control the band gap and the shape of the electronic states at the band edges. These band gaps increase with the radius of the nanotubes and converge to those of isolated defect lines.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000361037200006 Publication Date 2015-09-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 24 Open Access
  Notes This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and ser- vices used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government, department EWI. Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:127837 Serial 4033
Permanent link to this record
 

 
Author Aierken, Y.; Çakır, D.; Sevik, C.; Peeters, F.M.
  Title Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 92 Issue 92 Pages 081408
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Different allotropes of phosphorene are possible of which black and blue phosphorus are the most stable. While blue phosphorus has isotropic properties, black phosphorus is strongly anisotropic in its electronic and optical properties due to its anisotropic crystal structure. In this work, we systematically investigated the lattice thermal properties of black and blue phosphorene by using first-principles calculations based on the quasiharmonic approximation approach. Similar to the optoelectronic and electronic properties, we predict that black phosphorene has highly anisotropic thermal properties, in contrast to the blue phase. The linear thermal expansion coefficients along the zigzag and armchair direction differ up to 20% in black phosphorene. The armchair direction of black phosphorene is more expandable as compared to the zigzag direction and the biaxial expansion of blue phosphorene under finite temperature. Our comparative analysis reveals that the inclusion of finite-temperature effects makes the blue phase thermodynamically more stable over the black phase above 135 K.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000359860700005 Publication Date 2015-08-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 124 Open Access
  Notes This work was supported by the Flemish Science Founda- tion (FWO-Vl) and the Methusalem foundation of the Flem- ish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Comput- ing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C.S. acknowledges the support from Anadolu University (BAP-1407F335), and Turkish Academy of Sciences (TUBA-GEBIP). Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:127754 Serial 4034
Permanent link to this record
 

 
Author Sobrino Fernandez, M.M.; Neek-Amal, M.; Peeters, F.M.
  Title AA-stacked bilayer square ice between graphene layers Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 92 Issue 92 Pages 245428
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Water confined between two graphene layers with a separation of a few A forms a layered two-dimensional ice structure. Using large scale molecular dynamics simulations with the adoptable ReaxFF interatomic potential we found that flat monolayer ice with a rhombic-square structure nucleates between the graphene layers which is nonpolar and nonferroelectric. We provide different energetic considerations and H-bonding results that explain the interlayer and intralayer properties of two-dimensional ice. The controversial AA stacking found experimentally [Algara-Siller et al., Nature (London) 519, 443 (2015)] is consistent with our minimum-energy crystal structure of bilayer ice. Furthermore, we predict that an odd number of layers of ice has the same lattice structure as monolayer ice, while an even number of ice layers exhibits the square ice AA stacking of bilayer ice.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000366731800004 Publication Date 2015-12-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 40 Open Access
  Notes ; This work was supported by the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-Vl). ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:130203 Serial 4127
Permanent link to this record
 

 
Author Chaves, A.; Low, T.; Avouris, P.; Çakir, D.; Peeters, F.M.
  Title Anisotropic exciton Stark shift in black phosphorus Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 155311
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We calculate the excitonic spectrum of few-layer black phosphorus by direct diagonalization of the effective mass Hamiltonian in the presence of an applied in-plane electric field. The strong attractive interaction between electrons and holes in this system allows one to investigate the Stark effect up to very high ionizing fields, including also the excited states. Our results show that the band anisotropy in black phosphorus becomes evident in the direction-dependent field-induced polarizability of the exciton.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000353459200005 Publication Date 2015-04-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 88 Open Access
  Notes ; Discussions with J. M. Pereira Jr. and J. S. de Souza are gratefully acknowledged. This work was supported by the Brazilian Council for Research (CNPq) through the PQ and Science Without Borders programs, the Flemish Science Foundation (FWO-Vl), the Methusalem programme of the Flemish government, and the Bilateral program (CNPq-FWO) between Flanders and Brazil. ; Approved (down) Most recent IF: 3.836; 2015 IF: 3.736
  Call Number UA @ lucian @ c:irua:132506 Serial 4141
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: