|   | 
Details
   web
Records
Author Gestels, A.; Van der Snickt, G.; Caen, J.; Nuyts, G.; Legrand, S.; Vanmeert, F.; Detry, F.; Janssens, K.; Steenackers, G.
Title Combined MA-XRF, MA-XRPD and SEM-EDX analysis of a medieval stained-glass panel formerly from Notre Dame, Paris reveals its material history Type A1 Journal article
Year 2022 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 177 Issue Pages 107304
Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract As part of its conservation-restoration, the 13th century stained-glass panel ‘the Annunciation’, was examined at the micro- and macro level. This window, since 1898 in the collection of the Museum Mayer Van den Bergh (Antwerp, B), was formerly a part of the southern Rose window of the Notre Dame Cathedral (Paris, F). The insigths emerging from a first phase of the analysis, comprising non-invasive analysis techniques such as optical microscopy combined with macroscopic X-ray fluorescence (MA-XRF) and X-ray diffraction (MA-XRPD) mapping, were used to select sampling positions for the second phase of investigation that involved micro-invasive analysis, namely scanning-electron microscopy coupled to energy-dispersive X-ray analysis (SEM-EDX). The aim of the investigation was fourfold: (1) to assess the applicability of MA-XRF scanning for the characterisation of stained glass windows prior to any conservation or restoration procedure, (2) to assess the applicability of MA-XRPD scanning to identify the degradation products formed on the surface of stained glass windows, (3) to establish a method to limit the set of sampled glass fragments taken from a glass panel for quantititive analysis while maintaining sufficient representativeness and (4) to distinguish the original glass panes and grisaille paint from non-original glass panes that were inserted during various past interventions. Most of the panes in this window proved to consist of medieval potash glass, consistent with the 13th c. origin of the window while a limited number of panes were identified as non-original infills, with divergent glass compositional types and/or colorants. Most panes derive their color from the pot metal glass (i.e. homogenously colored) they were made of. Some of the panes that originally had a red flashed layer on their surface, completely or partially lost this layer due to weathering. Three main compositional glass families with similar color could be defined. With the exception of the yellow and orange panes, the chromophoric elements responsible for the dark(er) and light(er) blue (Co), green (Cu), purple (Mn) and red colors (Cu) were identified. Two different grisaille paints were encountered, part of which were restored during the 19th century. On the basis of this information, all missing pieces were replaced by glass panes with appropriate colors and the panel could be successfully conserved to its former glory. On the surface of several panes, typical glass degradation products such as calcite, syngenite and gypsum were identified, together with lead based degradation products such as anglesite and palmierite. In addition, the presence of hematite and melanotekite in the grisailles was observed; also the presence of Zn, uncorrelated to Cu, in the grissailes on the right side of the window became apparent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000850000900001 Publication Date 2022-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 4.8
Call Number UA @ admin @ c:irua:187493 Serial 7138
Permanent link to this record
 

 
Author Fabri, C.; Moretti, M.; Van Passel, S.
Title On the (ir)relevance of heatwaves in climate change impacts on European agriculture Type A1 Journal article
Year 2022 Publication Climatic Change Abbreviated Journal Climatic Change
Volume 174 Issue 1-2 Pages 16-20
Keywords A1 Journal article; Engineering Management (ENM)
Abstract The Ricardian model is a widely used approach based on cross-sectional regression analysis to estimate climate change impacts on agricultural productivity. Up until now, researchers have focused on the impacts of gradual changes in temperature and precipitation, even though climate change is known to encompass also changes in the severity and frequency of extreme weather events. This research investigates the impact of heatwaves on European agriculture, additional to the impact of average climate change. Using a dataset of more than 60,000 European farms, the study examines whether adding a measure for heatwaves to the Ricardian model influences its results. We find that heatwaves have a minor impact on agricultural productivity and that this impact is moderated by average temperature. In colder regions, farm productivity increases with the number of heatwave days. For warmer regions, land values decrease with heatwave frequency. Despite the moderating effect, the marginal effect of heatwave frequency, i.e. the percentage change in agricultural land values caused by one more heatwave day per year, is small in comparison to the effect of average temperature increases. Non-marginal effects are found to be relevant, but only in the case of increased heatwave frequency. According to our results, farms are not expected to suffer more from extreme weather than from mean climate change, as was claimed by several previous studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000861873100002 Publication Date 2022-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-0009; 1573-1480 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.8 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 4.8
Call Number UA @ admin @ c:irua:191483 Serial 7364
Permanent link to this record
 

 
Author Savina, A.A.; Saiutina, V.V.; Morozov, A.V.; Boev, A.O.; Aksyonov, D.A.; Dejoie, C.; Batuk, M.; Bals, S.; Hadermann, J.; Abakumov, A.M.
Title Chemistry, local molybdenum clustering, and electrochemistry in the Li2+xMo1-xO3 solid solutions Type A1 Journal article
Year 2022 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 61 Issue 14 Pages 5637-5652
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A broad range of cationic nonstoichiometry has been demonstratedfor the Li-rich layered rock-salt-type oxide Li2MoO3, which has generally been considered as a phase with a well-defined chemical composition. Li2+xMo1-xO3(-0.037 <= x <= 0.124) solid solutions were synthesized via hydrogen reduction ofLi2MoO4in the temperature range of 650-1100 degrees C, withxdecreasing with theincrease of the reduction temperature. The solid solutions adopt a monoclinicallydistorted O3-type layered average structure and demonstrate a robust localordering of the Li cations and Mo3triangular clusters within the mixed Li/Mocationic layers. The local structure was scrutinized in detail by electron diffractionand aberration-corrected scanning transmission electron microcopy (STEM),resulting in an ordering model comprising a uniform distribution of the Mo3clusters compatible with local electroneutrality and chemical composition. The geometry of the triangular clusters with their oxygenenvironment (Mo3O13groups) has been directly visualized using differential phase contrast STEM imaging. The established localstructure was used as input for density functional theory (DFT)-based calculations; they support the proposed atomic arrangementand provide a plausible explanation for the staircase galvanostatic charge profiles upon electrochemical Li+extraction fromLi2+xMo1-xO3in Li cells. According to DFT, all electrochemical capacity in Li2+xMo1-xO3solely originates from the cationic Moredox process, which proceeds via oxidation of the Mo3triangular clusters into bent Mo3chains where the electronic capacity of the clusters depends on the initial chemical composition and Mo oxidation state defining the width of the first charge low-voltageplateau. Further oxidation at the high-voltage plateau proceeds through decomposition of the Mo3chains into Mo2dimers and further into individual Mo6+cations
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000789034200023 Publication Date 2022-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited 3 Open Access Not_Open_Access
Notes The authors acknowledge Russian Science Foundation (grant 20-43-01012) and Research Foundation Flanders (FWO Vlaanderen, project number G0F1320N) for financial support. The authors are grateful to AICF of Skoltech for providing access to electron microscopy equipment. The authors are grateful to Prof. G. Van Tendeloo for discussing the results. Approved (down) Most recent IF: 4.6
Call Number UA @ admin @ c:irua:188631 Serial 7079
Permanent link to this record
 

 
Author Vanderveken, F.; Tyberkevych, V.; Talmelli, G.; Sorée, B.; Ciubotaru, F.; Adelmann, C.
Title Lumped circuit model for inductive antenna spin-wave transducers Type A1 Journal article
Year 2022 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 12 Issue 1 Pages 3796-13
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We derive a lumped circuit model for inductive antenna spin-wave transducers in the vicinity of a ferromagnetic medium. The model considers the antenna's Ohmic resistance, its inductance, as well as the additional inductance due to the excitation of ferromagnetic resonance or spin waves in the ferromagnetic medium. As an example, the additional inductance is discussed for a wire antenna on top of a ferromagnetic waveguide, a structure that is characteristic for many magnonic devices and experiments. The model is used to assess the scaling properties and the energy efficiency of inductive antennas. Issues related to scaling antenna transducers to the nanoscale and possible solutions are also addressed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000826474600050 Publication Date 2022-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 4.6
Call Number UA @ admin @ c:irua:190001 Serial 7180
Permanent link to this record
 

 
Author Borah, R.; Ninakanti, R.; Bals, S.; Verbruggen, S.W.
Title Plasmon resonance of gold and silver nanoparticle arrays in the Kretschmann (attenuated total reflectance) vs. direct incidence configuration Type A1 Journal article
Year 2022 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 12 Issue 1 Pages 15738-19
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract While the behaviour of plasmonic solid thin films in the Kretschmann (also known as Attenuated Total Reflection, ATR) configuration is well-understood, the use of discrete nanoparticle arrays in this optical configuration is not thoroughly explored. It is important to do so, since close packed plasmonic nanoparticle arrays exhibit exceptionally strong light-matter interactions by plasmonic coupling. The present work elucidates the optical properties of plasmonic Au and Ag nanoparticle arrays in both the direct normal incidence and Kretschmann configuration by numerical models, that are validated experimentally. First, hexagonal close packed Au and Ag nanoparticle films/arrays are obtained by air–liquid interfacial assembly. The numerical models for the rigorous solution of the Maxwell’s equations are validated using experimental optical spectra of these films before systematically investigating various parameters. The individual far-field/near-field optical properties, as well as the plasmon relaxation mechanism of the nanoparticles, vary strongly as the packing density of the array increases. In the Kretschmann configuration, the evanescent fields arising from p – and s -polarized (or TM and TE polarized) incidence have different directional components. The local evanescent field intensity and direction depends on the polarization, angle of incidence and the wavelength of incidence. These factors in the Kretschmann configuration give rise to interesting far-field as well as near-field optical properties. Overall, it is shown that plasmonic nanoparticle arrays in the Kretschmann configuration facilitate strong broadband absorptance without transmission losses, and strong near-field enhancement. The results reported herein elucidate the optical properties of self-assembled nanoparticle films, pinpointing the ideal conditions under which the normal and the Kretschmann configuration can be exploited in multiple light-driven applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000858344700048 Publication Date 2022-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited 11 Open Access OpenAccess
Notes R.B. acknowledges financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship (Grant FN541100001). Approved (down) Most recent IF: 4.6
Call Number UA @ admin @ c:irua:190864 Serial 7194
Permanent link to this record
 

 
Author Sheath, B.C.; Xu, X.; Manuel, P.; Hadermann, J.; Batuk, M.; O'Sullivan, J.; Bonilla, R.S.; Clarke, S.J.
Title Structures and magnetic ordering in layered Cr oxide arsenides Sr₂CrO₂Cr₂OAs₂ and Sr₂CrO₃CrAs Type A1 Journal article
Year 2022 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 61 Issue 31 Pages 10-12385
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Two novel chromium oxide arsenide materials have been synthesized, Sr2CrO2Cr2OAs2 (i.e., Sr2Cr3As2O3) and Sr2CrO3CrAs (i.e., Sr2Cr2AsO3), both of which contain chromium ions in two distinct layers. Sr2CrO2Cr2OAs2 was targeted following electron microscopy measurements on a related phase. It crystallizes in the space group P4/mmm and accommodates distorted CrO4As2 octahedra containing Cr2+ and distorted CrO(2)As(4 )octahedra containing Cr3+. In contrast, Sr2CrO3CrAs incorporates Cr3+ in CrO5 square-pyramidal coordination in [Sr2CrO3](+) layers and Cr2+ ions in CrAs(4 )tetrahedra in [CrAs](-) layers and crystallizes in the space group P4/nmm. Powder neutron diffraction data reveal antiferromagnetic ordering in both compounds. In Sr2CrO3CrAs the Cr2+ moments in the [CrAs](-) layers exhibit long-range ordering, while the Cr3+ moments in the [Sr2CrO3](+) layers only exhibit short-range ordering. However, in Sr2CrO2Cr2OAs2, both the Cr(2+ )moments in the CrO4As2 environments and the Cr3+ moments in the CrO2As4 polyhedra are long-range-ordered below 530(10) K. Above this temperature, only the Cr3+ moments are ordered with a Neel temperature slightly in excess of 600 K. A subtle structural change is evident in Sr2CrO2Cr2OAs2 below the magnetic ordering transitions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000841943600001 Publication Date 2022-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 4.6
Call Number UA @ admin @ c:irua:190007 Serial 7215
Permanent link to this record
 

 
Author Cotte, M.; Gonzalez, V.; Vanmeert, F.; Monico, L.; Dejoie, C.; Burghammer, M.; Huder, L.; de Nolf, W.; Fisher, S.; Fazlic, I.; Chauffeton, C.; Wallez, G.; Jimenez, N.; Albert-Tortosa, F.; Salvado, N.; Possenti, E.; Colombo, C.; Ghirardello, M.; Comelli, D.; Avranovich Clerici, E.; Vivani, R.; Romani, A.; Costantino, C.; Janssens, K.; Taniguchi, Y.; McCarthy, J.; Reichert, H.; Susini, J.
Title The “Historical Materials BAG” : a new facilitated access to synchrotron X-ray diffraction analyses for cultural heritage materials at the European Synchrotron Radiation Facility Type A1 Journal article
Year 2022 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal Molecules
Volume 27 Issue 6 Pages 1997-21
Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract The European Synchrotron Radiation Facility (ESRF) has recently commissioned the new Extremely Brilliant Source (EBS). The gain in brightness as well as the continuous development of beamline instruments boosts the beamline performances, in particular in terms of accelerated data acquisition. This has motivated the development of new access modes as an alternative to standard proposals for access to beamtime, in particular via the “block allocation group” (BAG) mode. Here, we present the recently implemented “historical materials BAG”: a community proposal giving to 10 European institutes the opportunity for guaranteed beamtime at two X-ray powder diffraction (XRPD) beamlines-ID13, for 2D high lateral resolution XRPD mapping, and ID22 for high angular resolution XRPD bulk analyses-with a particular focus on applications to cultural heritage. The capabilities offered by these instruments, the specific hardware and software developments to facilitate and speed-up data acquisition and data processing are detailed, and the first results from this new access are illustrated with recent applications to pigments, paintings, ceramics and wood.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000776369800001 Publication Date 2022-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1420-3049 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 4.6
Call Number UA @ admin @ c:irua:188053 Serial 7218
Permanent link to this record
 

 
Author Jiang, J.; Milošević, M.V.; Wang, Y.-L.; Xiao, Z.-L.; Peeters, F.M.; Chen, Q.-H.
Title Field-free superconducting diode in a magnetically nanostructured superconductor Type A1 Journal article
Year 2022 Publication Physical review applied Abbreviated Journal Phys Rev Appl
Volume 18 Issue 3 Pages 034064-34069
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A strong superconducting diode effect (SDE) is revealed in a thin superconducting film periodically nanostructured with magnetic dots. The SDE is caused by the current-activated dissipation mitigated by vortex-antivortex pairs (VAPs), which periodically nucleate under the dots, move and annihilate in the superconductor-eventually driving the system to the high-resistive state. Inversing the polarity of the applied current destimulates the nucleation of VAPs, the system remains superconducting up to far larger currents, leading to the pronounced diodic response. Our dissipative Ginzburg-Landau simulations detail the involved processes, and provide reliable geometric and parametric ranges for the experimental realiza-tion of such a nonvolatile superconducting diode, which operates in the absence of any applied magnetic field while being fluxonic by design.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000870234200001 Publication Date 2022-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited 9 Open Access OpenAccess
Notes Approved (down) Most recent IF: 4.6
Call Number UA @ admin @ c:irua:191539 Serial 7307
Permanent link to this record
 

 
Author Barich, H.; Cánovas, R.; De Wael, K.
Title Electrochemical identification of hazardous phenols and their complex mixtures in real samples using unmodified screen-printed electrodes Type A1 Journal article
Year 2022 Publication Journal of electroanalytical chemistry : an international journal devoted to all aspects of electrode kynetics, interfacial structure, properties of electrolytes, colloid and biological electrochemistry. Abbreviated Journal J Electroanal Chem
Volume 904 Issue Pages 115878
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The electrochemical behavior of some of the most relevant endocrine-disrupting phenols using unmodified carbon screen-printed electrodes (SPEs) is described for the first time. Experiments were made to assess the electrochemical behavior of phenol (PHOH), pentachlorophenol (PCP), 4-tert octylphenol (OP) and bisphenol A (BPA) and their determination in the most favorable conditions, using voltammetric methods such as cyclic voltammetry (CV), linear sweep voltammetry (LSV) and square wave voltammetry (SWV) in Britton Robinson (BR) buffer. Further, the usefulness of the electrochemical approach was validated with real samples from a local river and was compared to commercial phenols test kit, which is commonly used for on-site screening in industrial streams and wastewaters. Finally, the approach was compared with a lab-bench standard method using real samples, i.e., high-performance liquid chromatography with a photodiode array detector (HPLC-DAD).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000741151200005 Publication Date 2021-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1572-6657; 1873-2569 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.5 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 4.5
Call Number UA @ admin @ c:irua:184384 Serial 7150
Permanent link to this record
 

 
Author Yang, S.; An, H.; Anastasiadou, D.; Xu, W.; Wu, L.; Wang, H.; de Ruiter, J.; Arnouts, S.; Figueiredo, M.C.; Bals, S.; Altantzis, T.; van der Stam, W.; Weckhuysen, B.M.
Title Waste-derived copper-lead electrocatalysts for CO₂ reduction Type A1 Journal article
Year 2022 Publication ChemCatChem Abbreviated Journal Chemcatchem
Volume 14 Issue 18 Pages e202200754-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract It remains a real challenge to control the selectivity of the electrocatalytic CO2 reduction (eCO(2)R) reaction to valuable chemicals and fuels. Most of the electrocatalysts are made of non-renewable metal resources, which hampers their large-scale implementation. Here, we report the preparation of bimetallic copper-lead (CuPb) electrocatalysts from industrial metallurgical waste. The metal ions were extracted from the metallurgical waste through simple chemical treatment with ammonium chloride, and CuxPby electrocatalysts with tunable compositions were fabricated through electrodeposition at varying cathodic potentials. X-ray spectroscopy techniques showed that the pristine electrocatalysts consist of Cu-0, Cu1+ and Pb2+ domains, and no evidence for alloy formation was found. We found a volcano-shape relationship between eCO(2)R selectivity toward two electron products, such as CO, and the elemental ratio of Cu and Pb. A maximum Faradaic efficiency towards CO was found for Cu9.00Pb1.00, which was four times higher than that of pure Cu, under the same electrocatalytic conditions. In situ Raman spectroscopy revealed that the optimal amount of Pb effectively improved the reducibility of the pristine Cu1+ and Pb2+ domains to metallic Cu and Pb, which boosted the selectivity towards CO by synergistic effects. This work provides a framework of thinking to design and tune the selectivity of bimetallic electrocatalysts for CO2 reduction through valorization of metallurgical waste.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000853941300001 Publication Date 2022-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.5 Times cited 7 Open Access OpenAccess
Notes S.Y and B.M.W. acknowledge support from the EU Framework Programme for Research and Innovation Horizon 2020 (SOCRATES-721385; project website: http://etn-socrates.eu/). W.v.d.S., M.C.F. and B.M.W. acknowledge support from the Strategic UU-TU/e Alliance project 'Joint Centre for Chemergy Research'. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S.A. and T.A. acknowledge funding from the University of Antwerp Research fund (BOF). The Beijing Synchrotron Radiation Facility (1W1B, BSRF) is acknowledged for the beamtime. We are grateful to Annelies van der Bok and Bas Salzmann (Condensed Matter and Interfaces, Utrecht University, UU) for the support with the ICP-OES measurements. The authors thank dr. Robin Geitenbeek, Nikos Nikolopoulos, Ioannis Nikolopoulos, Jochem Wijten and Joris Janssens (Inorganic Chemistry and Catalysis, UU) for helpful discussions and technical support. The authors also thank Yuang Piao (Materials Chemistry and Catalysis, UU) for the help in the preparation of the figures of the article. Approved (down) Most recent IF: 4.5
Call Number UA @ admin @ c:irua:190703 Serial 7226
Permanent link to this record
 

 
Author Cui, Z.; Zhou, C.; Jafarzadeh, A.; Meng, S.; Yi, Y.; Wang, Y.; Zhang, X.; Hao, Y.; Li, L.; Bogaerts, A.
Title SF₆ catalytic degradation in a γ-Al₂O₃ packed bed plasma system : a combined experimental and theoretical study Type A1 Journal article
Year 2022 Publication High voltage Abbreviated Journal
Volume Issue Pages 1-11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Effective abatement of the greenhouse gas sulphur hexafluoride (SF6) waste is of great importance for the environment protection. This work investigates the size effect and the surface properties of gamma-Al2O3 pellets on SF6 degradation in a packed bed dielectric barrier discharge (PB-DBD) system. Experimental results show that decreasing the packing size improves the filamentary discharges and promotes the ignition and the maintenance of plasma, enhancing the degradation performance at low input powers. However, too small packing pellets decrease the gas residence time and reduce the degradation efficiency, especially for the input power beyond 80 W. Besides, lowering the packing size promotes the generation of SO2, while reduces the yields of S-O-F products, corresponding to a better degradation. After the discharge, the pellet surface becomes smoother with the appearance of S and F elements. Density functional theory calculations show that SF6 is likely to be adsorbed at the Al-III site over the gamma-Al2O3(110) surface, and it is much more easily to decompose than in the gas phase. The fluorine gaseous products can decompose and stably adsorb on the pellet surface to change the surface element composition. This work provides a better understanding of SF6 degradation in a PB-DBD system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000827312700001 Publication Date 2022-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-7264 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.4 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 4.4
Call Number UA @ admin @ c:irua:189603 Serial 7208
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title Extending and validating bubble nucleation rate predictions in a Lennard-Jones fluid with enhanced sampling methods and transition state theory Type A1 Journal article
Year 2022 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
Volume 157 Issue 18 Pages 184113-10
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We calculate bubble nucleation rates in a Lennard-Jones fluid through explicit molecular dynamics simulations. Our approach-based on a recent free energy method (dubbed reweighted Jarzynski sampling), transition state theory, and a simple recrossing correction-allows us to probe a fairly wide range of rates in several superheated and cavitation regimes in a consistent manner. Rate predictions from this approach bridge disparate independent literature studies on the same model system. As such, we find that rate predictions based on classical nucleation theory, direct brute force molecular dynamics simulations, and seeding are consistent with our approach and one another. Published rates derived from forward flux sampling simulations are, however, found to be outliers. This study serves two purposes: First, we validate the reliability of common modeling techniques and extrapolation approaches on a paradigmatic problem in materials science and chemical physics. Second, we further test our highly generic recipe for rate calculations, and establish its applicability to nucleation processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000885260600002 Publication Date 2022-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.4 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 4.4
Call Number UA @ admin @ c:irua:192076 Serial 7266
Permanent link to this record
 

 
Author Yagmurcukardes, N.; Bayram, A.; Aydin, H.; Yagmurcukardes, M.; Acikbas, Y.; Peeters, F.M.; Celebi, C.
Title Anisotropic etching of CVD grown graphene for ammonia sensing Type A1 Journal article
Year 2022 Publication IEEE sensors journal Abbreviated Journal Ieee Sens J
Volume 22 Issue 5 Pages 3888-3895
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bare chemical vapor deposition (CVD) grown graphene (GRP) was anisotropically etched with various etching parameters. The morphological and structural characterizations were carried out by optical microscopy and the vibrational properties substrates were obtained by Raman spectroscopy. The ammonia adsorption and desorption behavior of graphene-based sensors were recorded via quartz crystal microbalance (QCM) measurements at room temperature. The etched samples for ambient NH3 exhibited nearly 35% improvement and showed high resistance to humidity molecules when compared to bare graphene. Besides exhibiting promising sensitivity to NH3 molecules, the etched graphene-based sensors were less affected by humidity. The experimental results were collaborated by Density Functional Theory (DFT) calculations and it was shown that while water molecules fragmented into H and O, NH3 interacts weakly with EGPR2 sample which reveals the enhanced sensing ability of EGPR2. Apparently, it would be more suitable to use EGRP2 in sensing applications due to its sensitivity to NH3 molecules, its stability, and its resistance to H2O molecules in humid ambient.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000766276000010 Publication Date 2022-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-437x; 1558-1748 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.3 Times cited 4 Open Access Not_Open_Access
Notes Approved (down) Most recent IF: 4.3
Call Number UA @ admin @ c:irua:187257 Serial 7126
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Kavak, S.; Bals, S.; Meynen, V.
Title Modifying the Stöber Process: Is the Organic Solvent Indispensable? Type A1 Journal Article
Year 2022 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The Stöber method is one of the most important and fundamental processes for the synthesis of inorganic (nano)materials but has the drawback of using a large amount of organic solvent. Herein, ethanol was used as an example to explore if the organic solvent in a typical Stöber method can be omitted. It was found that ethanol increases the particle size of the obtained silica spheres and aids the formation of uniform silica particles rather than forming a gel. Nevertheless, the results indicated that an organic solvent in the initial synthesis mixture is not indispensable. An initially immiscible synthesis method was discovered, which can replace the organic solvent-based Stöber method to successfully synthesize silica particles with the same size ranges as the original Stöber process without addition of organic solvents. Moreover, this process can be of further value for the extension to synthesis processes of other materials based on the Stöber process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000898283500001 Publication Date 2022-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.3 Times cited 3 Open Access OpenAccess
Notes The authors are grateful to Alexander Vansant and Dr. Steven Mullens of VITO for their contributions to the DLS measurements in this paper. J.W acknowledges the State Scholarship funded by the China Scholarship Council (201806060123). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). S.K acknowledges the Flemish Fund for Scientific Research (FWO Flanders) through a PhD research grant (1181122N). Approved (down) Most recent IF: 4.3
Call Number EMAT @ emat @c:irua:191646 Serial 7233
Permanent link to this record
 

 
Author Mallick, S.; Zhang, W.; Batuk, M.; Gibbs, A.S.; Hadermann, J.; Halasyamani, P.S.; Hayward, M.A.
Title The crystal and defect structures of polar KBiNb2O7 Type A1 Journal article
Year 2022 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
Volume 51 Issue 5 Pages 1866-1873
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract KBiNb2O7 was prepared from RbBiNb2O7 by a sequence of cation exchange reactions which first convert RbBiNb2O7 to LiBiNb2O7, before KBiNb2O7 is formed by a further K-for-Li cation exchange. A combination of neutron, synchrotron X-ray and electron diffraction data reveal that KBiNb2O7 adopts a polar, layered, perovskite structure (space group A11m) in which the BiNb2O7 layers are stacked in a (0, ½, z) arrangement, with the K+ cations located in half of the available 10-coordinate interlayer cation sites. The inversion symmetry of the phase is broken by a large displacement of the Bi3+ cations parallel to the y-axis. HAADF-STEM images reveal that KBiNb2O7 exhibits frequent stacking faults which convert the (0. ½, z) layer stacking to (½, 0, z) stacking and vice versa, essentially switching the x- and y-axes of the material. By fitting the complex diffraction peak shape of the SXRD data collected from KBiNb2O7 it is estimated that each layer has approximately an ~11% chance of being defective – a high level which is attributed to the lack of cooperative NbO6 tilting in the material, which limits the lattice strain associated with each fault.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000741540300001 Publication Date 2022-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record
Impact Factor 4 Times cited Open Access OpenAccess
Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford/Warwick Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE18786). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC (RB 2000148). SM thanks Somerville College for an Oxford Ryniker Lloyd scholarship. PSH and WZ thank the National Science Foundation (DMR-2002319) for support. Approved (down) Most recent IF: 4
Call Number EMAT @ emat @c:irua:185504 Serial 6951
Permanent link to this record
 

 
Author Gao, C.; Hofer, C.; Jannis, D.; Béché, A.; Verbeeck, J.; Pennycook, T.J.
Title Overcoming contrast reversals in focused probe ptychography of thick materials: An optimal pipeline for efficiently determining local atomic structure in materials science Type A1 Journal article
Year 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 121 Issue 8 Pages 081906
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ptychography provides highly efficient imaging in scanning transmission electron microscopy (STEM), but questions have remained over its applicability to strongly scattering samples such as those most commonly seen in materials science. Although contrast reversals can appear in ptychographic phase images as the projected potentials of the sample increase, we show here how these can be easily overcome by a small amount of defocus. The amount of defocus is small enough that it not only can exist naturally when focusing using the annular dark field (ADF) signal but can also be adjusted post acquisition. The ptychographic images of strongly scattering materials are clearer at finite doses than other STEM techniques and can better reveal light atomic columns within heavy lattices. In addition, data for ptychography can now be collected simultaneously with the fastest of ADF scans. This combination of sensitivity and interpretability presents an ideal workflow for materials science.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000844403300006 Publication Date 2022-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited 9 Open Access OpenAccess
Notes European Research Council, 802123-HDEM ; HORIZON EUROPE European Research Council, 823717-ESTEEM3 ; Fonds Wetenschappelijk Onderzoek, G042920N ; Fonds Wetenschappelijk Onderzoek, G042820N ; Horizon 2020 Framework Programme, 101017720 ; Fonds Wetenschappelijk Onderzoek, G013122N ; esteem3reported; esteem3jra Approved (down) Most recent IF: 4
Call Number EMAT @ emat @c:irua:190670 Serial 7120
Permanent link to this record
 

 
Author Yu, Y.; Xie, X.; Liu, X.; Li, J.; Peeters, F.M.; Li, L.
Title Two-dimensional semimetal states in transition metal trichlorides : a first-principles study Type A1 Journal article
Year 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 121 Issue 11 Pages 112405-112407
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The two-dimensional (2D) transition metal trihalide (TMX3, X = Cl, Br, I) family has attracted considerable attention in recent years due to the realization of CrCl3, CrBr3, and CrI3 monolayers. Up to now, the main focus of the theoretically predicted TMX3 monolayers has been on the Chern insulator states, which can realize the quantum anomalous Hall effect. Here, using first-principles calculations, we theoretically demonstrate that the stable OsCl3 monolayer has a ferromagnetic ground state and a spin-polarized Dirac point without spin-orbit coupling (SOC), which disappears in the band structure of a Janus OsBr1.5Cl1.5 monolayer. We find that OsCl3 exhibits in-plane magnetization when SOC is included. By manipulating the magnetization direction along the C-2 symmetry axis of the OsCl3 structure, a gapless half-Dirac semimetal state with SOC can be achieved, which is different from the gapped Chern insulator state. Both semimetal states of OsCl3 monolayer without and with SOC exhibit a linear half-Dirac point (twofold degenerate) with high Fermi velocities. The achievement of the 2D semimetal state with SOC is expected to be found in other TMX3 monolayers, and we confirm it in a TiCl3 monolayer. This provides a different perspective to study the band structure with SOC of the 2D TMX3 family.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000863219400003 Publication Date 2022-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record
Impact Factor 4 Times cited 4 Open Access OpenAccess
Notes Approved (down) Most recent IF: 4
Call Number UA @ admin @ c:irua:191541 Serial 7223
Permanent link to this record
 

 
Author Parastaev, A.; Muravev, V.; Osta, E.H.; Kimpel, T.F.; Simons, J.F.M.; van Hoof, A.J.F.; Uslamin, E.; Zhang, L.; Struijs, J.J.C.; Burueva, D.B.; Pokochueva, E.V.; Kovtunov, K.V.; Koptyug, I.V.; Villar-Garcia, I.J.; Escudero, C.; Altantzis, T.; Liu, P.; Béché, A.; Bals, S.; Kosinov, N.; Hensen, E.J.M.
Title Breaking structure sensitivity in CO2 hydrogenation by tuning metal–oxide interfaces in supported cobalt nanoparticles Type A1 Journal article
Year 2022 Publication Nature Catalysis Abbreviated Journal Nat Catal
Volume 5 Issue 11 Pages 1051-1060
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract A high dispersion of the active metal phase of transition metals on oxide supports is important when designing efficient heterogeneous catalysts. Besides nanoparticles, clusters and even single metal atoms can be attractive for a wide range of reactions. However, many industrially relevant catalytic transformations suffer from structure sensitivity, where reducing the size of the metal particles below a certain size substantially lowers catalytic performance. A case in point is the low activity of small cobalt nanoparticles in the hydrogenation of CO and CO2. Here we show how engineering of catalytic sites at the metal–oxide interface in cerium oxide–zirconium dioxide (ceria–zirconia)-supported cobalt can overcome this structure sensitivity. Few-atom cobalt clusters dispersed on 3 nm cobalt(II)-oxide particles stabilized by ceria–zirconia yielded a highly active CO2 methanation catalyst with a specific activity higher than that of larger particles under the same conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000884939300006 Publication Date 2022-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2520-1158 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 37.8 Times cited 32 Open Access OpenAccess
Notes This research was supported by the Applied and Engineering Sciences division of the Netherlands Organization for Scientific Research through the Alliander (now Qirion) Perspective program on Plasma Conversion of CO2. We acknowledge Diamond Light Source for time on beamline B18 under proposal SP20715-1. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO) and T.A. acknowledges funding from the University of Antwerp Research fund (BOF). A.B. received funding from the European Union under grant agreement No 823717 – ESTEEM3. The authors acknowledge funding through the Hercules grant (FWO, University of Antwerp) I003218N “Infrastructure for imaging nanoscale processes in gas/vapour or liquid environments”. I.V.K., D.B.B., and E.V.P. acknowledge the Russian Ministry of Science and Higher Education (contract 075-15-2021-580) for financial support of parahydrogen-based studies. Experiments using synchrotron radiation XPS were performed at the CIRCE beamline at ALBA Synchrotron with the collaboration of ALBA staff. F. Oropeza Palacio and Rim C.J. van de Poll are acknowledged for the help with RPES measurements.; esteem3reported; esteem3jra Approved (down) Most recent IF: 37.8
Call Number EMAT @ emat @c:irua:192068 Serial 7230
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M.
Title Distribution of lipid aldehydes in phase-separated membranes: A molecular dynamics study Type A1 Journal article
Year 2022 Publication Archives Of Biochemistry And Biophysics Abbreviated Journal Arch Biochem Biophys
Volume 717 Issue Pages 109136
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract It is well established that lipid aldehydes (LAs) are able to increase the permeability of cell membranes and induce their rupture. However, it is not yet clear how LAs are distributed in phase-separated membranes (PSMs), which are responsible for the transport of selected molecules and intracellular signaling. Thus, we investigate here the distribution of LAs in a PSM by coarse-grained molecular dynamics simulations. Our results reveal that LAs derived from mono-unsaturated lipids tend to accumulate at the interface between the liquid-ordered/liquiddisordered domains, whereas those derived from poly-unsaturated lipids remain in the liquid-disordered domain. These results are important for understanding the effects caused by oxidized lipids in membrane structure, properties and organization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000767632000001 Publication Date 2022-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes We thank the University of Antwerp and the Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved (down) Most recent IF: 3.9
Call Number PLASMANT @ plasmant @c:irua:185874 Serial 6905
Permanent link to this record
 

 
Author Lamonier, J.-F.; Bogaerts, A.
Title Feature Papers to Celebrate “Environmental Catalysis”—Trends & Outlook Type Editorial
Year 2022 Publication Catalysts Abbreviated Journal Catalysts
Volume 12 Issue 7 Pages 720
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This Special Issue collects three reviews, eight articles, and two communications related to the design of catalysts for environmental applications, such as the transformation of several pollutants into harmless or valuable products [...]
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000831734700001 Publication Date 2022-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 3.9
Call Number PLASMANT @ plasmant @c:irua:189202 Serial 7074
Permanent link to this record
 

 
Author Poppe, R.; Vandemeulebroucke, D.; Neder, R.B.; Hadermann, J.
Title Quantitative analysis of diffuse electron scattering in the lithium-ion battery cathode material Li1.2Ni0.13Mn0.54Co0.13O2 Type A1 Journal article
Year 2022 Publication IUCrJ Abbreviated Journal Iucrj
Volume 9 Issue 5 Pages 695-704
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In contrast to perfectly periodic crystals, materials with short-range order produce diffraction patterns that contain both Bragg reflections and diffuse scattering. To understand the influence of short-range order on material properties, current research focuses increasingly on the analysis of diffuse scattering. This article verifies the possibility to refine the short-range order parameters in submicrometre-sized crystals from diffuse scattering in single-crystal electron diffraction data. The approach was demonstrated on Li<sub>1.2</sub>Ni<sub>0.13</sub>Mn<sub>0.54</sub>Co<sub>0.13</sub>O<sub>2</sub>, which is a state-of-the-art cathode material for lithium-ion batteries. The intensity distribution of the 1D diffuse scattering in the electron diffraction patterns of Li<sub>1.2</sub>Ni<sub>0.13</sub>Mn<sub>0.54</sub>Co<sub>0.13</sub>O<sub>2</sub>depends on the number of stacking faults and twins in the crystal. A model of the disorder in Li<sub>1.2</sub>Ni<sub>0.13</sub>Mn<sub>0.54</sub>Co<sub>0.13</sub>O<sub>2</sub>was developed and both the stacking fault probability and the percentage of the different twins in the crystal were refined using an evolutionary algorithm in<italic>DISCUS</italic>. The approach was applied on reciprocal space sections reconstructed from 3D electron diffraction data since they exhibit less dynamical effects compared with in-zone electron diffraction patterns. A good agreement was achieved between the calculated and the experimental intensity distribution of the diffuse scattering. The short-range order parameters in submicrometre-sized crystals can thus successfully be refined from the diffuse scattering in single-crystal electron diffraction data using an evolutionary algorithm in<italic>DISCUS</italic>.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000852551800018 Publication Date 2022-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2052-2525 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes The research leading to these results has received funding from the Research Foundation Flanders, G035619N G040116N ; Approved (down) Most recent IF: 3.9
Call Number EMAT @ emat @c:irua:190647 Serial 7105
Permanent link to this record
 

 
Author Segura, P.C.; De Meur, Q.; Alloul, A.; Tanghe, A.; Onderwater, R.; Vlaeminck, S.E.; Vande Wouwer, A.; Wattiez, R.; Dewasme, L.; Leroy, B.
Title Preferential photoassimilation of volatile fatty acids by purple non-sulfur bacteria : experimental kinetics and dynamic modelling Type A1 Journal article
Year 2022 Publication Biochemical engineering journal Abbreviated Journal Biochem Eng J
Volume 186 Issue Pages 108547-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Purple non-sulfur bacteria (PNSB) are known for their metabolic versatility and thrive as anoxygenic photoheterotrophs. In environmental engineering and resource recovery, cells would grow on mixtures of volatile fatty acids (VFA) generated by anaerobic fermentation of waste streams. In this study, we aim to better understand the behavior of Rhodospirillum rubrum, a model PNSB species, grown using multiple VFA as carbon sources. We highlighted that assimilation of individual VFA follows a sequential pattern. Based on observations in other PNSB, this seems to be specific to isocitrate lyase-lacking organisms. We hypothesized that the inhibition phenomenon could be due to the regulation of the metabolic fluxes in the substrate cycle between acetoacetyl-CoA and crotonyl-CoA. Developed macroscopic dynamic models showed a good predictive capability for substrate competition for every VFA mixture containing acetate, propionate, and/or butyrate. These novel insights provide valuable input for better design and operation of PNSB-based waste treatment solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000891992900005 Publication Date 2022-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1369-703x; 1873-295x ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 3.9
Call Number UA @ admin @ c:irua:192741 Serial 7332
Permanent link to this record
 

 
Author De Kerf, T.; Gestels, A.; Janssens, K.; Scheunders, P.; Steenackers, G.; Vanlanduit, S.
Title Quantitative detection of corrosion minerals in carbon steel using shortwave infrared hyperspectral imaging Type A1 Journal article
Year 2022 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 12 Issue 50 Pages 32775-32783
Keywords A1 Journal article; Engineering sciences. Technology; Vision lab; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract This study presents a novel method for the detection and quantification of atmospheric corrosion products on carbon steel. Using hyperspectral imaging (HSI) in the short-wave infrared range (SWIR) (900-1700 nm), we are able to identify the most common corrosion minerals such as: alpha-FeO(OH) (goethite), gamma-FeO(OH) (lepidocrocite), and gamma-Fe2O3 (maghemite). Six carbon steel samples were artificially corroded in a salt spray chamber, each sample with a different duration (between 1 h and 120 hours). These samples were analysed by scanning X-ray diffraction (XRD) and also using a SWIR HSI system. The XRD data is used as baseline data. A random forest regression algorithm is used for training on the combined XRD and HSI data set. Using the trained model, we can predict the abundance map based on the HSI images alone. Several image correlation metrics are used to assess the similarity between the original XRD images and the HSI images. The overall abundance is also calculated and compared for XRD and HSI images. The analysis results show that we are able to obtain visually similar images, with error rates ranging from 3.27 to 13.37%. This suggests that hyperspectral imaging could be a viable tool for the study of corrosion minerals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000885554600001 Publication Date 2022-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 3.9
Call Number UA @ admin @ c:irua:192085 Serial 7334
Permanent link to this record
 

 
Author Tessema, G.A.; van der Borg, J.; Van Rompaey, A.; Van Passel, S.; Adgo, E.; Minale, A.S.; Asrese, K.; Frankl, A.; Poesen, J.
Title Benefit segmentation of tourists to geosites and its implications for sustainable development of geotourism in the Southern Lake Tana Region, Ethiopia Type A1 Journal article
Year 2022 Publication Sustainability Abbreviated Journal Sustainability-Basel
Volume 14 Issue 6 Pages 3411-3425
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Geotourism is a sustainable type of tourism that focuses on the geological and geomorphological heritages of an area, and the associated cultural and biodiversity features. Though the popularity of geotourism is rapidly growing, research on the demand side, particularly on segmenting tourists to geosites and understanding their profiles, is limited. This obviously makes the designing of effective tourism policies that aim at developing geotourism sustainably very difficult. Hence, the main objectives of this study were to segment and profile tourists to geosites based on the benefits sought, and to show its implications for sustainable development of geotourism. With a survey of 415 tourists, this study clustered tourists to geosites in the southern Lake Tana region in Ethiopia based on the benefits sought. A factor-cluster method was applied to segment the tourists. The study identified four distinct segments: Activity-Nature Lovers, Culture Lovers, Nature-Culture Lovers, and Want-It-Alls. These segments differed in their demographic, trip, and behavioral characteristics. The findings implied that for sustainable development, destination managers and marketers need to customize their geotourism product development and marketing strategies based on the needs and characteristics of each market segment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000774527600001 Publication Date 2022-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 3.9
Call Number UA @ admin @ c:irua:188043 Serial 7353
Permanent link to this record
 

 
Author Dehhaghi, S.; Choobchian, S.; Ghobadian, B.; Farhadian, H.; Viira, A.-H.; Stefanie, H.I.; Van Passel, S.; Azadi, H.
Title Five-year development plans of renewable energy policies in Iran : a content analysis Type A1 Journal article
Year 2022 Publication Sustainability Abbreviated Journal Sustainability-Basel
Volume 14 Issue 3 Pages 1501
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Renewable energy (RE) policies can play an effective role in the development of renewable resources. The main goal of this paper was to conduct a content analysis on RE development policies in Iran's five-year National Development Plan (NDP) by investigating upstream national documents. To achieve the goal, 29 upstream documents related to RE were identified and analyzed through a systematic literature review. Then, a qualitative content analysis was applied to analyze the documents. The results showed that Iran's current RE policies need to be reviewed, reformed, and strengthened. For example, lack of sufficient attention to renewable heat and fuel was one of the deficiencies of RE policies in Iran's five-year NDP. The decentralization of policymaking in the unified organization was also one of the weaknesses in the policymaking process of the RE. Iran can develop sustainable and clean RE policies by using sources such as solar, wind, geothermal, hydropower, wave, and tidal power. The paper concludes that, although RE policies have the potential for development in Iran due to environmental, social, and economic advantages, they could face some infrastructural, managerial, socio-cultural, and economic challenges. Accordingly, effective and innovative policymaking is required to meet such challenges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000754912800001 Publication Date 2022-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 3.9
Call Number UA @ admin @ c:irua:186501 Serial 7358
Permanent link to this record
 

 
Author Zhang, L.; Heijkers, S.; Wang, W.; Martini, L.M.; Tosi, P.; Yang, D.; Fang, Z.; Bogaerts, A.
Title Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling Type A1 Journal article
Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 31 Issue 5 Pages 055014
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nanosecond pulsed discharge plasma shows a high degree of non-equilibrium, and exhibits relatively high conversions in the dry reforming of methane. To further improve the application, a good insight of the underlying mechanisms is desired. We developed a chemical kinetics model to explore the underlying plasma chemistry in nanosecond pulsed discharge. We compared the calculated conversions and product selectivities with experimental results, and found reasonable agreement in a wide range of specific energy input. Hence, the chemical kinetics model is able to provide insight in the underlying plasma chemistry. The modeling results predict that the most important dissociation reaction of CO<sub>2</sub>and CH<sub>4</sub>is electron impact dissociation. C<sub>2</sub>H<sub>2</sub>is the most abundant hydrocarbon product, and it is mainly formed upon reaction of two CH<sub>2</sub>radicals. Furthermore, the vibrational excitation levels of CO<sub>2</sub>contribute for 85% to the total dissociation of CO<sub>2</sub>.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000797660000001 Publication Date 2022-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes China Scholarship Council; National Natural Science Foundation of China, 11965018 ; This work is supported by the National Natural Science Foundation of China (Grant Nos. 52077026, 11965018), L Zhang was also supported by the China Scholarship Council (CSC). Data availability statement The data that support the findings of this study are available upon reasonable request from the authors. Approved (down) Most recent IF: 3.8
Call Number PLASMANT @ plasmant @c:irua:188537 Serial 7069
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C.; Guaitella, O.; Murphy, A.B.
Title Foundations of plasma catalysis for environmental applications Type A1 Journal article
Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is gaining increasing interest for various applications, but the underlying mechanisms are still far from understood. Hence, more fundamental research is needed to understand these mechanisms. This can be obtained by both modelling and experiments. This foundations paper describes the fundamental insights in plasma catalysis, as well as efforts to gain more insights by modelling and experiments. Furthermore, it discusses the state-of-the-art of the major plasma catalysis applications, as well as successes and challenges of technology transfer of these applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000804396200001 Publication Date 2022-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes H2020 Marie Skłodowska-Curie Actions, 823745 ; H2020 European Research Council, 810182 ; We acknowldege financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (Grant Agreement No. 810182 – SCOPE ERC Synergy project) and the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 813393 (PIONEER). Approved (down) Most recent IF: 3.8
Call Number PLASMANT @ plasmant @c:irua:188539 Serial 7070
Permanent link to this record
 

 
Author Biondo, O.; Fromentin, C.; Silva, T.; Guerra, V.; van Rooij, G.; Bogaerts, A.
Title Insights into the limitations to vibrational excitation of CO2: validation of a kinetic model with pulsed glow discharge experiments Type A1 Journal article
Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 31 Issue 7 Pages 074003
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Vibrational excitation represents an efficient channel to drive the dissociation of CO<sub>2</sub>in a non-thermal plasma. Its viability is investigated in low-pressure pulsed discharges, with the intention of selectively exciting the asymmetric stretching mode, leading to stepwise excitation up to the dissociation limit of the molecule. Gas heating is crucial for the attainability of this process, since the efficiency of vibration–translation (V–T) relaxation strongly depends on temperature, creating a feedback mechanism that can ultimately thermalize the discharge. Indeed, recent experiments demonstrated that the timeframe of V–T non-equilibrium is limited to a few milliseconds at ca. 6 mbar, and shrinks to the<italic>μ</italic>s-scale at 100 mbar. With the aim of backtracking the origin of gas heating in pure CO<sub>2</sub>plasma, we perform a kinetic study to describe the energy transfers under typical non-thermal plasma conditions. The validation of our kinetic scheme with pulsed glow discharge experiments enables to depict the gas heating dynamics. In particular, we pinpoint the role of vibration–vibration–translation relaxation in redistributing the energy from asymmetric to symmetric levels of CO<sub>2</sub>, and the importance of collisional quenching of CO<sub>2</sub>electronic states in triggering the heating feedback mechanism in the sub-millisecond scale. This latter finding represents a novelty for the modelling of low-pressure pulsed discharges and we suggest that more attention should be paid to it in future studies. Additionally, O atoms convert vibrational energy into heat, speeding up the feedback loop. The efficiency of these heating pathways, even at relatively low gas temperature and pressure, underpins the lifetime of V–T non-equilibrium and suggests a redefinition of the optimal conditions to exploit the ‘ladder-climbing’ mechanism in CO<sub>2</sub>discharges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000839466500001 Publication Date 2022-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes Fundação para a Ciência e a Tecnologia, PLA/0076/2021 ; H2020 Marie Skłodowska-Curie Actions, 813393 ; This research was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 813393 (PIONEER). V Guerra and T Silva were partially funded by the Portuguese ‘FCT-Fundação para a Ciência e a Tecnologia’, under Projects UIDB/50010/2020, UIDP/50010/2020, PTDC/FISPLA/1616/2021 and EXPL/FIS-PLA/0076/2021. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved (down) Most recent IF: 3.8
Call Number PLASMANT @ plasmant @c:irua:190008 Serial 7106
Permanent link to this record
 

 
Author Van Putte, N.; Meire, P.; Seuntjens, P.; Joris, I.; Verreydt, G.; Hambsch, L.; Temmerman, S.
Title Solving hindered groundwater dynamics in restored tidal marshes by creek excavation and soil amendments : a model study Type A1 Journal article
Year 2022 Publication Ecological engineering: the journal of ecotechnology Abbreviated Journal Ecol Eng
Volume 178 Issue Pages 106583-15
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Ecosphere
Abstract Groundwater fluxes in tidal marshes largely control key ecosystem functions and services, such as vegetation growth, soil carbon sequestration, and nutrient cycling. In tidal marshes restored on formerly embanked agricultural land, groundwater fluxes are often limited as compared to nearby natural marshes, as a result of historical agricultural soil compaction. To improve the functioning of restored tidal marshes, knowledge is needed on how much certain design options can optimize soil-groundwater interactions in future restoration projects. Based on measured data on soil properties and tidally induced groundwater dynamics, we calibrated and evaluated a 2D vertical model of a creek-marsh cross-section, accounting for both saturated and unsaturated groundwater flow and solute transport in a variably saturated groundwater flow model. We found that model simulations of common restoration practices such as soil amendments (increasing the depth of porous soil on top of the compact layer) and creek excavation (increasing the creek density) increase the soil aeration depth and time, the drainage depth and the solute flux, and decrease the residence time of solutes in the porewater. Our simulations indicate that increasing the depth to the compact layer from 20 cm to 40 cm, or increasing the creek density from 1 creek to 2 creeks along a 50 m marsh transect (while maintaining the total creek cross-sectional area), in both cases more than doubles the volume of water processed by the marsh soil. We discuss that this may stimulate nutrient cycling. As such, our study demonstrates that groundwater modelling can support the design of marsh restoration measures aiming to optimize groundwater fluxes and related ecosystem services.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000795478200005 Publication Date 2022-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8574 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 3.8
Call Number UA @ admin @ c:irua:186605 Serial 7210
Permanent link to this record
 

 
Author Tennyson, J.; Mohr, S.; Hanicinec, M.; Dzarasova, A.; Smith, C.; Waddington, S.; Liu, B.; Alves, L.L.; Bartschat, K.; Bogaerts, A.; Engelmann, S.U.; Gans, T.; Gibson, A.R.; Hamaguchi, S.; Hamilton, K.R.; Hill, C.; O’Connell, D.; Rauf, S.; van ’t Veer, K.; Zatsarinny, O.
Title The 2021 release of the Quantemol database (QDB) of plasma chemistries and reactions Type A1 Journal article
Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 31 Issue 9 Pages 095020
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The Quantemol database (QDB) provides cross sections and rates of processes important for plasma models; heavy particle collisions (chemical reactions) and electron collision processes are considered. The current version of QDB has data on 28 917 processes between 2485 distinct species plus data for surface processes. These data are available via a web interface or can be delivered directly to plasma models using an application program interface; data are available in formats suitable for direct input into a variety of popular plasma modeling codes including HPEM, COMSOL, ChemKIN, CFD-ACE+, and VisGlow. QDB provides ready assembled plasma chemistries plus the ability to build bespoke chemistries. The database also provides a Boltzmann solver for electron dynamics and a zero-dimensional model. Thesedevelopments, use cases involving O<sub>2</sub>, Ar/NF<sub>3</sub>, Ar/NF<sub>3</sub>/O<sub>2</sub>, and He/H<sub>2</sub>O/O<sub>2</sub>chemistries, and plans for the future are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000895762200001 Publication Date 2022-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes Engineering and Physical Sciences Research Council, EP/N509577/1 ; Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 ; Science and Technology Facilities Council, ST/K004069/1 ; National Science Foundation, OAC-1834740 ; Approved (down) Most recent IF: 3.8
Call Number PLASMANT @ plasmant @c:irua:192845 Serial 7245
Permanent link to this record